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Abstract. We explore two gibonacci sums of polynomial products of orders 4 and 5, and
their Pell, Jacobsthal, Vieta, and Chebyshev implications. We also confirm two gibonacci and
two Jacobsthal results using graph-theoretic tools.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary complex variable; a(x), b(x), z0(x), and z1(x) are arbitrary
complex polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas

polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 7, 10]. Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by
pn(x) = fn(2x) and qn(x) = ln(2x), respectively. In particular, the Pell numbers Pn and Pell-

Lucas numbers Qn are given by Pn = pn(1) = fn(2) and 2Qn = qn(1) = ln(2), respectively
[7].

Suppose a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) = Jn(x), the nth
Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the nth Jacobsthal-

Lucas polynomial [3, 10]. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth Jacobsthal
and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn and jn(1) = Ln.

Let a(x) = x and b(x) = −1. When z0(x) = 0 and z1(x) = 1, zn(x) = Vn(x), the nth
Vieta polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = vn(x), the nth Vieta-Lucas

polynomial [4, 10].
Finally, let a(x) = 2x and b(x) = −1. When z0(x) = 1 and z1(x) = x, zn(x) = Tn(x), the

nth Chebyshev polynomial of the first kind ; and when z0(x) = 1 and z1(x) = 2x, zn(x) = Un(x),
the nth Chebyshev polynomial of the second kind [4, 10].

The Jacobsthal, Vieta, and Chebyshev subfamilies are closely related by the relationships
in Table 1, where i =

√
−1 [4, 6, 10].

Jn(x) = x(n−1)/2fn(1/
√
x) jn(x) = xn/2ln(1/

√
x)

Vn(x) = in−1fn(−ix) vn(x) = inln(−ix)
Vn(2x) = Un−1(x) vn(2x) = 2Tn(x)

Table 1: Relationships Among the Subfamilies

In the interest of clarity, concision, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). We let gn = fn or ln, and
cn = Jn(x) or jn(x); we also omit much of the basic algebra.

A gibonacci polynomial product of order m is a product of gibonacci polynomials gn+k of

the form
∏

k≥0

g
sj
n+k, where

∑

sj≥1
sj = m [6, 11].
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1.1. Some Gibonacci and Jacobsthal Sums of Polynomial Products of Orders 2 and

3. Table 2 shows some well-known identities involving sums of products of orders 2 and 3 of
gibonacci and Jacobsthal polynomials, where ∆2 = x2 + 4 and D2 = 4x + 1 [7, 9, 10]. They
will be useful in our discourse.

gm+n = fm+1gn + fmgn−1 jm+n = Jm+1cn + xJmcn−1

xf2n = f2
n+1 − f2

n−1 J2n = J2
n+1 − x2J2

n−1

2l2n = l2n +∆2f2
n 2j2n = j2n +D2J2

n

xl2n+1 = l2n+1 −∆2f2
n j2n+1 = j2n+1 − xD2J2

n

∆2f2n+1 = l2n+1 + l2n D2J2n+1 = j2n+1 + xj2n
x∆2f2n = l2n+1 − l2n−1 D2J2n = j2n+1 − x2j2n−1
x∆2l3n = l3n+1 + xl3n − l3n−1 D2j3n = J3

n+1 + xJ3
n − x3J3

n−1

Table 2: Some Gibonacci and Jacobsthal Sums of Polynomial Products of Orders 2 and 3

With this background, we now explore similar formulas for l4n and l5n as sums of gibonacci
polynomial products of order 4 and 5, respectively; and similarly for j4n and j5n.

2. A Sum of Gibonacci Polynomial Products of Order 4

By the gibonacci addition formula in Table 1, we have

l4n = f2n+1l2n + f2nl2n−1;

2x2∆2l4n = x2(∆2f2n+1)(2l2n) + 2∆2(xf2n)(xl2n−1)

= x2(l2n+1 + l2n)(l
2
n +∆2f2

n) + 2x∆2lnfn(l
2
n −∆2f2

n−1)

= x2
(
l2n+1l

2
n +∆2l2n+1f

2
n + l4n +∆2l2nf

2
n

)
+ 2x∆2

(
l3nfn −∆2lnfnf

2
n−1

)

