EXTENDED GIBONACCI SUMS OF POLYNOMIAL PRODUCTS OF
ORDERS 4 AND 5

THOMAS KOSHY

ABSTRACT. We explore two Fibonacci and Jacobsthal sums of polynomial products of orders
4 and 5, and extract their Pell, Vieta, and Chebyshev counterparts. We also confirm the
Fibonacci and Jacobsthal sums of polynomial products of orders 4 and 5 using graph-theoretic
tools.

1. INTRODUCTION

Extended gibonacci polynomials z,(x) are defined by the recurrence z,12(x) = a(z)zp41(x)+
b(x)z,(x), where z is an arbitrary complex variable; a(x), b(x), zo(x), and z1(x) are arbitrary
complex polynomials; and n > 0.

Suppose a(z) = = and b(x) = 1. When 29(z) = 0 and z1(z) = 1, z,(z) = fo(x), the
nth Fibonacci polynomial; and when zp(x) = 2 and z1(z) = z, z,(x) = l,,(x), the nth Lucas
polynomial. Clearly, f,(1) = F,, the nth Fibonacci number; and [,(1) = L, the nth Lucas
number [1, 4, 7]. Pell polynomials p,(x) and Pell-Lucas polynomials q,(x) are defined by
pn(x) = fr(22) and g,(x) = 1,(2x), respectively. In particular, the Pell numbers P, and Pell-
Lucas numbers @, are given by P, = p,(1) = f,(2) and 2Q,, = ¢,(1) = [,,(2), respectively
[4].

Suppose a(x) = 1 and b(x) = z. When zp(x) = 0 and z1(x) = 1, z,(z) = Ju(x), the nth
Jacobsthal polynomial; and when zo(x) = 2 and z1(z) = 1, z,(z) = jn(x), the nth Jacobsthal-
Lucas polynomial [2, 7). Correspondingly, J, = J,(2) and j, = j,(2) are the nth Jacobsthal
and Jacobsthal-Lucas numbers, respectively. Clearly, J,(1) = F,, and j,(1) = L,,.

Let a(z) = = and b(x) = —1. When go(z) = 0 and g1(z) = 1, gn(x) = V,(x), the nth
Vieta polynomial; and when go(x) = 2 and ¢1(z) = =, gn(x) = v,(z), the nth Vieta-Lucas
polynomial [3, 7].

Finally, let a(x) = 2z and b(xz) = —1. When go(z) = 1 and g1(x) = =, gn(z) = Ty (x), the
nth Chebyshev polynomial of the first kind; and when go(z) = 1 and g1 (x) = 2z, gp(z) = Uy (),
the nth Chebyshev polynomial of the second kind [3, 7).

The Jacobsthal, Vieta, and Chebyshev subfamilies are closely related by the relationships
in Table 1, where i = /—1 [3, 7].

TABLE 1. Relationships Among the Subfamilies

Ju(z) = DR/ /T) Jnlx) = a"Pl(1)Vz)
Vo(z) = " Lf,(—iz) vp(x) = il (—ix)
Vo(22) = Up-1(z) v (22) = 2T,(x).

In the interest of clarity, concision, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z,, will mean z,(z). We also omit a lot of basic algebra.
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A gibonacci polynomial product of order m is a product of gibonacci polynomials g, 15 of

the form H giﬁrk, where ) s; =m [8].
k>0 8521

1.1. Fibonacci and Jacobsthal Sums of Polynomial Products of Orders 2 and 3.
It is well-known that Fibonacci and Jacobsthal polynomials satisfy the sums of products of
orders 2 and 3 in Table 2 [4, 6, 7].

TABLE 2. Fibonacci and Jacobsthal Sums of Polynomial Products of Orders 2

and 3
fm-i-n = fm+1fn + fmfn—l Jm-i—n = Jm-i-lJn + meJn—l
af = fop—faoa Jon = JE4 -T2,
f2n+1 - 72L+1 + fg J2n+1 == J7%+1 — .Z'2Jn_1
Tfsn = 3+1 +af)— 3—1 Jan = Jr?i+1 + ) - x3J3_1

With this background, we begin our discourse with a formula for f4, as a sum of polynomial
products of order 4.

