VALUES OF BERNOULLI AND EULER POLYNOMIALS AT RATIONAL
POINTS

XIANZU LIN

ABSTRACT. A problem proposed by E. Lehmer about Bernoulli polynomials is solved, using
a classic theorem of D. H. Lehmer. A similar result is obtained for Euler polynomials.

1. INTRODUCTION

The Bernoulli numbers B,, and the Bernoulli polynomials B, (z) are defined, respectively,
by

Thus, By(z) = 1, Bi(z) = « — 3, Ba(x) = 2> — x + }, Bs(z) = 2® — 327 + Sz, By(z) =
ot — 223 + 2% — %, etc.
From the above definitions, we have

Ba(z) = f: <Z> Bya™ . (3)

r=0

In particular, B, (0) = B,. Note that B,, = 0, whenever n > 1 is odd.
The following evaluations of By, (x) are well-known (cf. [5, Section 24.4]) and can be derived
directly from (1) and (2):

B,(3)= (2" - 1)B,, (4)
Ban(3) = Ban(3) = 3(3' 7" — 1) Ba, (5)
Bon(3) = Ban(3) = 3(4'7%" — 217" By, (6)
Bon(3) = Boy(2) = 3(6' 2" —3172" —2172" 4 1) By, (7)

In [3], E. Lehmer used (4)—(7) to derive a large class of important congruences involving
arithmetic sums, Bernoulli numbers, Fermat quotients, and Wilson quotients. E. Lehmer
pointed out that the number ¢ = 1,2, 3,4, 6 are characterized by ¢(q) < 2 (¢ is Euler’s totient
function), and asked whether similar evaluations of By () exist for other ¢. In [1], some mod p
evaluations of B,_1() were extended to other g.

In this paper, we show that similar evaluations of Bn(%) do not exist for other ¢ (see

Theorem 2.1). This is closely connected with the following classic result (cf. [2] and [4, p. 37])
of D. H. Lehmer:
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Theorem 1.1 (D. H. Lehmer). Let % be a rational number, where ¢ > 2 and (a,q) = 1. Then,

2 cos 2“7” is an algebraic integer of degree ¢(q)/2, and 2sin 2“7“ is an algebraic integer of degree

o(q), ¢(q)/4, or ¢(q)/2, according to (q,8) < 4, (¢,8) =4, or (q,8) > 4, respectively.

In particular, we have:
Corollary 1.2. Let % be a rational number, where ¢ > 0 and (a,q) = 1. Then, (:082‘”T7T i
rational if and only if ¢ =1,2,3,4, or 6.

A similar question can be proposed for Euler numbers E,, and Euler polynomials E,(z),
which are defined respectively by

2e? > zZ"
1 2B ®)
n=0
2e™* > 2"
1 ZE"(:”)H )
n=0 ’

We note that each E,, € Z and F,, = 0, whenever n is odd.
There are only two known evaluations of E,, (x) at rational points (cf. [5, Section 24.4]):

En(}) =27, (10)

Eon(3) = B9y (3) =272 (1 4 372") By, (11)

We show that similar evaluations of E,, (2

another corollary of Theorem 1.1.

) do not exist for other ¢ (see Theorem 2.2), using

Q

Corollary 1.3. Let % be a rational number, where ¢ > 0 and (a,q) = 1. Then, Sin% 18

rational if and only if ¢ = 1,2, or 6.

