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Abstract. We explore two Fibonacci and Jacobsthal sums of polynomial products of orders
4 and 5, and extract their Pell, Vieta, and Chebyshev counterparts. We also confirm the
Fibonacci and Jacobsthal sums of polynomial products of orders 4 and 5 using graph-theoretic
tools.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary complex variable; a(x), b(x), z0(x), and z1(x) are arbitrary
complex polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas

polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 4, 7]. Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by
pn(x) = fn(2x) and qn(x) = ln(2x), respectively. In particular, the Pell numbers Pn and Pell-

Lucas numbers Qn are given by Pn = pn(1) = fn(2) and 2Qn = qn(1) = ln(2), respectively
[4].

Suppose a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) = Jn(x), the nth
Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the nth Jacobsthal-

Lucas polynomial [2, 7]. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth Jacobsthal
and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn and jn(1) = Ln.

Let a(x) = x and b(x) = −1. When g0(x) = 0 and g1(x) = 1, gn(x) = Vn(x), the nth
Vieta polynomial ; and when g0(x) = 2 and g1(x) = x, gn(x) = vn(x), the nth Vieta-Lucas

polynomial [3, 7].
Finally, let a(x) = 2x and b(x) = −1. When g0(x) = 1 and g1(x) = x, gn(x) = Tn(x), the

nth Chebyshev polynomial of the first kind ; and when g0(x) = 1 and g1(x) = 2x, gn(x) = Un(x),
the nth Chebyshev polynomial of the second kind [3, 7].

The Jacobsthal, Vieta, and Chebyshev subfamilies are closely related by the relationships
in Table 1, where i =

√
−1 [3, 7].

Table 1. Relationships Among the Subfamilies

Jn(x) = x(n−1)/2fn(1/
√
x) jn(x) = xn/2ln(1/

√
x)

Vn(x) = in−1fn(−ix) vn(x) = inln(−ix)
Vn(2x) = Un−1(x) vn(2x) = 2Tn(x).

In the interest of clarity, concision, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). We also omit a lot of basic algebra.
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A gibonacci polynomial product of order m is a product of gibonacci polynomials gn+k of

the form
∏

k≥0

g
sj
n+k, where

∑

sj≥1
sj = m [8].

1.1. Fibonacci and Jacobsthal Sums of Polynomial Products of Orders 2 and 3.

It is well-known that Fibonacci and Jacobsthal polynomials satisfy the sums of products of
orders 2 and 3 in Table 2 [4, 6, 7].

Table 2. Fibonacci and Jacobsthal Sums of Polynomial Products of Orders 2
and 3

fm+n = fm+1fn + fmfn−1 Jm+n = Jm+1Jn + xJmJn−1

xf2n = f2
n+1 − f2

n−1 J2n = J2
n+1 − x2J2

n−1

f2n+1 = f2
n+1 + f2

n J2n+1 = J2
n+1 − x2J2

n−1

xf3n = f3
n+1 + xf3

n − f3
n−1 J3n = J3

n+1 + xJ3
n − x3J3

n−1

With this background, we begin our discourse with a formula for f4n as a sum of polynomial
products of order 4.

2. A Fibonacci Sum of Polynomial Products of Order 4

By the Fibonacci addition formula in Table 2, we have

xf4n = f2n+1(xf2n) + (xf2n)f2n−1

=
(

f2
n+1 + f2

n

) (

f2
n+1 − f2

n−1

)

+
(

f2
n+1 − f2

n−1

) (

f2
n + f2

n−1

)

= f4
n+1 + 2f2

n+1f
2
n − 2f2

nf
2
n−1 − f4

n−1

= f4
n+1 + 2f2

n(xfn + fn−1)
2 − 2f2

nf
2
n−1 − f4

n−1

= f4
n+1 + 2x2f4

n + 4xf3
nfn−1 − f4

n−1. (2.1)

Identity (2.1) can also be established in two other ways, namely, using the identities

1) f4n = f2nl2n and l2n = f2
n+1 + 2f2

n + f2
n−1; and

2) f4n = f3n+1fn + f3nfn−1 and xf3n = f3
n+1 + xf3

n − f3
n−1.