2. A FiBoNAccCI SUM OF POLYNOMIAL PRODUCTS OF ORDER 4
By the Fibonacci addition formula in Table 2, we have
Tfm = fans1(xfon) + (@ f2n) fon—1
= (fr2L+1 + fr%) (f¢2L+1 —fa1) + (f¢2L+1 - fﬁ_l) (fr% +fio1)
= S F 20 =20 — faa
= frop F2fi(@fat fac1)® = 2f2f2 1 — faa
= fan 2080 f A f) fa1 — froi- (2.1)
Identity (2.1) can also be established in two other ways, namely, using the identities

1) f4n = f2nl2n and l2n = f72l+1 + 2f721 + fn2—1; and
2) fan = fant1fo + fonfoo1 and zfs, = fo  +afs — f3_,.

In the interest of brevity, we omit their proofs.
Identity (2.1) implies that

Fi,=Fy +2F, +4F3F, 1 — F}_,.
Notice that identity (2.1) can be rewritten as

xf4n = 34-1 - 2$2f3 - fé—l + 4$fn+1fg

= fomr F AR SR = Afufa fa1 = 227 f = fr_y.
2.1. Pell Consequences. It also follows from identity (2.1) that

20pan = Ppi1+827pp + 8Py Pu—1 — Py _1;
2P, = P, +8Pi48P3p, - PL ..

Next, we explore a formula for fs5, as a sum of polynomial products of order 5.
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3. A FiBoNAccCI SUM OF PoLYNOMIAL PrRoDUCTS OF ORDER 5

To begin, notice that

2x2fn+lf;4z = 2x3f2+2x2fgfn—l§
fosifoy = Tfafa+ foy

By the Fibonacci addition formula and identity (2.1), we then have

where

B

Because

we have

A Sn = FEfu(@fn + fao1)?

= 2 3+1f3 + f72z+1fn o+ 233f13+1f3fn—1

So,

x2f,i’(xfn + fn—1)2 + frzz—i-lfn 13—1 + (2fr2L+1fn 72L—1 + 2x2fn+lfrngn—1 - 2fn+1fnfr%—1)
3f1’2l,+1fnf72z—1 + 2l‘2fn+1frngn—1 - 2fn+1fnfr%_1 + 1174fr5L + 2$3f§fn—1 + $2frngrzz—1'

Jon = fant1fn+ fanfn—1
= (@fan + fan—1)fn + fanfo—1
= fanSn1 + fan—1fn;
Tfsn = (fagr + 222 f5 + 423 foor — frs1) Fat1 + @fan—1fn
A+ B,

Fowr + 22 fria o + 4 fra fi foo1 = Frt1 oo

n5+1 + (ngf;? + 2x2f3fn—l) + 4xfn+1fgfn—1 - (xfn 3—1 + fns—l)
fn5+1 + 4$fn+1f7?;fn—1 + 25173f7? + 2$2f3fn—1 - fnfnfs—l - fr?—l;
xf4n—1fn

(f22n + f22n—1) ‘Tfm

[( 72L+1 - 3—1)2 +a° (fﬁ + frzz—l)Q} fn

(f13+1 + fo1— 2f3+1f¢2z—1) fota® (ff@l + faa+ 2f¢21f5—1) In

fﬁz—i—lfn + x2f1§ + (x2 +1) fn fz—l - 2frzz+1fn r2L—1 + 2x2f1§fn—1(fn+1 - xfn)
fovifn = 2f2  fufoy + 202 for fo fron + 2% f) — 20 fh fon + (22 4+ 1) fufr .