= l2n+1(ln+1 − ln−1)
2 + x2∆2l2n+1f

2
n + x2l4n + x2∆2l2nf

2
n + 2x∆2l3nfn

− 2x∆2lnfnf
2
n−1(2ln+1 − xln)

= l4n+1 − 2l3n+1ln−1 + l2n+1l
2
n−1 + x2∆2l2n+1f

2
n − 4x∆2ln+1lnf

2
n−1 + x2l4n

+ 2x∆2l3nfn + x2∆2l2nf
2
n + 2x2∆2l2nf

2
n−1

= l4n+1 − l3n+1ln−1 − xl2n+1lnln−1 + x2∆2l2n+1f
2
n − 4x∆2ln+1lnf

2
n−1 + x2l4n

+ 2x∆2l3nfn + x2∆2l2nf
2
n + 2x2∆2l2nf

2
n−1. (2.1)

In particular, we have

10L4n = L4
n+1 − L3

n+1Ln−1 − L2
n+1LnLn−1 + 5L2

n+1F
2
n − 20Ln+1LnF

2
n−1 + L4

n

+ 10L3
nFn + 5L2

nF
2
n + 10L2

nF
2
n−1. (2.2)

2.1. Interesting Consequences. It follows from equation (2.2) that L4
n+1+L4

n ≡ L3
n+1Ln−1+

L2
n+1LnLn−1 (mod 5). Consequently, L3

n+1Ln ≡ −Ln(L
3
n−L2

n+1Ln−1) (mod 5). But (Ln, 5) =

1; so L3
n+1 + L3

n ≡ L2
n+1Ln−1 (mod 5).

Because (Ln, 5) = 1, it follows by the well-known Fermat’s Little Theorem [5] that L4
n ≡ 1

(mod 5). This implies L4
n+1 + L4

n ≡ 2 (mod 5). As a result, L3
n+1Ln−1 + L2

n+1LnLn−1 ≡ 2
(mod 5). Fermat’s Little Theorem also implies that Lp

n+1 +Lp
n ≡ Ln+2 (mod p), where p is a

prime.
It is known that if a is a positive integer and p > 3 is a prime, then ap ≡ a (mod 6p) [2, 5].

This implies Lp
n+1 + Lp

n ≡ Ln+2 (mod 6p), where p > 3.
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2.2. Pell-Lucas Byproducts. It follows from identity (2.1) that

32x2(x2 + 1)q4n = q4n+1 − q3n+1qn−1 − 2xq2n+1qnqn−1 + 16x2(x2 + 1)q2n+1p
2
n

− 32x(x2 + 1)qn+1qnp
2
n−1 + 4x2q4n + 16x(x2 + 1)q3npn

+ 16x2(x2 + 1)q2np
2
n + 32x2(x2 + 1)q2np

2
n−1.

This yields

8Q4n = Q4
n+1 −Q3

n+1Qn−1 − 2Q2
n+1QnQn−1 + 8Q2

n+1P
2
n − 16Qn+1QnP

2
n−1 + 4Q4

n

+ 16Q3
nPn + 8Q2

nP
2
n + 16Q2

nP
2
n−1.

Consequently, Q4
n+1 + 4Q4

n ≡ Q3
n+1Qn−1 + 2Q2

n+1QnQn−1 (mod 8).

Because Qn is odd, it follows by Euler’s theorem [5] that Q
ϕ(8)
n = Q4

n ≡ 1 (mod 8), where
ϕ denotes Euler’s phi function. Consequently, Q4

n+1 + 4Q4
n ≡ 5 (mod 8).

Next, we explore the Jacobsthal-Lucas consequences of identity (2.1).

2.3. Jacobsthal-Lucas Implications. Replacing x with 1/
√
x and multiplying the resulting

equation with x4n/2, we get

2D2
(

x4n/2l4n

)

=
[

x(n+1)/2ln+1

]4
− x

[

x(n+1)/2ln+1

]3 [

x(n−1)/2ln−1

]

− x
[

x(n+1)/2ln+1

]2 [

xn/2ln

] [

x(n−1)/2ln−1

]

+ D2
[

x(n+1)/2ln+1

]2 [

x(n−1)/2fn

]2

− 4D2x2
[

x(n+1)/2ln+1

] [

xn/2ln

] [

x(n−2)/2fn−1

]2

+ x
[

xn/2ln

]4
+ 2D2x

[

xn/2ln

]3 [

x(n−1)/2fn

]

+ D2x
[

xn/2ln

]2 [

x(n−1)/2fn

]2
+ 2D2x2

[

xn/2ln

]2 [

x(n−2)/2fn−1

]2
;

2D2j4n = j4n+1 − xj3n+1jn−1 − xj2n+1jnjn−1 +D2j2n+1J
2
n − 4D2x2jn+1jnJ

2
n−1

+ xj4n + 2D2xj3nJn +D2xj2nJ
2
n + 2D2x2j2nJ

2
n−1, (2.3)

where gn = gn(1/
√
x) and cn = cn(x).

