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Abstract. In a recent work, Zielinski used Faulhaber’s formula to explain why the odd
Bernoulli numbers are equal to zero. Here, we assume that the odd Bernoulli numbers are
equal to zero to explain Faulhaber’s formula.

1. Introduction

For integers n ≥ 1 and m ≥ 0, denote Sm =
∑n

i=1 i
m. It is well-known that Sm can be

expressed in the so-called Faulhaber form (see, [2, 3, 5, 7, 8, 9])

S2m = S2

[
bm,0 + bm,1S1 + bm,2S

2
1 + · · ·+ bm,m−1S

m−1
1

]
, (1.1)

S2m+1 = S2
1

[
cm,0 + cm,1S1 + cm,2S

2
1 + · · ·+ cm,m−1S

m−1
1

]
, (1.2)

where bm,j and cm,j are nonzero rational coefficients for j = 0, 1, . . . ,m − 1 and m ≥ 1. In
particular, S3 = S2

1 . We can write (1.1) and (1.2) more compactly as

S2m = S2F2m(S1),

S2m+1 = S2
1F2m+1(S1),

where F2m(S1) and F2m+1(S1) are polynomials in S1 of degree m− 1.
Zielinski derived a version of Faulhaber’s formula (1.2) for S2m+1 (see [10, Equation (2.5)]).

Then, by comparing the terms in n appearing in [10, Equation (2.5)] and in the traditional
Bernoulli polynomial formula

S2m+1 =
1

2m + 2

2m+1∑
j=0

(
2m + 2

j

)
(−1)jBjn

2m+2−j ,

and observing that B3 = B5 = 0, he was able to conclude that B2m+1 = 0 for all m ≥ 1, where
B0, B1, B2, . . . are the Bernoulli numbers.

In this paper, we show that conversely, assuming B2m+1 = 0 for all m ≥ 1 leads to the
Faulhaber formulas in (1.1) and (1.2). To this end, we will use the well-known relationship
between the power sums Sm and the Bernoulli polynomials Bm(x), namely

Sm =
1

m + 1

(
Bm+1(n + 1)−Bm+1

)
, m, n ≥ 1. (1.3)

We will also use a theorem established in [6, Theorem], which for convenience we reproduce
as follows.

Theorem 1.1 (Goehle and Kobayashi [6]). Let f (i)(s) denote the ith derivative of f evaluated
at s. If f is a polynomial with even degree n > 1, then f has a line of symmetry at s if and
only if f (i)(s) = 0 for all odd i. Similarly, if f is a polynomial with odd degree n > 1, then f

has a point of symmetry at (s, f(s)) if and only if f (i)(s) = 0 for all even i ≥ 2.
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2. Bernoulli Polynomials

For m ≥ 0, the classic Bernoulli polynomial Bm(x) in the real variable x is defined by (see,
e.g., [1])

Bm(x) =

m∑
j=0

(
m

j

)
Bjx

m−j ,

where B0, B1, B2, . . . are the Bernoulli numbers, and Bm(0) = Bm. We write down the
following couple of basic properties of the Bernoulli polynomials that we will use when proving
Theorems 2.1 and 3.1 [1]:

Bm

(
1

2

)
=
(
21−m − 1

)
Bm, (2.1)

and

B(k)
m (x) = k!

(
m

k

)
Bm−k(x). (2.2)

Note that relation (2.1) holds irrespective of whether m is even or odd. In what follows,
by B′odd [Bodd], we mean every one of the elements of the finite set {B3, B5, . . . , B2m−1}
[{B3, B5, . . . , B2m+1}], where m is any arbitrary fixed integer ≥ 2 [≥ 1]. Next, we establish
the following theorem.

