EXTENDED GIBONACCI SUMS OF POLYNOMIAL PRODUCTS OF
ORDERS 4 AND 5 REVISITED

THOMAS KOSHY

ABSTRACT. We explore two gibonacci sums of polynomial products of orders 4 and 5, and
their Pell, Jacobsthal, Vieta, and Chebyshev implications. We also confirm two gibonacci and
two Jacobsthal results using graph-theoretic tools.

1. INTRODUCTION

Extended gibonacci polynomials z,(x) are defined by the recurrence z,2(z) = a(z)zp41(z)+
b(x)z,(x), where x is an arbitrary complex variable; a(z), b(x), zo(z), and 21 (z) are arbitrary
complex polynomials; and n > 0.

Suppose a(z) = z and b(z) = 1. When zp(x) = 0 and z1(x) = 1, z,(z) = fu(z), the
nth Fibonacci polynomial; and when zp(x) = 2 and z1(z) = z, z,(x) = l,,(x), the nth Lucas
polynomial. Clearly, f,(1) = F,, the nth Fibonacci number; and [,(1) = L, the nth Lucas
number [1, 7, 10]. Pell polynomials p,(x) and Pell-Lucas polynomials q,(x) are defined by
pn(x) = fr(22) and g,(x) = 1,(2x), respectively. In particular, the Pell numbers P, and Pell-
Lucas numbers @, are given by P, = p,(1) = f,(2) and 2Q,, = ¢,(1) = [,,(2), respectively
[7].

Suppose a(x) = 1 and b(x) = z. When zp(x) = 0 and z1(x) = 1, z,(z) = Ju(x), the nth
Jacobsthal polynomial; and when zo(x) = 2 and z1(z) = 1, z,(z) = jn(x), the nth Jacobsthal-
Lucas polynomial [3, 10]. Correspondingly, J,, = J,(2) and j, = j,(2) are the nth Jacobsthal
and Jacobsthal-Lucas numbers, respectively. Clearly, J,,(1) = F,, and ji,(1) = L.

Let a(z) = = and b(z) = —1. When 2p(z) = 0 and z;(z) = 1, z,(x) = Vy(x), the nth
Vieta polynomial; and when zo(z) = 2 and z1(z) = z, z,(x) = v,(z), the nth Vieta-Lucas
polynomial [4, 10].

Finally, let a(z) = 2z and b(xz) = —1. When zy(z) = 1 and 21(z) = z, z,(x) = T, (z), the
nth Chebyshev polynomial of the first kind; and when zo(x) = 1 and 21 (x) = 2z, 2, (z) = Uy (),
the nth Chebyshev polynomial of the second kind [4, 10].

The Jacobsthal, Vieta, and Chebyshev subfamilies are closely related by the relationships
in Table 1, where i = +/—1 [4, 6, 10].

Jul@) = @ V2f(1//7) jal@) = @2,(1/VE)

Vo(z) = " Lf,(—iz) vp(x) = il (—ix)

Vo(22) = Up-1(z) v(2x) = 2T,(x)
Table 1: Relationships Among the Subfamilies

In the interest of clarity, concision, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(z). We let g, = f, or l,, and
cn = Jp(x) or j,(x); we also omit much of the basic algebra.

A gibonacci polynomial product of order m is a product of gibonacci polynomials g, of
the form H giﬂ_k, where ) s; =m [6, 11].

k>0 s;>1

FEBRUARY 2021 23



THE FIBONACCI QUARTERLY

1.1. Some Gibonacci and Jacobsthal Sums of Polynomial Products of Orders 2 and
3. Table 2 shows some well-known identities involving sums of products of orders 2 and 3 of
gibonacci and Jacobsthal polynomials, where A% = 22 + 4 and D? = 42 + 1 [7, 9, 10]. They
will be useful in our discourse.

9m+n = fm—l—lgn + fmgn—l jm+n = Jm—l—lcn + zJmcen—1
Tfon = fn2+l —fa Jon = J3+1 — 2?7
2y, = 12+ A2f2 2jon = ji+ D2%J?
wlonyr = Loy — A7 Jant1 = Jayy —aD?J}
Afopi1 = Loy +13 D*Joni1 = jaig +
TA® fon, = 172L+1 - 13—1 D2 Jy, = .7}2L+1 - 332%-1
eA3g, = B4l -1 D2js, = J3 . 4add 23T

Table 2: Some Gibonacci and Jacobsthal Sums of Polynomial Products of Orders 2 and 3

With this background, we now explore similar formulas for l4,, and 5, as sums of gibonacci
polynomial products of order 4 and 5, respectively; and similarly for j4, and js,.