In the interest of brevity, we omit their proofs.
Identity (2.1) implies that

F4n = F 4
n+1 + 2F 4

n + 4F 3
nFn−1 − F 4

n−1.

Notice that identity (2.1) can be rewritten as

xf4n = f4
n+1 − 2x2f4

n − f4
n−1 + 4xfn+1f

3
n

= f4
n+1 + 4f2

n+1f
2
n − 4fn+1f

2
nfn−1 − 2x2f4

n − f4
n−1.

2.1. Pell Consequences. It also follows from identity (2.1) that

2xp4n = p4n+1 + 8x2p4n + 8xp3npn−1 − p4n−1;

2P4n = P 4
n+1 + 8P 4

n + 8P 3
nPn−1 − P 4

n−1.

Next, we explore a formula for f5n as a sum of polynomial products of order 5.

FEBRUARY 2021 5



THE FIBONACCI QUARTERLY

3. A Fibonacci Sum of Polynomial Products of Order 5

To begin, notice that

2x2fn+1f
4
n = 2x3f5

n + 2x2f4
nfn−1;

fn+1f
4
n−1 = xfnf

4
n−1 + f5

n−1.

By the Fibonacci addition formula and identity (2.1), we then have

f5n = f4n+1fn + f4nfn−1

= (xf4n + f4n−1)fn + f4nfn−1

= f4nfn+1 + f4n−1fn;

xf5n =
(

f4
n+1 + 2x2f4

n + 4xf3
nfn−1 − f4

n−1

)

fn+1 + xf4n−1fn

= A+B,

where

A = f5
n+1 + 2x2fn+1f

4
n + 4xfn+1f

3
nfn−1 − fn+1f

4
n−1

= f5
n+1 +

(

2x3f5
n + 2x2f4

nfn−1

)

+ 4xfn+1f
3
nfn−1 −

(

xfnf
4
n−1 + f5

n−1

)

= f5
n+1 + 4xfn+1f

3
nfn−1 + 2x3f5

n + 2x2f4
nfn−1 − xfnf

4
n−1 − f5

n−1;

B = xf4n−1fn

=
(

f2
2n + f2

2n−1

)

xfn;

xB =
[

(

f2
n+1 − f2

n−1

)2
+ x2

(

f2
n + f2

n−1

)2
]

fn

=
(

f4
n+1 + f4

n−1 − 2f2
n+1f

2
n−1

)

fn + x2
(

f4
n + f4

n−1 + 2f2
nf

2
n−1

)

fn

= f4
n+1fn + x2f5

n + (x2 + 1)fnf
4
n−1 − 2f2

n+1fnf
2
n−1 + 2x2f3

nfn−1(fn+1 − xfn)

= f4
n+1fn − 2f2

n+1fnf
2
n−1 + 2x2fn+1f

3
nfn−1 + x2f5

n − 2x3f4
nfn−1 + (x2 + 1)fnf

4
n−1.

Because

2xf2
n+1f

2
nfn−1 = 2x2fn+1f

3
nfn−1 + 2xfn+1f

2
nf

2
n−1

= 2f2
n+1fnf

2
n−1 + 2x2fn+1f

3
nfn−1 − 2fn+1fnf

3
n−1,

we have

f4
n+1fn = f2

n+1fn(xfn + fn−1)
2

= x2f2
n+1f

3
n + f2

n+1fnf
2
n−1 + 2xf2

n+1f
2
nfn−1

= x2f3
n(xfn + fn−1)

2 + f2
n+1fnf

2
n−1 +

(

2f2
n+1fnf

2
n−1 + 2x2fn+1f

3
nfn−1 − 2fn+1fnf

3
n−1

)

= 3f2
n+1fnf

2
n−1 + 2x2fn+1f

3
nfn−1 − 2fn+1fnf

3
n−1 + x4f5

n + 2x3f4
nfn−1 + x2f3

nf
2
n−1.