Theorem 2.1. Let U(x) denote the quadratic polynomial U(x) = 1
2x(x− 1). Then, we have

B′odd = 0 ⇔ B2m(x) = B2m +
m∑
j=2

b̂
(2m)
j U(x)j , m ≥ 2; (2.3)

Bodd = 0 ⇔ B2m+1(x) =

(
x− 1

2

) m∑
j=1

b̂
(2m+1)
j U(x)j , m ≥ 1, (2.4)

where b̂
(2m)
2 , . . ., b̂

(2m)
m , b̂

(2m+1)
1 , . . ., b̂

(2m+1)
m are nonzero rational coefficients.

Proof. (i) B′odd = 0 ⇒ the right side of (2.3). If B′odd = 0, from (2.1), it follows that

B2m−i(
1
2) = 0 for i = 1, 3, . . . , 2m− 1 (we include i = 2m− 1 because B1(

1
2) = 0). From (2.2),

this in turn implies that B
(i)
2m(12) = 0 for all odd i. (Needless to say, because degB2m(x) = 2m,

B
(s)
2m(x) = 0 for all s > 2m). Therefore, Theorem 1.1 tells us that, for all m ≥ 1, B2m(x) has

a line of symmetry at 1
2 . We can then Taylor-expand B2m(x) about x = 1

2 to get

B2m(x) =

m∑
j=0

v̂
(2m)
j

(
x− 1

2

)2j

.

Because (x− 1
2)2 = 1

4(1 + 8U(x)), the last expression can be equivalently written as

B2m(x) =
m∑
j=0

b̂
(2m)
j U(x)j , (2.5)

for certain coefficients b̂
(2m)
0 , b̂

(2m)
1 , . . ., b̂

(2m)
m . Clearly, as B2m(0) = B2m, we have that b̂

(2m)
0 =

B2m. On the other hand, for m ≥ 2, we must have that B′2m(0) = 2mB2m−1(0) = 2mB2m−1 =

0. Differentiating (2.5) and evaluating at x = 0 yields B′2m(0) = −1
2 b̂

(2m)
1 , from which we

deduce that b̂
(2m)
1 = 0. Moreover, because B′′2m(0) 6= 0, from (2.5), it follows that b̂

(2m)
2 6= 0.
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Furthermore, because B′′′2m(0) = 0 and b̂
(2m)
2 6= 0, from (2.5), it follows that b̂

(2m)
3 6= 0.

Continuing in this fashion, it can be shown that b̂
(2m)
2 , . . . , b̂

(2m)
m 6= 0. All of these coefficients

are rational because the Bernoulli numbers are rational.
(ii) The right side of (2.3) ⇒ B′odd = 0. It is readily verified that U(x) fulfills the sym-

metry property U(x + 1
2) = U(12 − x). As a consequence, assuming that B2m(x) = B2m +∑m

j=2 b̂
(2m)
j U(x)j , it follows that B2m(x) satisfies the same relation B2m(x+ 1

2) = B2m(12 −x),

which means that B2m(x) has a line of symmetry at s = 1
2 . Therefore, according to Theo-

rem 1.1, we must have that B
(i)
2m(12) = 0 for all odd i. From (2.2), this in turn implies that

B2m−i(
1
2) = 0 for all odd i. Because m is any arbitrary integer ≥ 2, from (2.1), we conclude

that B′odd = 0.

(iii) Bodd = 0 ⇒ the right side of (2.4). If Bodd = 0, from (2.1), it follows that B2m+1−i(
1
2) =

0 for i = 0, 2, . . . , 2m. From (2.2), this in turn implies that B
(i)
2m+1(

1
2) = 0 for all even i ≥ 0 (we

include i = 0 because B2m+1(
1
2) is proportional to B2m+1 = 0). Therefore, invoking Theorem

1.1, we conclude that for all m ≥ 1, B2m+1(x) has a point of symmetry at (12 , 0). We can then

Taylor-expand B2m+1(x) about x = 1
2 to get

B2m+1(x) =
m∑
j=0

v̂
(2m+1)
j

(
x− 1

2

)2j+1

=

(
x− 1

2

) m∑
j=0

v̂
(2m+1)
j

(
x− 1

2

)2j

.