2. A SuM or GiBoNAccI PorLyNOMIAL PRODUCTS OF ORDER 4

By the gibonacci addition formula in Table 1, we have

lan fonsilon + fonlan—1;
2x2A2l4n = x2(A2f2n+1)(2l2n) + 2A2(xf2n)(a:lgn_1)
= Pl + )+ A7) + 20 A%, fully — AP fr_y)
2 (Il + A0 7+ Dy + AP0 f2) + 207 (I fo — APl fufr )
= Dl = lo1)? + 2 A0 2+ 220 + 2 A1 7 + 200705 £,
— 2021, fuf2 2y — 2ly)
= lpy =20 ey + 22+ 22 A2 2 — AN fr + 2P
+ 20 A2 f, + A2 2 4 22222 2
= li+1 - lz+1ln—1 - xl?z+1lnln—1 + $2A253L+1f3 - 4$A21n+1lnfr%—1 + $2Z?L
+ 20 A% o, + A2 2 202 A2 2 (2.1)
In particular, we have

0Ly, = Li.y L3 Ly — L2 LyLy1 +5L2  F2 —20Lys1 LoF2 o + L
+ 10L3 F, + 5L2F? + 10L2 F?_,. (2.2)

2.1. Interesting Consequences. It follows from equation (2.2) that L% +1+L§L =12 y1ln1+
L%HLnLn_l (mod 5). Consequently, L%+1Ln = —Ln(L%—L%HLn_l) (mod 5). But (L,,5) =
l;so L3+ L3 =L2 L, (mod 5).

Because (L,,5) = 1, it follows by the well-known Fermat’s Little Theorem [5] that L: =1
(mod 5). This implies L}, ; + L} = 2 (mod 5). As a result, L3 L,_1 + L2 ;L,L,1 =2
(mod 5). Fermat’s Little Theorem also implies that L ., + L, = Lyp42 (mod p), where p is a
prime.

It is known that if a is a positive integer and p > 3 is a prime, then a? = a (mod 6p) [2, 5].
This implies L | + L}, = L, 12 (mod 6p), where p > 3.

24 VOLUME 59, NUMBER 1



SUMS OF POLYNOMIAL PRODUCTS

2.2. Pell-Lucas Byproducts. It follows from identity (2.1) that
321’2 (‘Tz + 1)Q4n = q;lz+1 - q?L—I—lQn—l - 2xqu+1QnQn—l + 16xz(x2 + 1)qu+1ng

— 322(2% + 1)qni1qnp?_; + 422¢2 + 162(2 + 1)¢3p,,
+ 162 (2% + 1)g2p2 + 3222 (2 + 1)g2p>_;.

This yields

8Qun = Qni1 — Qnp1Qn—1 — 2Q741QnQn1 +8Q7 1 P} — 16Qn1QuPyy +4Q5,
+ 16Q) P, + 8Q7 P2 +16Q; Py ;.
Consequently, Qﬁﬂ +4Q4 = QfLHQn_l + 2Q%+1QnQn_1 (mod 8).
Because @, is odd, it follows by FEuler’s theorem [5] that Qﬁ(s) = Q% =1 (mod 8), where

¢ denotes Euler’s phi function. Consequently, Q2 1t 4Q% =5 (mod 8).
Next, we explore the Jacobsthal-Lucas consequences of identity (2.1).

2.3. Jacobsthal-Lucas Implications. Replacing z with 1/y/x and multiplying the resulting
/2 we get

equation with
92 <$4n/2l4n) _ [x(n+l)/2ln+1]4 . [x(n+l)/2ln+1: 3 |:$(n—1)/21n_1]
. [x<"+1>/2ln+1]2 [zn"/?zn} [x(n—1>/2ln_1]
L p? [a;<"+1>/2zn+1] 2 [x(n—lw fn: 2
_AD2,2 [x(nﬂ)/zln“} [x"/%n} :x(n—zvz fn—l]
v fan21,] oD% o) [y
+ D% [zn"/?zn] ’ [;p<"—1>/2 fn} ? L op?? [zn"/?zn] ’ [$(”_2)/2 707
2D%j4n = i1 — Chnirdnt — Chniadnin—t + D2y Ty — AD*2 i di
+ ajt + 2D%x53 0, + D2xj2 J2 + 2D*x?§2 2, (2.3)