So,

xB =
(

3f2
n+1fnf

2
n−1 + 2x2fn+1f

3
nfn−1 − 2fn+1fnf

3
n−1 + x4f5

n + 2x3f4
nfn−1 + x2f3

nf
2
n−1

)

+ x2f5
n + (x2 + 1)fnf

4
n−1 − 2f2

n+1fnf
2
n−1 + 2x2fn+1f

3
nfn−1 − 2x3f4

nfn−1

= 4x2fn+1f
3
nfn−1 + (x4 + x2)f5

n + x2fnf
4
n−1 + C,
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where

C = f2
n+1fnf

2
n−1 − 2fn+1fnf

3
n−1 + x2f3

nf
2
n−1 + fnf

4
n−1

= (xfn+1f
2
nf

2
n−1 + fn+1fnf

3
n−1) + fnf

4
n−1 − 2fn+1fnf

3
n−1 + (x2fn+1f

3
nfn−1 − x3f4

nfn−1)

=
(

xfn+1f
2
nf

2
n−1 − fn+1fnf

3
n−1

)

+ fnf
4
n−1 +

(

x2fn+1f
3
nfn−1 − x3f4

nfn−1

)

= x2fn+1f
3
nfn−1 + xfn+1f

2
nf

2
n−1 − fn+1fnf

3
n−1 − x3f4

nfn−1 + fnf
4
n−1.

Thus,

xA+ xB = x
(

f5
n+1 + 2x3f5

n + 4xfn+1f
3
nfn−1 − f5

n−1

)

+ 2x3f4
nfn−1 − x2fnf

4
n−1

+
[

(x4 + x2)f5
n + 4x2fn+1f

3
nfn−1 + x2fnf

4
n−1

]

+
(

xfn+1f
2
nf

2
n−1 − fn+1fnf

3
n−1

)

+ fnf
4
n−1 +

(

x2fn+1f
3
nfn−1 − x3f4

nfn−1

)

= x
[

f5
n+1 + (3x3 + x)f5

n − f5
n−1 + 8xfn+1f

3
nfn−1

]

+ xfn+1f
2
nf

2
n−1 − fn+1fnf

3
n−1

+ x2fn+1f
3
nfn−1 + x3f4

nfn−1 + fnf
4
n−1

= x
[

f5
n+1 + 9xfn+1f

3
nfn−1 + (3x3 + x)f5

n − f5
n−1

]

+D,

where

D = xfn+1f
2
nf

2
n−1 − fn+1fnf

3
n−1 + x3f4

nfn−1 + fnf
4
n−1

= xfn+1f
2
nf

2
n−1 + x2f3

nfn−1(fn+1 − fn−1)− fnf
3
n−1(fn+1 − fn−1)

= xfn+1f
2
nf

2
n−1 + x2fn+1f

3
nfn−1 − x2f3

nf
2
n−1 − xf2

nf
3
n−1

= xf2
nf

2
n−1(xfn + fn−1) + x2fn+1f

3
nfn−1 − x2f3

nf
2
n−1 − xf2

nf
3
n−1

= x2fn+1f
3
nfn−1.

Consequently,

xA+ xB = x
[

f5
n+1 + 10xfn+1f

3
nfn−1 + x(3x2 + 1)f5

n − f5
n−1

]

;

xf5n = A+B

= f5
n+1 + 10xfn+1f

3
nfn−1 + x(3x2 + 1)f5

n − f5
n−1. (3.1)

In particular, we have

F5n = F 5
n+1 + 10Fn+1F

3
nFn−1 + 4F 5

n − F 5
n−1.

For example, F 5
11 + 10F11F

3
10F9 + 4F 5

10 − F 5
9 = 12, 586, 269, 025 = F50.

Because 5|F5n, it follows from the identity that F 5
n+1 ≡ F 5

n + F 5
n−1 (mod 5).

3.1. Pell Byproducts. It follows from identity (3.1) that

2xp5n = p5n+1 + 20xpn+1p
3
npn−1 + 2x(12x2 + 1)p5n − p5n−1;

2P5n = P 5
n+1 + 20Pn+1P

3
nPn−1 + 26P 5

n − P 5
n−1.