As before, because (x− 1
2)2 = 1

4(1 + 8U(x)), the last expression can be equivalently written as

B2m+1(x) =

(
x− 1

2

) m∑
j=0

b̂
(2m+1)
j U(x)j , (2.6)

for certain coefficients b̂
(2m+1)
0 , b̂

(2m+1)
1 , . . ., b̂

(2m+1)
m . Clearly, as B2m+1(0) = B2m+1, we have

that, for m ≥ 1, b̂
(2m+1)
0 = 0. On the other hand, because B′2m+1(0) = (2m + 1)B2m(0) =

(2m + 1)B2m 6= 0, from (2.6), it follows that b̂
(2m+1)
1 6= 0. Similarly, using (2.2), it can be

shown that the rational coefficients b̂
(2m+1)
1 , . . . , b̂

(2m+1)
m 6= 0.

(iv) The right side of (2.4) ⇒ Bodd = 0. Assume that B2m+1(x) =
(
x− 1

2

)∑m
j=1 b̂

(2m+1)
j U(x)j .

Then, because U(x + 1
2) = U(12 − x), it follows that B2m+1(x + 1

2) = −B2m+1(
1
2 − x). This

means that B2m+1(x) has a point of symmetry at (12 , 0). According to Theorem 1.1, this

implies that B
(i)
2m+1(

1
2) = 0 for all even i ≥ 0 (we include the case i = 0 because, from the right

side of (2.4), we have that B2m+1(
1
2) = 0). Therefore, taking into account (2.2) and (2.1), and

noting that m is any arbitrary integer ≥ 1, we conclude that Bodd = 0. �

For completeness, we write down an explicit representation for the coefficients b̂
(2m)
j and

b̂
(2m+1)
j [4]:

b̂
(2m)
j = 8j

m∑
k=j

1

4k

(
2m

2k

)(
k

j

)
B2m−2k

(
1

2

)
, (2.7)

b̂
(2m+1)
j = 8j

m∑
k=j

1

4k

(
2m + 1

2k + 1

)(
k

j

)
B2m−2k

(
1

2

)
, (2.8)
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where j = 0, 1, . . . ,m. It is to be noted that, as we have shown, b
(2m)
0 = B2m (for m ≥ 0),

b
(2m+1)
0 = 0 (for m ≥ 1), and b

(2m)
1 = 0 (for m ≥ 2).

3. Bernoulli Meets Faulhaber

Next, we establish the following theorem, which highlights the close relationship between
the property Bodd = 0 and the Faulhaber formulas in (1.1) and (1.2).

Theorem 3.1. For m ≥ 1, we have that

Bodd = 0 ⇔

{
S2m = S2F2m(S1),

S2m+1 = S2
1F2m+1(S1),

where F2m(S1) and F2m+1(S1) are polynomials in S1 of degree m− 1.

Proof. (i) Bodd = 0 ⇒ S2m = S2F2m(S1). According to Theorem 2.1, if Bodd = 0, then

B2m+1(x) can be expressed as B2m+1(x) = (x− 1
2)
∑m

j=1 b̂
(2m+1)
j U(x)j . Therefore, from (1.3),

it follows that

S2m =
1

2m + 1

(
n +

1

2

) m∑
j=1

b̂
(2m+1)
j Sj

1,

because we are assuming that B2m+1 = 0. It is immediate to see that the last equation can
be written as

S2m =
3

4m + 2
S2

[
b̂
(2m+1)
1 + b̂

(2m+1)
2 S1 + · · ·+ b̂(2m+1)

m Sm−1
1

]
, (3.1)

which is obviously of the form (1.1).
(ii) S2m = S2F2m(S1) ⇒ Bodd = 0. If S2m = S2F2m(S1), from (1.3), we obtain

(2m + 1)S2F2m(S1) = B2m+1(n + 1)−B2m+1. (3.2)

Considering S1 and S2 as polynomials in the real variable x, we have that S2 = 1
3(2x + 1)S1,

and then S2(−1
2) = 0. In view of (3.2), this implies that B2m+1(

1
2) = B2m+1. On the other

hand, from (2.1), we have that B2m+1(
1
2) = (2−2m − 1)B2m+1, from which we deduce that