Identity (2.3) yields

18j4n = j4n+1 − 2j3n+1jn−1 − 2j2n+1jnjn−1 + 9j2n+1J
2
n − 144jn+1jnJ

2
n−1

+ 2j4n + 36j3nJn + 18j2nJ
2
n + 72j2nJ

2
n−1. (2.4)

It follows from identity (2.4) that

j4n+1 + 2j4n ≡ 2j3n+1jn−1 + 2j2n+1jnjn−1 (mod 9)

≡ 2j2n+1jn−1(jn+1 + jn) (mod 9)

≡ 3 · 2n+1j2n+1jn−1 (mod 9).

Because (jn, 9) = 1, Euler’s theorem implies that j6n ≡ 1 (mod 9). Consequently, j6n+1+j6n ≡
2 (mod 9) and j6n+1 + 2j6n ≡ 3 (mod 9).

Next, we pursue a gibonacci sum for x2∆4l5n.
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3. A Sum of Gibonacci Polynomial Products of Order 5

First, notice by the gibonacci addition formula that

l3n−1 = f2nln + f2n−1ln−1;

x∆2l3n−1 = (x∆2f2n)ln + x(∆2f2n−1)ln−1

=
(
l2n+1 − l2n−1

)
ln +

(
2
n + l2n−1

)
xln−1

= l2n+1ln + xl2nln−1 − lnl
2
n−1 + xl3n−1.

Again by the addition formula, we then get

l5n = f2n+1l3n + f2nl3n−1;

x2∆4l5n = x(∆2f2n+1)(x∆
2l3n) + (x∆2f2n)(x∆

2l3n−1)

= x
(
l2n+1 + l2n

) (
l3n+1 + xl3n − l3n−1

)

+
(
l2n+1 − l2n−1

) (
l2n+1ln + xl2nln−1 − lnl

2
n−1 + xl3n−1

)

= xl5n+1 + l4n+1ln + xl3n+1l
2
n + x2l2n+1l

3
n + xl2n+1l

2
nln−1 − 2l2n+1lnl

2
n−1

+ x2l5n − 2xl2nl
3
n−1 + lnl

4
n−1 − xl5n−1. (3.1)

In particular, this yields

25L5n = L5
n+1 + L4

n+1Ln + L3
n+1L

2
n + L2

n+1L
3
n + L2

n+1L
2
nLn−1 − 2L2

n+1LnL
2
n−1

+ L5
n − 2L2

nL
3
n−1 + LnL

4
n−1 − L5

n−1. (3.2)

For example,

L5
6 + L4

6L5 + L3
6L

2
5 + L2

6L
3
5 + L2

6L
2
5L4

− 2L2
6L5L

2
4 + L5

5 − 2L2
5L

3
4 + L5L

4
4 − L5

4 = 4, 194, 025 = 25L25.

Identity (3.2) implies that 25L5n ≡ L5
n+1−L5

n−1 (mod Ln). Because L
5
n+1 ≡ L5

n−1 (mod Ln)
by the binomial theorem, it follows that 25L5n ≡ 0 (mod Ln). But (Ln, 5) = 1, so L5n ≡ 0
(mod Ln). This also follows from the property that l5n = l5n − 5(−1)nl3n + 5ln [7].

Next, we investigate the Jacobsthal implications of identity (3.1).