2$2fn+1fsfn—1 + 2xfn+1f7%f721—1
= 2f13+1fn rzz—l + 2x2fn+lfrngn—1 - 2fn+1fnf2—17

2$f721+1fn2fn—1

(3fr2L+1fnf¢2L_1 + 2l‘2fn+1fr%fn—1 - 2fn+1fnfrgl_1 + 1174fr5L + 2333f;4lfn—1 + $2frngrzz—1)
+ 22+ @+ D) fafp — 2f721+1fnf721—1 +22° frg1 £ fro1 — 22° f fao1

A2 fria fo o1 + (@ + 2) ) + 22 fufu1 + C,

VOLUME 59, NUMBER 1



SUMS OF POLYNOMIAL PRODUCTS

where
C = frfafiy—2fniifafo i+ 22 f0fo 1+ ffna
= (@hfafa+ Foifafa ) + fafaa = 2facifafioo 4 @ far i far — 2% fafaa)
= (xfn+1fgf721—1 — fnt1fn 7?{—1) + fafal + (xzfn+1f,?;fn_1 - w3f3fn—1)
= 2P forififor Fafoififroy = fasifafio — 2 fofu1 4 fafai-
Thus,
zA+aB = a(foy +20°f) Fdafoni filfao1 = foo1) +20° o fuoy — 2 fuf
+ [+ 2®) [+ 42 faga fo o1 + 22 fufua] + (@ FRf7 1 = Fa1 fafi)
+ fufaa + (@ farrfofao1 = 2 Ffun1)
z[fo + B+ ) f) — o+ 8 farifofum1] + i fofoy — fasifafoy
+ @ o1 fofot + 2 fo a1+ fafuo
o [fi1 + 92 fas1 fo fa1 + (32° + @) f2 — fo 1] + D,
where
= aforifi LA = oSl 2 oy fact + afa
Efnrfa o+ 22 f o1 (Far = fao1) = fuf1(fasr = fao1)
Tt fo i+ @ o fo facr — P fofo —afofi
afpfr 1 (@fn+ fa1) + 3 fasr fafoa — 22 fofo s —xfifa )
= 2 fosr i fno1-
Consequently,

rA+zB = 517[f2+1+10$fn+1f2fn—1+$(3$2+1)f2—f2—1];
fon = A+B

F o 10 fr fo 1 + 2B+ 1) f2 — 2. (3.1)

In particular, we have

Py =F> | +10F, 1 FoF, 1 +4F) — F>_,.

For example, I}, + 10F) FiyFy + 4F7, — Fy = 12,586,269, 025 = Fx.
Because 5|F,, it follows from the identity that Fy,, = F) + Fy_; (mod 5).

3.1. Pell Byproducts. It follows from identity (3.1) that

2rpsn = Pyt + 202pni1ppn—1 + 22(122% + 1)p), — p)_y;
2Ps, = P2, +20P,11P2P,_1 +26P> — P>_,.

4. JACOBSTHAL CONSEQUENCES

Next, we investigate the Jacobsthal implications of identities (2.1) and (3.1). In both cases,
we employ the relationship J,(z) = =™ V/2f,(1//z) in Table 1, and omit a lot of basic
algebra in the interest of brevity.
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Replacing x with 1/1/z in identity (2.1) and multiplying the resulting equation with z(4»=1)/2,
we get

1 1 4 9 4
L1 an-1))2 _ L e 2 32 (n-1)/2
A ol =12 13 [n—2)/2 72 [(n=2)/2 4
+ \/E x [‘T fn} [‘T fn—l} x [‘T fn—l]
Jin(x) = Jiq(2) + 225 () + 42 T2 () Ty (z) — 2t T (2), (4.1)
where f, = fn(l/\/E)
Now, replace z with 1/,/z in identity (3.1) and multiply the ensuing equation with z(®»=1/2,
This yields
1 1 5 10 3
- (5n—1)/2 - = n/2 2 n/2 (n—1)/2 (n—2)/2
\/E |:$ f5n] \/E <$ fn+1) + \/E x <$ fn—i—l) |:$ fn:| |:$ fn-1
L (EEBY e ez 10 i g 22y ]
Jon () = J2 11 () + 1022 Jpi1 (2) 2 (@) Jpe1 () + 2(z + 3) 2 (2) — 2°J2_1 (2), (4.2)