B2m+1 = 0. Because m is any arbitrary integer ≥ 1, we conclude that Bodd = 0.
(iii) Bodd = 0 ⇒ S2m+1 = S2

1F2m+1(S1). If Bodd = 0, then, from Theorem 2.1, it follows

that B2m+2(x) can be expressed as B2m+2(x) = B2m+2 +
∑m+1

j=2 b̂
(2m+2)
j U(x)j (note that,

because we are using B2m+2(x), we have to assume Bodd = 0 instead of B′odd = 0 for Theorem
2.1 to apply to this situation). Hence, from (1.3), we get

S2m+1 =
1

2m + 2

m+1∑
j=2

b̂
(2m+2)
j Sj

1 =
S2
1

2m + 2

[
b̂
(2m+2)
2 + b̂

(2m+2)
3 S1 + · · ·+ b̂

(2m+2)
m+1 Sm−1

1

]
, (3.3)

which is obviously of the form (1.2).
(iv) S2m+1 = S2

1F2m+1(S1) ⇒ Bodd = 0. A proof of this statement was given in [10]. An
alternative proof is as follows: if S2m+1 = S2

1F2m+1(S1), from (1.3), we obtain

B2m+2(n + 1) = B2m+2 + (2m + 2)S2
1F2m+1(S1).

Considering S1 = 1
2x(x + 1) as a polynomial in the real variable x, we then have

B2m+2(x) = B2m+2 + (2m + 2)(U(x))2F2m+1(U(x)).

Because U(x + 1
2) = U(12 − x), it turns out that B2m+2(x) equally fulfills B2m+2(x + 1

2) =

B2m+2(
1
2−x), and thus, B2m+2(x) has a line of symmetry at s = 1

2 . According to Theorem 1.1,
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this implies that B
(i)
2m+2(

1
2) = 0 for all odd i. From (2.2), this means that B2m+2−i(

1
2) = 0 for

all odd i. Because m is any arbitrary integer ≥ 1, from (2.1), we conclude that Bodd = 0. �

From (1.1) and (3.1), it readily follows that, for j = 0, 1, . . . ,m − 1, bm,j = 3
4m+2 b̂

(2m+1)
j+1 .

Therefore, from (2.8), we obtain

bm,j =
3 · 8j+1

4m + 2

m∑
k=j+1

1

4k

(
2m + 1

2k + 1

)(
k

j + 1

)
B2m−2k

(
1

2

)
. (3.4)

Similarly, from (1.2) and (3.3), we have that, for j = 0, 1, . . . ,m − 1, cm,j = 1
2m+2 b̂

(2m+2)
j+2 .

Hence, using (2.7), and after a simple rearrangement, we find that

cm,j =
8j+1

j + 2

m∑
k=j+1

1

4k

(
2m + 1

2k + 1

)(
k

j + 1

)
B2m−2k

(
1

2

)
. (3.5)

Moreover, in view of (3.4) and (3.5), there is a relation between the coefficients bm,j and cm,j ,
namely,

cm,j =
4m + 2

3j + 6
bm,j , j = 0, 1, . . . ,m− 1.

Thus, knowing the coefficients bm,j in (1.1) allows us to know the coefficients cm,j in (1.2),
and vice versa. For example, because S′2m(0) = B2m, from (1.1), it is seen that bm,0 = 6B2m,
and then the last equation tells us that cm,0 = (4m + 2)B2m.

4. Conclusion

In [10], Zielinski wonders why the odd Bernoulli numbers are equal to zero, and answers by
saying that it is because S2m+1 is a polynomial in S2

1 , and S2
1 = 1

4(n4 + 2n3 + n2). In this
paper, we have shown that S2m and S2m+1 admit the polynomial representation in (1.1) and
(1.2), respectively, just because the odd Bernoulli numbers are equal to zero.
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