3.1. Jacobsthal Byproducts. Replacing x with 1/
√
x in equation (3.1) and multiplying the

resulting equation with x(5n+5)/2, we get

D4
[

x(5n/2)l5n

]

=
[

x(n+1)/2ln+1

]5
+ x

[

x(n+1)/2ln+1

]4 [

xn/2ln

]

+ x
[

x(n+1)/2ln+1

]3 [

xn/2ln

]2

+ x
[

x(n+1)/2ln+1

]2 [

xn/2ln

]3
+ x2

[

x(n+1)/2ln+1

]2 [

xn/2ln

]2 [

x(n−1)/2ln−1

]

− 2x3
[

x(n+1)/2ln+1

]2 [

xn/2ln

] [

x(n−1)/2ln−1

]2

− x2
[

xn/2ln

]5
− 2x4

[

xn/2ln

]2 [

x(n−1)/2ln−1

]3

+ x5
[

xn/2ln

] [

x(n−1)/2ln−1

]4
− x5

[

x(n−1)/2ln−1

]5
;

D4j5n = j5n+1 + xj4n+1jn + xj3n+1j
2
n + x2j2n+1j

3
n + x2j2n+1j

2
njn−1

− 2x3j2n+1jnj
2
n−1 − x2j5n − 2x4j2nj

3
n−1 + x5jnj

4
n−1 − x5j5n−1, (3.3)

where ln = ln(1/
√
x), jn = jn(x), and D2 = 4x+ 1.
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In particular, we have

81j5n = j5n+1 + 2j4n+1jn + 2j3n+1j
2
n + 4j2n+1j

3
n + 4j2n+1j

2
njn−1

− 16j2n+1jnj
2
n−1 − 4j5n − 32j2nj

3
n−1 + 32jnj

4
n−1 − 32j5n−1. (3.4)

Next, we confirm identities (2.1) and (2.3) using graph-theoretic tools.

4. Graph-Theoretic Confirmations

Consider the Fibonacci digraph D1 in Figure 1 with vertices v1 and v2, where a weight is
assigned to each edge [7, 8].

Figure 1. Weighted Fibonacci Digraph D1

It follows, by induction, from its weighted adjacency matrix Q =

[
x 1
1 0

]

that

Qn =

[
fn+1 fn
fn fn−1

]

,

where n ≥ 1.
The ijth entry of Qn gives the sum of the weights of all walks of length n from vi to vj in

the weighted digraph D1, where 1 ≤ i, j ≤ n [6, 7]. So, the sum of the weights of closed walks
of length n originating at v1 in the digraph is fn+1 and that of those originating at v2 is fn−1.
Consequently, the sum of the weights of all closed walks of length n is fn+1+fn−1 = ln. These
facts play a major role in the graph-theoretic proof of identity (2.1).

4.1. Confirmation of Identity (2.1). Let A and B denote the sets of closed walks of lengths
n + 1 and n in the digraph, respectively; and C and D the sets of those of lengths n− 1 and
n − 2 originating at v1, respectively. We define the sum S1 of the weights of the elements
in A × A × A × A to be the product of the sums of the weights in each component. This
implies S1 = l4n+1. Analogously, let S2, S3, S4, S5, and S6 denote the sum of the weights in
A × A × C × C, B × B × B × B, B × B × B × C, B × B × C × C, and B × B × D × D,
respectively. Then, S2 = l2n+1f

2
n, S3 = l4n, S4 = l3nfn, S5 = l2nf

2
n, and S6 = l2nf

2
n−1. Thus, the

sum
S = S1 + x2∆2S2 + x2S3 + 2x∆2S4 + x2∆2S5 + 2x2∆2S6

is given by

S = l4n+1 + x2∆2l2n+1f
2
n + x2l4n + 2x∆2l3nfn + x2∆2l2nf

2
n + 2x2∆2l2nf

2
n−1. (4.1)

We will now compute the sum S in a different way in six steps.

Step 1. Let v be an arbitrary walk in A. Suppose it originates at v1. If v begins with a loop,
the sum of the weights of such walks is xfn+1, then the sum is 1 · 1 · 1 · fn = fn. Thus, the
sum of such walks v is xfn+1 + fn = fn+2. On the other hand, if v originates at v2, then the
sum of the weights of such walks is fn. Combining the two cases, the sum of the weights of
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all elements in A is ln+1; so S1 = l4n+1.

Step 2. Let v be an arbitrary walk in C. If v begins with a loop, the sum of the weights of
such walks is xfn−1; otherwise, the sum is 1 · 1 · 1 · fn−2 = fn−2. So, the sum of the walks in C
is xfn−1 + fn−2 = fn. Consequently, the sum of the weights of quadruples in A×A× C × C
is given by S2 = l2n+1f

2
n.