where f, = fn(l/\/E)
It follows from identities (4.1) and (4.2) that

Jin = Jnp1 +4T0 + 1675 1 — 16T (4.3)
Jsn = Joiq +40Ju 110 Tt + 1005 — 32J5_ ;.
For example,
Ji AT 16059 — 163 = 366,503, 875,925 = Jyo;
JS +40JgJ3 Js +10J2 — 32J3 = 11,453,246,123 = Js5.
Identities (4.3) and (4.4) imply that Ju, = Jji,; (mod 4), J5,, = J2 4 +2J3 (mod 8), and
Jon = J) 14 — 2J7 (mod 10).
5. VIETA AND CHEBYSHEV IMPLICATIONS
The relationships V,,(x) = i"~1 f,(—iz) and U, (x) = Vy,4+1(2z) in Table 1 imply that iden-
tities (2.1) and (3.1) have Vieta and Chebyshev companions:
Vi = Vi =202V +42VRV, o — Vil
Vs, = V2+ 102V 1 V3V — 2322 = D)VP + VP
2xUy, Uiy — 822Uy + 82U2U,—1 — Up_y;
20Us, = UZq + 200U, 1UU,—y — 22(122% — 1)UL + Up_y,

where V,, = V,,(z) and U,, = Uy, (z). In the interest of brevity, we omit their confirmations
also.

6. GRAPH-THEORETIC MODELS

Next, we confirm identities (2.1) and (4.1) with graph-theoretic tools. To this end, consider
the Fibonacci digraph D1 in Figure 1 with vertices v; and v, where a weight is assigned to
each edge [5].
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X 1
" > v;
1

FiGURE 1. Weighted Fibonacci Digraph D;

It follows by induction from its weighted adjacency matriz (Q = [a: !

1 0
n __ fn+1 fn
Q B |: fn fn—1:| ’
where @ = Q(z) and n > 1 [5].

A walk from vertex v; to vertex v; is a sequence v-€;-v;41--- - -vj_1-€;_1-v; of vertices vy,
and edges ey, where edge ey, is incident with vertices vi, and vi41. The walk is closed if v; = vy;
otherwise, it is open. The length of a walk is the number of edges in the walk. The weight of
a walk is the product of the weights of the edges along the walk.

We can employ the matrix Q"™ to compute the weight of a walk of length n from any vertex
v; to any vertex vj, as the following theorem shows [5].

} that

Theorem 6.1. Let M be the weighted adjacency matriz of a weighted, connected digraph with
vertices vi,vs,...,V. LThen the ijth entry of the matriz M™ gives the sum of the weights of
all walks of length n from v; to vj, where n > 1.

The next result follows from this theorem.

Corollary 6.2. The ijth entry of Q™ gives the sum of the weights of all walks of length n
from v; to v; in the weighted digraph Dy, where 1 <i,j < n.

It follows by this corollary that the sum of the weights of closed walks of length n originating
at v1 in the digraph is f,+1. This fact plays a central role in the graph-theoretic proofs.

6.1. Proof of Identity (2.1).

Proof. Let A, B, and C denote the sets of closed walks of lengths n, n — 1, and n — 2,
all originating at v;. The sums of the weights of all walks in them are f,y1, fn, and f,,_1,
respectively.

We define the sum Sy of the weights of the elements in the product set A x A x A x A to
be the product of the sums of weights in each component; so S; = f3 41- Similarly, the sum
Sy of the weights in B x B x B x B equals S = f2, and the sum S3 in B x B x B x C equals
S = f3f._1. Consequently, the sum S = Sy + 22255 + 4253 is given by

S = fho + 222+ dafD .