4. Jacobsthal Consequences

Next, we investigate the Jacobsthal implications of identities (2.1) and (3.1). In both cases,

we employ the relationship Jn(x) = x(n−1)/2fn(1/
√
x) in Table 1, and omit a lot of basic

algebra in the interest of brevity.
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Replacing x with 1/
√
x in identity (2.1) and multiplying the resulting equation with x(4n−1)/2,

we get

1√
x

[

x(4n−1)/2f4n

]

=
1√
x

(

xn/2fn+1

)4
+

2

x
· x3/2

[

x(n−1)/2fn

]4

+
4√
x
· x2

[

x(n−1)/2fn

]3 [

x(n−2)/2fn−1

]

− x7/2
[

x(n−2)/2fn−1

]4

J4n(x) = J4
n+1(x) + 2xJ4

n(x) + 4x2J3
n(x)Jn−1(x)− x4J4

n−1(x), (4.1)

where fn = fn(1/
√
x).

Now, replace x with 1/
√
x in identity (3.1) and multiply the ensuing equation with x(5n−1)/2.

This yields

1√
x

[

x(5n−1)/2f5n

]

=
1√
x

(

xn/2fn+1

)5
+

10√
x
· x2

(

xn/2fn+1

) [

x(n−1)/2fn

]3 [

x(n−2)/2fn−1

]

+
1√
x

(

x+ 3

x

)

· x2
[

x(n−1)/2fn

]5
− x4

√
x
[

x(n−2)/2fn−1

]5

J5n(x) = J5
n+1(x) + 10x2Jn+1(x)J

3
n(x)Jn−1(x) + x(x+ 3)J5

n(x)− x5J5
n−1(x), (4.2)

where fn = fn(1/
√
x).

It follows from identities (4.1) and (4.2) that

J4n = J4
n+1 + 4J4

n + 16J3
nJn−1 − 16J4

n−1; (4.3)

J5n = J5
n+1 + 40Jn+1J

3
nJn−1 + 10J5

n − 32J5
n−1. (4.4)

For example,

J4
11 + 4J4

10 + 16J3
10J9 − 16J4

9 = 366, 503, 875, 925 = J40;

J5
8 + 40J8J

3
7J6 + 10J5

7 − 32J5
6 = 11, 453, 246, 123 = J35.

Identities (4.3) and (4.4) imply that J4n ≡ J4
n+1 (mod 4), J5n ≡ J5

n+1 + 2J5
n (mod 8), and

J5n ≡ J5
n+1 − 2J5

n (mod 10).

5. Vieta and Chebyshev Implications

The relationships Vn(x) = in−1fn(−ix) and Un(x) = Vn+1(2x) in Table 1 imply that iden-
tities (2.1) and (3.1) have Vieta and Chebyshev companions:

xV4n = V 4
n+1 − 2x2V 4

n + 4xV 3
n Vn−1 − V 4

n−1;

xV5n = V 5
n+1 + 10xVn+1V

3
n Vn−1 − x(3x2 − 1)V 5

n + V 5
n−1;

2xU4n = U4
n+1 − 8x2U4

n + 8xU3
nUn−1 − U4

n−1;

2xU5n = U5
n+1 + 20xUn+1U

3
nUn−1 − 2x(12x2 − 1)U5

n + U5
n−1,

where Vn = Vn(x) and Un = Un(x). In the interest of brevity, we omit their confirmations
also.

6. Graph-Theoretic Models

Next, we confirm identities (2.1) and (4.1) with graph-theoretic tools. To this end, consider
the Fibonacci digraph D1 in Figure 1 with vertices v1 and v2, where a weight is assigned to
each edge [5].
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Figure 1. Weighted Fibonacci Digraph D1

It follows by induction from its weighted adjacency matrix Q =

[

x 1
1 0

]

that

Qn =

[

fn+1 fn
fn fn−1

]

,

where Q = Q(x) and n ≥ 1 [5].
A walk from vertex vi to vertex vj is a sequence vi-ei-vi+1-· · · -vj−1-ej−1-vj of vertices vk

and edges ek, where edge ek is incident with vertices vk and vk+1. The walk is closed if vi = vj;
otherwise, it is open. The length of a walk is the number of edges in the walk. The weight of
a walk is the product of the weights of the edges along the walk.