Step 3. It follows by Step 1 that S3 = l4n.

Step 4. The sum of the weights of walks in B is ln and that in C is fn. So, the sum of the
weights of elements in B ×B ×B ×C is given by S4 = l3nfn.

Step 5. The sum of the elements in B ×B × C × C is given by S5 = l2nf
2
n.

Step 6. Because the sum of the weights of walks in B is ln and that in D is fn−1, it follows
that S6 = l2nf

2
n−1.

Thus, by identity (2.1),

S = S1 + x2∆2S2 + x2S3 + 2x∆2S4 + x2∆2S5 + 2x2∆2S6

= l4n+1 + x2∆2l2n+1f
2
n + x2l4n + 2x∆2l3nfn + x2∆2l2nf

2
n + 2x2∆2l2nf

2
n−1

= 2x2∆2l4n + l3n+1ln−1 + xl2n+1lnln−1 + 4x∆2ln+1lnf
2
n−1. (4.2)

Equating the values of S in equations (3.1) and (4.2) yields the desired result. �

4.2. Confirmation of Identity (2.3). This time, consider the weighted Jacobsthal digraph

D2 in Figure 2.

Figure 2. Weighted Jacobsthal Digraph D2

It follows from its weighted adjacency matrix M =

[
1 x
1 0

]

that

Mn =

[
Jn+1(x) xJn(x)
Jn(x) xJn−1(x)

]

,

where n ≥ 1.
Consequently, the sum of the weights of closed walks of length n from v1 to itself is Jn+1(x),

and that from v2 to itself is xJn−1(x). So, the sum of the weights of length n in the digraph
is Jn+1(x) + xJn−1(x) = jn(x).

We are now ready for the graph-theoretic proof. In the interest of brevity and clarity, we
again omit the argument in the functional notation.
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Proof. Let A and B denote the sets of closed walks of lengths n + 1 and n in the digraph,
respectively; and C and D the sets of those of lengths n − 1 and n − 2 originating at v1,
respectively. The sums of the walks in them are jn+1, jn, Jn, and Jn−1, respectively.

Let S1, S2, S3, S4, S5, and S6 denote the sums of the weights of elements in A×A×A×A,
A × A × C × C, B × B × B × B, B × B × B × C, B × B × C × C, and B × B × D × D,
respectively. Then, S1 = j4n+1, S2 = j2n+1j

2
n, S3 = j4n, S4 = j3nJn, S5 = j2nJ

2
n, and S6 = j2nJ

2
n−1.

Then, the sum

S = S1 +D2S2 + xS3 + 2xD2S4 + xD2S5 + 2x2D2S6

is given by

S = j4n+1 +D2j2n+1J
2
n + xj4n + 2xD2j3nJn + xD2j2nJ

2
n + 2x2D2j2nJ

2
n−1. (4.3)

We will now recompute the sum S in a different way in six steps.

Step 1. Let w be an arbitrary walk in A. Suppose it originates at v1. If w begins with a loop,
the sum of the weights of such walks is 1 ·Jn+1; otherwise, the sum is x ·1 ·Jn−1 = xJn−1. The
sum of such walks v is Jn+1 + xJn−1 = jn+1. So, the sum S1 of the weights of the elements in
A×A× C × C is given by S1 = j4n+1.

Step 2. The sum of the weights of walks in C is Jn. So, the sum of the weights of elements in
A×A× C × C equals j2n+1J

2
n; that is, S2 = j2n+1J

2
n.

Step 3. It follows by Step 1 that the sum of the weights of elements in B × B ×B ×B is j4n;
so S3 = j4n.

Step 4. The sum of the weights of quadruples in B ×B ×B × C is j3nJn; so S4 = j3nJn.

Step 5. The sum S5 of the weights of elements in B ×B × C ×C is given by S5 = j2nJ
2
n.

Step 6. The sum of the weights of the walks in D is Jn−1; so S6 = j2nJ
2
n−1.