2

where g, = g,(1/v/x) and ¢, = ¢, (z).
Identity (2.3) yields

8jan = 1 — 2ns1dn-1 — 2nirdnin-1 + Yni1 Ty — 144Gy 1in iy
+ 278 +3653J, + 185202 + 725292 _,. (2.4)
It follows from identity (2.4) that
G+ 208 = 253 g1 + 22 1dndn—1  (mod 9)
= 2ni1jn-1(jnt1+Jn) (mod 9)
= 3.2""152 5,1 (mod9).

Because (jn,9) = 1, Euler’s theorem implies that 5% = 1 (mod 9). Consequently, j2+1+j2 =
2 (mod 9) and 58, + 255 =3 (mod 9).
Next, we pursue a gibonacci sum for z2A%l5,.
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3. A SuM oF GIBONACCI POLYNOMIAL PRODUCTS OF ORDER 5

First, notice by the gibonacci addition formula that
l3n—1 = f2nln + f2n—1ln—1§
aNlzy = (A% fon)ln + (A fon—1)ln—1
= (P 2 )+ G+ 2y
= 2ol + 2l — L2+l
Again by the addition formula, we then get
lsn. = fon+1lsn + fonlsn—1;
A5, = 2(A%fani1)(@A%3,) + (2A% fa,) (2 A%3,,1)
= @ (lp +10) (g +2ly — 15 4)
+ (B =) (Bl +al2lyy — L2+ 2ls )
= @l + lygaln + 2l + 2200 1)+ 2l iy — 200 4 1aln
+ 220 = 221213 LR —ald . (3.1)
In particular, this yields
25Lsn = Lpyy+ LngqLn+ Loy L+ Loy Ly + Ly Ly L1 — 217 4 Lo L4
+ L3 —2L213 |+ L,L} | —L5_,. (3.2)
For example,
L3+ LLs + LYL2 + L3L3 + L3131,
— 2LALsL3 4+ L2 — 20203 + LsLi — L = 4,194,025 = 25Los.
Identity (3.2) implies that 25L5,, = L} ,;—L?_; (mod L,). Because L? ,; = L? ; (mod Ly,)
by the binomial theorem, it follows that 25L5, = 0 (mod L,). But (L,,5) =1, so Ls, =0

(mod L,,). This also follows from the property that Is, = I> — 5(—1)"I3 + 51, [7].
Next, we investigate the Jacobsthal implications of identity (3.1).

3.1. Jacobsthal Byproducts. Replacing x with 1/y/z in equation (3.1) and multiplying the
resulting equation with z(®"15)/2 we get

D4 [a/25,) = [0, ) o e 02, ) [ e [a 02, 0] [,
ta [x<"+1>/2zn+1] ’ [g;"/%n]g + 2 [a;("“)/?zm] ’ [zn"/?zn] ’ [zn("—l)/?zn_l]
— 20 [a 0020, ) a2, [0, )
— o [ 2t o] a0, )
5

g [:n"/zln} [x(n—l)/2ln_l]4 _ 5 |:$(n—1)/2ln_1] ;

DYjsn = joyi + Thnprdn + 2hs g + 250 g0 + 2GR G
— 22%52 L gndn_y — 2Pgn — 22500 )+ 2P jgn ) — 2%4n 1, (3.3)

where l,, = 1,(1/y/Z), jn = jn(z), and D? = 4z + 1.
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In particular, we have
8ljsn = Jps1 + 2ins1dn + 200 +10n + Liniidn + 4 1dnin-1
— 1674 1ndn_1 — 45 — 324045 1 + 32njn_1 — 321 (3.4)
Next, we confirm identities (2.1) and (2.3) using graph-theoretic tools.
4. GRAPH-THEORETIC CONFIRMATIONS

Consider the Fibonacci digraph D1 in Figure 1 with vertices v; and vy, where a weight is
assigned to each edge [7,

).
x 1

" > V2
1

Figure 1. Weighted Fibonacci Digraph Dy

It follows, by induction, from its weighted adjacency matriz Q = [T (1)

n __ fn+1 fn
Q B |: fn fn—1:| ’
where n > 1.