We can employ the matrix Qn to compute the weight of a walk of length n from any vertex
vi to any vertex vj , as the following theorem shows [5].

Theorem 6.1. Let M be the weighted adjacency matrix of a weighted, connected digraph with

vertices v1, v2, . . . , vk. Then the ijth entry of the matrix Mn gives the sum of the weights of

all walks of length n from vi to vj , where n ≥ 1.

The next result follows from this theorem.

Corollary 6.2. The ijth entry of Qn gives the sum of the weights of all walks of length n
from vi to vj in the weighted digraph D1, where 1 ≤ i, j ≤ n.

It follows by this corollary that the sum of the weights of closed walks of length n originating
at v1 in the digraph is fn+1. This fact plays a central role in the graph-theoretic proofs.

6.1. Proof of Identity (2.1).
Proof. Let A, B, and C denote the sets of closed walks of lengths n, n − 1, and n − 2,
all originating at v1. The sums of the weights of all walks in them are fn+1, fn, and fn−1,
respectively.

We define the sum S1 of the weights of the elements in the product set A × A× A × A to
be the product of the sums of weights in each component; so S1 = f4

n+1. Similarly, the sum

S2 of the weights in B×B×B×B equals S2 = f4
n, and the sum S3 in B×B×B×C equals

S3 = f3
nfn−1. Consequently, the sum S = S1 + 2x2S2 + 4xS3 is given by

S = f4
n+1 + 2x2f4

n + 4xf3
nfn−1.

We will now establish that S = xf4n + f4
n−1 in a different way. To this end, let (u, v, w, z)

be an arbitrary element of the product set A × A× A × A. Table 3 shows the possible cases
for such quadruples and the corresponding sums of weights.
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Table 3: Sum of the Weights of the Quadruples

u begins v begins w begins z begins sum of the weights
with a loop? with a loop? with a loop? with a loop? of the quadruples (u, v, w, z)

yes yes yes yes x4f4
n

yes yes yes no x3f3
nfn−1

yes yes no yes x3f3
nfn−1

yes yes no no x2f2
nf

2

n−1

yes no yes yes x3f3
nfn−1

yes no yes no x2f2
nf

2

n−1

yes no no yes x2f2
nf

2

n−1

yes no no no xfnf3

n−1

no yes yes yes x3f3
nfn−1

no yes yes no x2f2
nf

2

n−1

no yes no yes x2f2
nf

2

n−1

no yes no no xfnf3

n−1

no no yes yes x2f2
nf

2

n−1

no no yes no xfnf3

n−1

no no no yes xfnf3

n−1

no no no no f4

n−1

It follows from the table that

S1 = x4f4
n + 4x3f3

nfn−1 + 6x2f2
nf

2
n−1 + 4xfnf

3
n−1 + f4

n−1

= f4
n+1.

This implies S2 = f4
n.

To compute S3, we let (u, v, w, z) be an arbitrary element of the product set B×B×B×C.
Table 4 shows the possible cases for such quadruples and the corresponding sums of weights.

Table 4: Sum of the Weights of the Quadruples

u begins v begins w begins z begins sum of the weights
with a loop? with a loop? with a loop? with a loop? of the quadruples (u, v, w, z)

yes yes yes yes x4f3

n−1
fn−2

yes yes yes no x3f3

n−1
fn−3

yes yes no yes x3f2

n−1
f2

n−2

yes yes no no x2f2

n−1
fn−2fn−3

yes no yes yes x3f2

n−1
f2

n−2

yes no yes no x2f2

n−1
fn−2fn−3

yes no no yes x2fn−1f3

n−2

yes no no no xfn−1f2

n−2
fn−3

no yes yes yes x3f2

n−1
f2

n−2

no yes yes no x2f2

n−1
fn−2fn−3

no yes no yes x2fn−1f3

n−2

no yes no no xfn−1f2

n−2
fn−3

no no yes yes xfn−1f3

n−2

no no yes no xfn−1f2

n−2
fn−3

no no no yes xf4

n−2

no no no no f3

n−2
fn−3

It follows from the table that

S3 = (x4f3
n−1fn−2 + x3f3

n−1fn−3) + (3x3f2
n−1f

2
n−2 + 3x2f2

n−1fn−2fn−3)