We will now establish that S = xfy, + fi_; in a different way. To this end, let (u,v,w, z)
be an arbitrary element of the product set A x A x A x A. Table 3 shows the possible cases
for such quadruples and the corresponding sums of weights.
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Table 3: Sum of the Weights of the Quadruples

u begins v begins w begins z begins sum of the weights
with a loop? | with a loop? | with a loop? | with a loop? || of the quadruples (u, v, w, z)

yes yes yes yes zt fr

yes yes yes no 3 f3 1
yes yes no yes a2 fn-1
yes yes no no 2 f2 72171
yes no yes yes 233 fn1
yes no yes no x? f,% 72#1
yes no no yes 2 f2 72171
yes no no no Tfn f271
no yes yes yes 233 fn1
no yes yes no 2 f2 72#1
no yes no yes 2 f2 72171
no yes no no T fn f271
no no yes yes x2f2 72%1
no no yes no T fn f27 1
no no no yes T fn f27 1
no no no no f;‘; 1

It follows from the table that

S

This implies Sy = f1.

To compute Sz, we let (u,v,w, z) be an arbitrary element of the product set B x Bx B x C.
Table 4 shows the possible cases for such quadruples and the corresponding sums of weights.

4
fn+l'

gt fr 4 Axd 3 f 1 + 622 fRL2 FAnfafiy + faq

Table 4: Sum of the Weights of the Quadruples

u begins v begins w begins z begins sum of the weights

with a loop? | with a loop? | with a loop? | with a loop? || of the quadruples (u, v, w, z)
yes yes yes yes x? 271 fn—2
yes yes yes no x3 zilfnfg
yes yes no yes x3f72171f272
yes yes no no z2 72171fn,2fn73
yes no yes yes x3f571 372
yes no yes no 2212 fo2fn-3
yes no no yes x2fn,1f272
yes no no no 2fa1f2_ofns
no yes yes yes x3f72171f272
no yes yes no z2 Silfnfgfnfg
no yes no yes x2fn71f272
no yes no no 2fn1f?_ofns
no no yes yes Tfrn— 1f272
no no yes no fn1f2_yfns
no no no yes xffl72
no no no no f272fn,3

It follows from the table that

Sz =

(x4 S—lfn—2 +a° g—lfn—i%) + (3953 n2—1fn2—2 + 32 721—1fn—2fn—3)

+ (32 fac1fy o+ 32 fu 1 fr ofn-s) + (@fu_o+ 3 ofn—3)

= B 430 faa 3 fe_ fr o+ facifol,
= (2P 3 fao) 0 faa R 2x R R ) (R fR s fui )
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= B ufi 2 fnfr 1 fo2+ fafn1fr s
= fafoo1 (B2 + 20 fu1fa2 + froy)
= fafa1.
Notice that
fanm1 = fonfn + fon—1fn—1;
Tfgp_1 = ( 3_1-1_ 3—1) fn+x(f3+f5_1) fn—1;
tfsn-1fn = (@fat foc)*fo = fifa T afifa tafafi
= @ fy+ 3% [ faor + xfufny
3

Collecting the values of S, So, and S3, and using the identity xf3, = f1§+1 +afd— 3,
[6], we get

S = fant 220 fy+dafifan
(For1 + 22 fn + afpfo1 — 2 fnfn = fao1) + a1 + (@2 fn + 325 + afufiy)
3—1—1 + $f7?z’(33fn + fa—1) = (@ fa + fa-1) S—l + f:i—l + z fan—1/n
( St afy— f2—1) fot1 + froo1 + @ fsn—1fn
2(fanfos1 + fan-1fn) + fa_
= Tfin+ ffz—l'
Equating the two values of S yields the desired result, as expected. O

6.2. Proof of Identity (4.1). The graph-theoretic proof of identity (4.1) hinges on the Ja-
cobsthal digraph D3 in Figure 2 [4].