The ijth entry of Q™ gives the sum of the weights of all walks of length n from v; to v; in
the weighted digraph Dy, where 1 <i,5 < n [6, 7]. So, the sum of the weights of closed walks
of length n originating at v; in the digraph is f, 11 and that of those originating at vo is f,_1.
Consequently, the sum of the weights of all closed walks of length n is f,4+1 4+ fn—1 = l,,. These
facts play a major role in the graph-theoretic proof of identity (2.1).

} that

4.1. Confirmation of Identity (2.1). Let A and B denote the sets of closed walks of lengths
n + 1 and n in the digraph, respectively; and C' and D the sets of those of lengths n — 1 and
n — 2 originating at vy, respectively. We define the sum S7 of the weights of the elements
in Ax Ax A x A to be the product of the sums of the weights in each component. This
implies Sy = [2 +1- Analogously, let Sz, S3, Sy, S5, and Sg denote the sum of the weights in
AXAXCOCxC,BxBxBxB, BxBxBx(C,BxBxCxCC,and BxBxD xD,
respectively. Then, Sy = Z%Hffl, Sy =14 Sy =13 fn, Ss =12f2, and Sg = I12f2 ;. Thus, the
sum
S = S + 22 A%Sy + 223 + 20A%S, + 2? A%S;5 + 227 A Sg

is given by

S =l + 22 AR2 L 2+ 2P 4 22 A f, + P AR f2 4 222 A2 R (4.1)

We will now compute the sum S in a different way in six steps.

Step 1. Let v be an arbitrary walk in A. Suppose it originates at vy. If v begins with a loop,
the sum of the weights of such walks is = f,,+1, then the sumis 1-1-1- f, = f,. Thus, the
sum of such walks v is x f,4+1 + fn = fn+e. On the other hand, if v originates at vo, then the
sum of the weights of such walks is f,,. Combining the two cases, the sum of the weights of
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all elements in A is l,41; so S = lfLH.

Step 2. Let v be an arbitrary walk in C. If v begins with a loop, the sum of the weights of
such walks is x f,,_1; otherwise, the sumis 1-1-1- f,,_9 = fn,_2. So, the sum of the walks in C
is fp_1+ fn_o = fn. Consequently, the sum of the weights of quadruplesin A x A x C x C
is given by Sy = lflﬂffl.

Step 3. Tt follows by Step 1 that S3 = [4.

Step 4. The sum of the weights of walks in B is [,, and that in C is f,,. So, the sum of the
weights of elements in B x B x B x C'is given by Sy = I3 f,..

Step 5. The sum of the elements in B x B x C x C is given by S5 = [2 f2.

Step 6. Because the sum of the weights of walks in B is [, and that in D is f,_1, it follows
that Sg = 12f2_,.
Thus, by identity (2.1),

S = S+ 22A%Sy + 2285 + 20A%S, + 22 A2S5 + 202 A% S

= D 2N FR 4 2 20 AP f P AP f2 202 A2 f2
= 222Ny + 1By ly1 + 2l Ll Ae Al fE . (4.2)
Equating the values of S in equations (3.1) and (4.2) yields the desired result. O

4.2. Confirmation of Identity (2.3). This time, consider the weighted Jacobsthal digraph
D5 in Figure 2.

=
yix

Vv
Vi 2

(R §

Figure 2. Weighted Jacobsthal Digraph Do

1 :”] that

It follows from its weighted adjacency matrix M = [1 0

)

where n > 1.

Consequently, the sum of the weights of closed walks of length n from vy to itself is J,, 1 (),
and that from vy to itself is zJ,—1(x). So, the sum of the weights of length n in the digraph
is Jpy1(z) + xdp_1(z) = jn(z).

We are now ready for the graph-theoretic proof. In the interest of brevity and clarity, we
again omit the argument in the functional notation.
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Proof. Let A and B denote the sets of closed walks of lengths n + 1 and n in the digraph,
respectively; and C' and D the sets of those of lengths n — 1 and n — 2 originating at vy,
respectively. The sums of the walks in them are j,11, jn, Jn, and J,_1, respectively.