+ (3x2fn−1f
3
n−2 + 3xfn−1f

2
n−2fn−3) + (xf4

n−2 + f3
n−2fn−3)

= x3f4
n−1 + 3x2f3

n−1fn−2 + 3xf2
n−1f

2
n−2 + fn−1f

3
n−2

= (x3f4
n−1 + x2f3

n−1fn−2) + (2x2f2
n−1fn−2 + 2xf2

n−1f
2
n−2) + (xf2

n−1f
2
n−2 + fn−1f

3
n−2)
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= x2fnf
3
n−1 + 2xfnf

2
n−1fn−2 + fnfn−1f

2
n−2

= fnfn−1

(

x2f2
n−1 + 2xfn−1fn−2 + f2

n−2

)

= f3
nfn−1.

Notice that

f3n−1 = f2nfn + f2n−1fn−1;

xf3n−1 =
(

f2
n+1 − f2

n−1

)

fn + x
(

f2
n + f2

n−1

)

fn−1;

xf3n−1fn = (xfn + fn−1)
2f2

n − f2
nf

2
n−1 + xf3

nfn−1 + xfnf
3
n−1

= x2f4
n + 3x2f3

nfn−1 + xfnf
3
n−1.

Collecting the values of S1, S2, and S3, and using the identity xf3n = f3
n+1 + xf3

n − f3
n−1

[6], we get

S = f4
n+1 + 2x2f4

n + 4xf3
nfn−1

=
(

f4
n+1 + x2f4

n + xf3
nfn−1 − xfnf

3
n−1 − f4

n−1

)

+ f4
n−1 +

(

x2f4
n + 3xf3

n−1 + xfnf
3
n−1

)

= f4
n+1 + xf3

n(xfn + fn−1)− (xfn + fn−1)f
3
n−1 + f4

n−1 + xf3n−1fn

=
(

f3
n+1 + xf3

n − f3
n−1

)

fn+1 + f4
n−1 + xf3n−1fn

= x(f3nfn+1 + f3n−1fn) + f4
n−1

= xf4n + f4
n−1.

Equating the two values of S yields the desired result, as expected. �

6.2. Proof of Identity (4.1). The graph-theoretic proof of identity (4.1) hinges on the Ja-

cobsthal digraph D2 in Figure 2 [4].

Figure 2. Weighted Jacobsthal Digraph D2

It follows by induction from its weighted adjacency matrix M =

[

1 x
1 0

]

that

Mn =

[

Jn+1(x) xJn(x)
Jn(x) xJn−1(x)

]

,

where n ≥ 1.
Consequently, the sum of the weights of closed walks of length n originating at v1 is Jn+1(x).

This fact plays a pivotal role in the graph-theoretic proof.
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Proof. Let A, B, and C denote the sets of closed walks of lengths n, n − 1, and n − 2,
all originating at v1. The sums of the weights of all walks in them are Jn+1, Jn, and Jn−1,
respectively. As before, we define the sum S1 of the weights of the elements in the product set
A × A × A × A to be the product of the sums of weights in each component; so S1 = J4

n+1.

Similarly, the sum S2 of the weights in B × B × B × B equals S2 = J4
n, and the sum S3 in

B ×B ×B ×C equals S3 = J3
nJn−1. Consequently, the sum S = S1 + 2x2S2 + 4x2S3 is given

by

S = J4
n+1 + 2x2J4

n + 4x2J3
nJn−1.

We will now compute the sum S in a different way. To this end, let (u, v, w, z) be an
arbitrary element of the product set A×A×A×A. Table 5 shows the various possible cases
for such quadruples and the corresponding sums of weights.