V:
v 2

FicUrE 2. Weighted Jacobsthal Digraph Dy

It follows by induction from its weighted adjacency matrix M = E ﬂ that

n_ |JInri(z)  zdp(x)
M= :an_l(x)}’

where n > 1.
Consequently, the sum of the weights of closed walks of length n originating at vy is Jy,+1(x).
This fact plays a pivotal role in the graph-theoretic proof.
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Proof. Let A, B, and C denote the sets of closed walks of lengths n, n — 1, and n — 2,
all originating at v;. The sums of the weights of all walks in them are J,y1, J,, and J,_1,
respectively. As before, we define the sum S of the weights of the elements in the product set
A x Ax A x A to be the product of the sums of weights in each component; so S; = Jflﬂ.
Similarly, the sum So of the weights in B x B x B x B equals S = J2, and the sum S3 in
B x B x B x C equals S3 = J2J,_1. Consequently, the sum S = S; + 22255 + 42255 is given
by

S =Jaq + 227 T + 422 T3 T

We will now compute the sum S in a different way. To this end, let (u,v,w,z) be an
arbitrary element of the product set A x A x A x A. Table 5 shows the various possible cases
for such quadruples and the corresponding sums of weights.

Table 5: Sum of the Weights of the Quadruples

u begins v begins w begins z begins sum of the weights
with a loop? | with a loop? | with a loop? | with a loop? || of the quadruples (u,v,w)

yes yes yes yes J:

yes yes yes no ngJn,1

yes yes no yes xJ2Tn_1

yes yes no no x? J?LJ%?1

yes no yes yes xJ3In—1

yes no yes no x2 J%J371

yes no no yes x2 J%J371

yes no no no z3 J”Jg—l

no yes yes yes xJ3In—1

no yes yes no x2 J%J371

no yes no yes x2 J%J371

no yes no no z3 J”Jg—l

no no yes yes x? J72LJ,2L71

no no yes no 3 Jngfl

no no no yes 23 InJ3

no no no no :(:4Jf;71

It follows from the table that

Sy = Ji+dadi, g 62T 44t T, TR a2t
= J3+1'
This implies Sy = J4.
To compute Ss3, suppose (u,v,w,z) is an arbitrary element of B x B x B x C. It follows
from Table 5 that the sum Ss of the weights of such elements is given by
Sy = (J2 g+ axdp_1Jn—z) + (B3T3 T2+ 32° T2 Jy—2Jn_3)
+ (3% T iy + 328 T T g dns) + (23 T+ 2 T3y dns)
= Jny+ 32Ty Jpo+ 32T T 2T Jh
(Jn_y+ady_yJnos) + (2231 Jyo + 227 T2 J3_o) + (2° T2y Jh_y + 2 Ty 1 o)
Jndi 4 20T Jp 1 Jn—2 + 22 Jndn_1Jp_y
= Jndno1 (i) + 220y 1 Jp_s + 277 _5)
= J3 Tt
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Thus,
S = Sy 42255 + 4225
= Joq 2 dy + 42t T T

To rewrite this value of S in a different form, consider Js,,_1. By the Jacobsthal addition
formula, we have
Jsn—1 = Jopdn +xJon_1Jn—1
= (J2—2%T2 ) Jn+adny (JE+2J} )
= J2Jn — 22D i ad T + 2t TRy
Jsn1dn = (Jp+axdy_1)2J2 =22 J2J2 |+ a2 Jp_ 1+ 220, T3
= J 4 3a a3 4 22T T
Using the identity Js, = J3, | + xJ2 — z3J3_; [4] and the Jacobsthal addition formula, we
can now rewrite the value of S:
S = (Jnp +ady+ 2Ty dnoy — 2P dndo_y — 2Ty +a (Jy 4+ 32 Juoy + 22T _) + 2t Ty
= Jog 2 ( Ty +xdno1) — P2 ((Jn + @ dno1) + 2 Jzn_1Jn + 2t Tn 4
= (J3 g +a) =232 ) Jnsr + adsn1dn + 24T
= (Jandns1 + xzn_1Jn) + 22 JE
= Jyp +atTE
Equating the two values of S yields the desired result. O
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