Let Sy, Ss, S3, Sy, S5, and Sg denote the sums of the weights of elements in A x A x A x A,
AXAXxCOCxC,BxBxBxB, BxBxBx(C,BxBxCxCC,and BxBxDxD,
respectively. Then, S = jflﬂ, So = j,%Hj%, Sy = jt Sy =j3Jn, S5 =j2J2, and Sg = j2J2_,.

Then, the sum

S = Si + D?Sy + 285 + 20D*Sy + xD?S5 + 22°D? S
is given by
S = 1+ D2jngr T3 + iy + 20D dn + 2D + 20 DA Ty (4.3)
We will now recompute the sum S in a different way in six steps.

Step 1. Let w be an arbitrary walk in A. Suppose it originates at v;. If w begins with a loop,
the sum of the weights of such walks is 1-J,,41; otherwise, the sumisx-1-J,_1 = xJ,_1. The
sum of such walks v is Jp 11 + xJp—1 = jnt1- So, the sum S of the weights of the elements in
AxAxC’xC’isgivenbySlzjf;H.

Step 2. The sum of the weights of walks in C' is J,. So, the sum of the weights of elements in
A x Ax C x C equals j2,,J2; that is, So = jZ, | J2.

Step 3. It follows by Step 1 that the sum of the weights of elements in B x B x B x B is j2;
so S3 = ji.

Step 4. The sum of the weights of quadruples in B x B x B x C'is j3.J,; so Sy = 53 J,.

Step 5. The sum S of the weights of elements in B x B x C x C is given by S5 = j2.J2.

2J2

nYn—1-

Step 6. The sum of the weights of the walks in D is J,_1; so Sg = j
Using identity (2.3), we then have

S = Si+D*Sy+aS3+20D*Sy + xD*S5 + 22D Sg
= A+ D% T2 4 agt + 20D%3 T, + D% T2 4 22 D2 T2,
= 2D%jun + Ty 1Gn1 + Thhprdndn—1 + 4D jui1jn 1. (4.4)
Equating the values of S in equations (4.3) and (4.4) yields the desired result.

Next, we confirm identity (3.1) using graph-theoretic techniques

4.3. Confirmation of Identity (3.1).
Proof. The sum S of the weights of closed walks of length 5n in digraph D; is given by
S = lsy; so 22ALS = 22 As,.

We will now compute z2A%S in a different way. To this end, let w be an arbitrary closed
walk of length 5n.

Case 1. Suppose w originates (and ends) at v1. Clearly, it can land at v or ve at the 2nth
and 4nth steps: w = wv; — .-+ —w V— o0 — v— -+ —v; , where v = vy or vs.
N—_—

subwalk of length 2n subwalk of length 2n subwalk of length n
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Table 3 shows the various possible cases and the sums of weights of walks w.

w lands at v1 at | w lands at v; at | w lands at v1 at | sum of the weights
the 2nth step? | the 4nth step? | the bnth step? of walks w

yes yes yes f: 22n+1 Jnt1

yes no yes Jon+1fonfn

no yes yes f22nfn+1

no no yes f2nf2n—1fn

Table 3: Sums of the Weights of Closed Walks Originating at vy
It follows from Table 3 that the sum S of the weights of all such walks w is given by

St = (fons1+ fon) fas1 + fonSu(fons1 + fono1)
f4n+1fn+1 + f4nfn
= f5n+1-

Case 2. Suppose w originates (and ends) at vo. Then also, w can land at v, or ve at the 2nth
and 4nth steps: w = w9 — .-+ —w V— -0 — v— -+ —vy , where v = vy or vs.
—_—

subwalk of length 2n subwalk of length 2n subwalk of length n

It follows from Table 4 that the sum S5 of the weights of all such walks w is given by

S = (f2n+1 + f2n—1) f2nfn + (f22n + f22n—1) fn—l
= f4nfn + f4n—1fn—1

= fon-1.
w lands at v1 at | w lands at v; at | w lands at vy at | sum of the weights
the 2nth step? | the 4nth step? | the bnth step? of walks w
yes yes yes Jon+1fonfn
yes no yes S3nfn—1
no yes yes f2nf2n—1fn
no no yes fon1fn—1

Table 4: Sums of the Weights of Closed Walks Originating at v
Thus, using identity (3.1), the cumulative sum S of the weights of all closed walks of length
5n in the digraph and hence, 22A%S are given by

S = 5+5
= fon+1 + fon-1
= lSn;
2?AYS = 22A%s,

= alpyy + lygaln + @l + 20 1 1+ 2l Dy — 200 41l
42210 — 22213+ 10—l .
This value of 22A%S, coupled with its original value, yields the desired result. O

Next, we confirm identity (4.3) using graph-theoretic methods.
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4.4. Confirmation of Identity (4.3).
Proof. Let S* denote the sum of the weights of all closed walks of length 5n in the digraph
Dy. Then, S* = js, and hence, D*S* = D%js,,.