Table 5: Sum of the Weights of the Quadruples

u begins v begins w begins z begins sum of the weights
with a loop? with a loop? with a loop? with a loop? of the quadruples (u, v, w)

yes yes yes yes J4
n

yes yes yes no xJ3
nJn−1

yes yes no yes xJ3
nJn−1

yes yes no no x2J2
nJ

2

n−1

yes no yes yes xJ3
nJn−1

yes no yes no x2J2
nJ

2

n−1

yes no no yes x2J2
nJ

2

n−1

yes no no no x3JnJ3

n−1

no yes yes yes xJ3
nJn−1

no yes yes no x2J2
nJ

2

n−1

no yes no yes x2J2
nJ

2

n−1

no yes no no x3JnJ3

n−1

no no yes yes x2J2
nJ

2

n−1

no no yes no x3JnJ3

n−1

no no no yes x3JnJ3

n−1

no no no no x4J4

n−1

It follows from the table that

S1 = J4
n + 4xJ3

nJn−1 + 6x2J2
nJ

2
n−1 + 4x3JnJ

3
n−1 + x4J4

n−1

= J4
n+1.

This implies S2 = J4
n.

To compute S3, suppose (u, v, w, z) is an arbitrary element of B × B × B × C. It follows
from Table 5 that the sum S3 of the weights of such elements is given by

S3 = (J3
n−1Jn−2 + xJ3

n−1Jn−3) + (3xJ2
n−1J

2
n−2 + 3x2J2

n−1Jn−2Jn−3)

+ (3x2Jn−1J
3
n−2 + 3x3Jn−1J

2
n−2Jn−3) + (x3J4

n−2 + x4J3
n−2Jn−3)

= J4
n−1 + 3xJ3

n−1Jn−2 + 3x2J2
n−1J

3
n−2 + x3Jn−1J

3
n−2

= (J4
n−1 + xJ3

n−1Jn−2) + (2xJ3
n−1Jn−2 + 2x2J2

n−1J
3
n−2) + (x2J2

n−1J
3
n−2 + x3Jn−1J

3
n−2)

= JnJ
3
n−1 + 2xJnJ

2
n−1Jn−2 + x2JnJn−1J

2
n−2

= JnJn−1(J
2
n−1 + 2xJn−1Jn−2 + x2J2

n−2)

= J3
nJn−1.
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Thus,

S = S1 + 2xS2 + 4x2S3

= J4
n+1 + 2xJ4

n + 4x2J3
nJn−1.

To rewrite this value of S in a different form, consider J3n−1. By the Jacobsthal addition
formula, we have

J3n−1 = J2nJn + xJ2n−1Jn−1

=
(

J2
n+1 − x2J2

n−1

)

Jn + xJn−1

(

J2
n + xJ2

n−1

)

= J2
n+1Jn − x2JnJ

2
n−1 + xJ2

nJn−1 + x2J3
n−1;

J3n−1Jn = (Jn + xJn−1)
2J2

n − x2J2
nJ

2
n−1 + xJ2

nJn−1 + x2JnJ
3
n−1

= J4
n + 3xJ3

nJn−1 + x2JnJ
3
n−1.

Using the identity J3n = J3
n+1 + xJ3

n − x3J3
n−1 [4] and the Jacobsthal addition formula, we

can now rewrite the value of S:

S =
(

J4
n+1 + xJ4

n + x2J3
nJn−1 − x3JnJ

3
n−1 − x4J4

n−1

)

+ x
(

J4
n + 3xJ3

nJn−1 + x2J3
n−1

)

+ x4J4
n−1

= J4
n+1 + xJ3

n(Jn + xJn−1)− x3J3
n−1(Jn + xJn−1) + xJ3n−1Jn + x4J4

n−1

=
(

J3
n+1 + xJ3

n − x3J3
n−1

)

Jn+1 + xJ3n−1Jn + x4J4
n−1

= (J3nJn+1 + xJ3n−1Jn) + x4J4
n−1

= J4n + x4J4
n−1.

Equating the two values of S yields the desired result. �
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