Using identity (2.3), we then have

S = S1 +D2S2 + xS3 + 2xD2S4 + xD2S5 + 2x2D2S6

= j4n+1 +D2j2n+1J
2
n + xj4n + 2xD2j3nJn + xD2j2nJ

2
n + 2x2D2j2nJ

2
n−1

= 2D2j4n + xj3n+1jn−1 + xj2n+1jnjn−1 + 4D2x2jn+1jnJ
2
n−1. (4.4)

Equating the values of S in equations (4.3) and (4.4) yields the desired result. �

Next, we confirm identity (3.1) using graph-theoretic techniques

4.3. Confirmation of Identity (3.1).
Proof. The sum S of the weights of closed walks of length 5n in digraph D1 is given by
S = l5n; so x2∆4S = x2∆4l5n.

We will now compute x2∆4S in a different way. To this end, let w be an arbitrary closed
walk of length 5n.

Case 1. Suppose w originates (and ends) at v1. Clearly, it can land at v1 or v2 at the 2nth
and 4nth steps: w = v1 − · · · − v

︸ ︷︷ ︸

subwalk of length 2n

v − · · · − v
︸ ︷︷ ︸

subwalk of length 2n

v − · · · − v1
︸ ︷︷ ︸

subwalk of length n

, where v = v1 or v2.
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Table 3 shows the various possible cases and the sums of weights of walks w.

w lands at v1 at w lands at v1 at w lands at v1 at sum of the weights
the 2nth step? the 4nth step? the 5nth step? of walks w

yes yes yes f2
2n+1fn+1

yes no yes f2n+1f2nfn
no yes yes f2

2nfn+1

no no yes f2nf2n−1fn

Table 3: Sums of the Weights of Closed Walks Originating at v1
It follows from Table 3 that the sum S1 of the weights of all such walks w is given by

S1 =
(
f2
2n+1 + f2

2n

)
fn+1 + f2nfn(f2n+1 + f2n−1)

= f4n+1fn+1 + f4nfn

= f5n+1.

Case 2. Suppose w originates (and ends) at v2. Then also, w can land at v1 or v2 at the 2nth
and 4nth steps: w = v2 − · · · − v

︸ ︷︷ ︸

subwalk of length 2n

v − · · · − v
︸ ︷︷ ︸

subwalk of length 2n

v − · · · − v2
︸ ︷︷ ︸

subwalk of length n

, where v = v1 or v2.

It follows from Table 4 that the sum S2 of the weights of all such walks w is given by

S1 = (f2n+1 + f2n−1) f2nfn +
(
f2
2n + f2

2n−1

)
fn−1

= f4nfn + f4n−1fn−1

= f5n−1.

w lands at v1 at w lands at v1 at w lands at v2 at sum of the weights
the 2nth step? the 4nth step? the 5nth step? of walks w

yes yes yes f2n+1f2nfn
yes no yes f2

2nfn−1

no yes yes f2nf2n−1fn
no no yes f2

2n−1fn−1

Table 4: Sums of the Weights of Closed Walks Originating at v2
Thus, using identity (3.1), the cumulative sum S of the weights of all closed walks of length

5n in the digraph and hence, x2∆4S are given by

S = S1 + S2

= f5n+1 + f5n−1

= l5n;

x2∆4S = x2∆4l5n

= xl5n+1 + l4n+1ln + xl3n+1l
2
n + x2l2n+1l

3
n + xl2n+1l

2
nln−1 − 2l2n+1lnl

2
n−1

+x2l5n − 2xl2nl
3
n−1 + lnl

4
n−1 − xl5n−1.

This value of x2∆4S, coupled with its original value, yields the desired result. �

Next, we confirm identity (4.3) using graph-theoretic methods.

30 VOLUME 59, NUMBER 1



SUMS OF POLYNOMIAL PRODUCTS

4.4. Confirmation of Identity (4.3).
Proof. Let S∗ denote the sum of the weights of all closed walks of length 5n in the digraph
D2. Then, S

∗ = j5n and hence, D4S∗ = D4j5n.
To compute this sum in a different way, we let w be an arbitrary closed walk of length 5n

in the digraph.

Case 1. Suppose w originates at v1. It can land at v1 or v2 at the 2nth and 4nth steps:
w = v1 − · · · − v

︸ ︷︷ ︸

subwalk of length 2n

v − · · · − v
︸ ︷︷ ︸

subwalk of length 2n

v − · · · − v1
︸ ︷︷ ︸

subwalk of length n

, where v = v1 or v2.