To compute this sum in a different way, we let w be an arbitrary closed walk of length 5n
in the digraph.

Case 1. Suppose w originates at v1. It can land at v1 or vy at the 2nth and 4nth steps:
w= vy— -+ —0 v— o — 0 v— -+ —v1 , where v = v or vs.

subwalk of length 2n subwalk of length 2n subwalk of length n

It follows from Table 5 that the sum S} of the weights of all such walks w is given by

Sik = Jn+1 (J22n+1 + $J22n) + ZL'J2an(J2n+1 + 33J2n—1)
- J4n+1<]n+1 + I'J4an
= J5n+1-
w lands at v1 at | w lands at v; at | w lands at v1 at | sum of the weights
the 2nth step? | the 4nth step? | the bnth step? of walks w
yes yes yes Jg 1 In+1
yes no yes xJon+1Jdondn
no yes yes xJ3, Jni1
no no yes 22 Jon Jon—1Jn

Table 5: Sums of the Weights of Closed Walks Originating at vy
Case 2. Suppose w originates at vo. Then, w can also land at v or vs at the 2nth and 4nth
steps: w = w9 — -+ — U v— -0 —0 v— .-+ —Uy , Where v = vy or vs.
N—— —

subwalk of length 2n subwalk of length 2n subwalk of length n

Table 6 implies that the sum S5 of the weights of all such walks w is given by

Sék = 73!]2an (J2n+1 +$J2n—1) +5L'2Jn—1(<]22n +ZL'J22”_1)
= 33‘(J4an +xJan—1Jn-1
= xJsn-1.
w lands at vy at | w lands at v at | w lands at vy at || sum of the weights
the 2nth step? | the 4nth step? | the 5nth step? of walks w
yes yes yes xJZn-l-lJZan
yes no yes 22J3 Jn1
no yes yes x2J22nJ2n_1Jn
no no yes w3J3, 11

Table 6: Sums of the Weights of Closed Walks Originating at v
Combining the two cases and using identity (4.3), we get
S* = ST+55
= Jspy1 +xdsp1
= Jsn;
DYS* = Gns1+ Tpiadn + Cipsadn + 2 dnadn + 2 dni1dnn1
— 22°jR 1 dndn1 — % — 20" gn 1 + @ hndn1 — T hn 1.
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This value of D*S*, coupled with its earlier version, yields the desired result, as expected.
O

Finally, we showcase the Vieta and Chebyshev implications of equations (2.1) and (3.1);
again, we omit all basic algebra involved in their justifications.

5. VIETA AND CHEBYSHEV COUNTERPARTS

Using the Vieta-gibonacci and Vieta-Chebyshev relationships in Table 1, we can find the
Vieta and Chebyshev companions of identities (2.1) and (3.1):

207 (2% — D)vgn, = Vpiq U Un—1 + BVE VU1 + 2P (2 — A2, V2
+ z(2® — Dvpp 10, V2 | — 2?0t + 22(2? — 4)03V,
_ $2($2 _ )U2V2+2x2( 2 _ )v2V2 ¥

82 (x? — )Ty = 2004 + 202 Ty + 4012 T, Ty + 82%(2® — VT2, U2,
+ 8x(2® — DT 1 T, U2 o — 82T + 16x(2* — 1)T3U,
— 82%(2? — V)T2U2_, + 1622 (2* — 1)T2U2_,;

2(,.2 2 5 v 3,2 2,2 .3 2 2
o (x” —4)*vs, = U, — n+1vn - :m)nan — TV, V), + TV, U Un 1
2,3 v 5
+ 2vn+1vn 2 =20t | — vl v
42%(2® = 1)°T5, = 2Tp — Tt Tn — 2:1:T3+1T2 42* T2\ T3 + 2012, T2Th 1

+ 2T 2T, T2 + 4T — 4aT2Ta_ — T, Ty + 2774,
where v, = v,(x) and T, = T),(x).
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