2. PROOF OF THE MAIN RESULTS

The main result of this paper is the following:

Theorem 2.1. Assume that there exist k nonzero real numbers a1, as, ..., ay, k distinct pos-
itive numbers by, bo, ..., by, two even integers s >t > 0, and a rational number % with ¢ > 0
and (a,q) = 1, such that

Ba(2) = (@b} + bl + -+ axhf) B, (12)
whenever n =t (mod s). Then, we have g = 1,2,3,4, or 6, and a;,b; € Q for 1 <i <k.
Proof. Assume that (12) is valid. Then by (1) and (2), we have

s k s
DUFE T =)D ambly (0, Tbp2), (13)
j=1

m=1 j=1

Zsft+lecvz

where ¢ = €2™/% and f(x,2) = -
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Hence,

/ f(%,zz)dz (14

1< f(&,¢0z)dz
:;;/T Tt T

k s ;
1 Tor,
LS Y e [ O
S L, z

m=1 j=1
k
:Z a bt—s f(Oame)dZ
m=1 - Ly o 7

where L, is the circle |z| = r. Note that we always assume that L, does not contain any pole
of the integrand. By Cauchy’s residue theorem,

1 f(2,2)dz [r/(2m)]

— q’ _ Z e2cmm‘/q(277‘7_‘_2')3—1‘/7 (15)
2w S, 2 n=—1[r/(2m)]
and
1 £(0,bp2)dz o/ Gl
- s Ym _ NS—t
i), T 2 nz::l (2nmi)*~t, (16)

where [u] denotes as usual, the greatest integer not exceeding w. Combining (14), (15), and
(16) immediately implies that

[r/(27)] ' k [rbm/(27)]
Z e2an7r7,/qns—t -9 Z amb;f;s Z n°"t. (17)
n=—[r/(2m)] m=1 n=1

Using (17), we shall show that by, by, ..., by € Q. Assume that b; is the maximal irrational
number among by, ba, ..., bg. Let g(r) be the right side of (17). Then, one checks directly that

G2 + ) — g(25 — €) = 2abl = #0, (18)
when e > 0 is sufficiently small. Hence, r = %—7; is a jump discontinuity of g(r). Thus, we arrive

at a contradiction that the left side of (17) is continuous at r = 2b—”.

Note that (12) implies that a1b} + agby + --- + apby € Q ilf n = t (mod s). By the
Vandermonde determinant |{bfj }ij| # 0, we also have ai,a,...,a; € Q.

Now, we are in the last step of the proof. Assume that ¢ # 1,2,3,4, and 6. Then, the
left side of (17) is 2cos 2“7” for 2 < r < 4w, whereas the right side of (17) is rational. This
contradicts Corollary 1.2. O

The same proof, using Corollary 1.3, leads to a similar result about Euler polynomials.

Theorem 2.2. Assume that there exist k nonzero real numbers a1, aso, ..., a, k distinct pos-
itive numbers by, bo, ... by, two even integers s >t > 0, and a rational number % with ¢ > 0
and (a,q) = 1, such that

Bo(2) = (a1b} + asb + -+ + ayb}!) Bn, (19)

whenever n =t (mod s). Then, ¢ = 1,2, or 6, and a;,b; € Q for 1 <i <k.

80 VOLUME 59, NUMBER 1



VALUES OF BERNOULLI AND EULER POLYNOMIALS AT RATIONAL POINTS

REFERENCES

[1] A. Granville, Z. W. Sun, Values of Bernoulli polynomials, Pacifc J. Math., 172 (1996), 117-137.

[2] D. H. Lehmer, A note on trigonometric algebraic numbers, Amer. Math. Monthly, 40 (1933), 165-166.

[3] E. Lehmer, On congruences involving Bernoulli numbers and quotients of Fermat and Wilson, Ann. of
Math., 39.2 (1938), 350-360.

[4] 1. Niven, Irrational Numbers, Carus Monographs, Vol. 11, Mathematical Association of America, New
York, 1956.

[5] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST Handbook of Mathematical
Functions, Cambridge Univ. Press, Cambridge, 2010.

MSC2010: 11B68, 11J72

COLLEGE OF MATHEMATICS AND COMPUTER SCIENCE, FUJIAN NORMAL UNIVERSITY, FuzHOU, 350108,
CHINA
Email address: 1inxianzu@126.com

FEBRUARY 2021 81