It follows from Table 5 that the sum S∗
1 of the weights of all such walks w is given by

S∗
1 = Jn+1

(
J2
2n+1 + xJ2

2n

)
+ xJ2nJn(J2n+1 + xJ2n−1)

= J4n+1Jn+1 + xJ4nJn

= J5n+1.

w lands at v1 at w lands at v1 at w lands at v1 at sum of the weights
the 2nth step? the 4nth step? the 5nth step? of walks w

yes yes yes J2
2n+1Jn+1

yes no yes xJ2n+1J2nJn
no yes yes xJ2

2nJn+1

no no yes x2J2nJ2n−1Jn

Table 5: Sums of the Weights of Closed Walks Originating at v1
Case 2. Suppose w originates at v2. Then, w can also land at v1 or v2 at the 2nth and 4nth
steps: w = v2 − · · · − v

︸ ︷︷ ︸

subwalk of length 2n

v − · · · − v
︸ ︷︷ ︸

subwalk of length 2n

v − · · · − v2
︸ ︷︷ ︸

subwalk of length n

, where v = v1 or v2.

Table 6 implies that the sum S∗
2 of the weights of all such walks w is given by

S∗
2 = xJ2nJn (J2n+1 + xJ2n−1) + x2Jn−1(J

2
2n + xJ2

2n−1)

= x(J4nJn + xJ4n−1Jn−1

= xJ5n−1.

w lands at v1 at w lands at v1 at w lands at v2 at sum of the weights
the 2nth step? the 4nth step? the 5nth step? of walks w

yes yes yes xJ2n+1J2nJn
yes no yes x2J2

2nJn−1

no yes yes x2J2
2nJ2n−1Jn

no no yes x3J2
2n−1Jn−1

Table 6: Sums of the Weights of Closed Walks Originating at v2
Combining the two cases and using identity (4.3), we get

S∗ = S∗
1 + S∗

2

= J5n+1 + xJ5n−1

= j5n;

D4S∗ = j5n+1 + xj4n+1jn + xj3n+1j
2
n + x2j2n+1j

3
n + x2j2n+1j

2
njn−1

− 2x3j2n+1j
2
nj

2
n−1 − x2j5n − 2x4j2nj

3
n−1 + x5jnj

4
n−1 − x5j5n−1.
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This value of D4S∗, coupled with its earlier version, yields the desired result, as expected.
�

Finally, we showcase the Vieta and Chebyshev implications of equations (2.1) and (3.1);
again, we omit all basic algebra involved in their justifications.

5. Vieta and Chebyshev Counterparts

Using the Vieta-gibonacci and Vieta-Chebyshev relationships in Table 1, we can find the
Vieta and Chebyshev companions of identities (2.1) and (3.1):

2x2(x2 − 4)v4n = v4n+1 + v3n+1vn−1 + xv2n+1vnvn−1 + x2(x2 − 4)v2n+1V
2
n

+ x(x2 − 4)vn+1vnV
2
n−1 − x2v4n + 2x(x2 − 4)v3nVn

− x2(x2 − 4)v2nV
2
n + 2x2(x2 − 4)v2nV

2
n−1;

8x2(x2 − 1)T4n = 2T 4
n+1 + 2T 3

n+1Tn−1 + 4xT 2
n+1TnTn−1 + 8x2(x2 − 1)T 2

n+1U
2
n−1

+ 8x(x2 − 1)Tn+1TnU
2
n−2 − 8x2T 4

n + 16x(x2 − 1)T 3
nUn−1

− 8x2(x2 − 1)T 2
nU

2
n−1 + 16x2(x2 − 1)T 2

nU
2
n−2;

x2(x2 − 4)2v5n = xv5n+1 − v4n+1vn − xv3n+1v
2
n − x2v2n+1v

3
n + xv2n+1v

2
nvn−1

+ 2v2n+1vnv
2
n−1 + x2v5n − 2xv2nv

3
n−1 − vnv

4
n−1 + xv5n−1;

4x2(x2 − 1)2T5n = 2T 5
n+1 − T 4

n+1Tn − 2xT 3
n+1T

2
n − 4x2T 2

n+1T
3
n + 2xT 2

n+1T
2
nTn−1

+ 2T 2
n+1TnT

2
n−1 + 4T 5

n − 4xT 2
nT

3
n−1 − TnT

4
n−1 + 2T 5

n−1,

where vn = vn(x) and Tn = Tn(x).
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