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Abstract. Let (Fn)n≥1 be the Fibonacci sequence. Define P (Fn) = (
∑n

i=1 Fi)n≥1; that is,
the function P gives the sequence of partial sums of (Fn). In this paper, we first give an
identity involving P k(Fn), which is the resulting sequence by applying P to (Fn) k times.
Second, we provide a combinatorial interpretation of the numbers in P k(Fn).

1. Introduction

Let (Fn)n≥1 be the Fibonacci sequence with F1 = 1, F2 = 1, and Fn+2 = Fn+1 + Fn for
n ≥ 1. Define P (Fn) = (

∑n
i=1 Fi)n≥1; that is, the function P gives the sequence of partial

sums of (Fn). Generally, we can apply the function P to (Fn) k times to have the sequence
P k(Fn). For ease of notation, let ak(n) denote the nth number in the sequence P k(Fn).
Table 1 summarizes some initial numbers ak(n) for different values of k and n.

k\n 1 2 3 4 5 6 7 8 9 10 11 12
0 1 1 2 3 5 8 13 21 34 55 89 144
1 1 2 4 7 12 20 33 54 88 143 232 376
2 1 3 7 14 26 46 79 133 221 364 596 972
3 1 4 11 25 51 97 176 309 530 894 1490 2462
4 1 5 16 41 92 189 365 674 1204 2098 3588 6050
5 1 6 22 63 155 344 709 1383 2587 4685 8273 14323

Table 1. Initial numbers ak(n) for different values of k and n.

We compute a few values of ak(n) to illustrate how Table 1 is obtained. For k = 0, we do not
apply the partial sum operator to the first row, so we have the Fibonacci sequence. For k = 1,
we apply the partial sum operator once to the first row to have the second row. Thus,

a2(1) = a1(1) = 1,

a2(2) = a1(1) + a1(2) = 1 + 1 = 2,

a2(3) = a1(1) + a1(2) + a1(3) = 1 + 1 + 2 = 4,

and so on. For k = 2, we apply the partial sum operator twice to the first row; equivalently,
we apply the partial sum operator once to the second row. Repeat the procedure to fill in the
table.

We now consider the first and second rows. Observe that each number in the second row
is one less than a Fibonacci number; in particular, a0(n + 2) − 1 = a1(n) for all n ≥ 1. A
natural question to ask is about the relationship between any two consecutive rows of Table 1.
Continuing to look at pairs of numbers whose columns differ by two, we compute several
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differences

a1(11)− a2(9) = 11,

a2(10)− a3(8) = 55,

a3(8)− a4(6) = 309− 189 = 120,

a4(12)− a5(10) = 6050− 4685 = 1365.

If we check these numbers in the Pascal triangle, we see a pattern. Call the outmost left edge
of the Pascal triangle the first line (consisting of 1’s); move to the right 1 unit to have the
second line (consisting of 1, 2, 3, 4, . . .), and so on. Then 11 lies on the second line; 55 lies
on the third line; 120 lies on the fourth line; 1365 lies on the fifth line. This might lead to the
suspicion that ak−1(n+ 2)− ak(n) lies on the kth line. The following theorem shows that our
suspicion is indeed well-founded.

Theorem 1.1. For k ≥ 1, we have

ak(n) = ak−1(n + 2)−
(
n + k

k − 1

)
.

By definition, the identity is equivalent to

n∑
m=1

ak−1(m) = ak−1(n + 2)−
(
n + k

k − 1

)
.

Remark 1.2. If we let k = 1, then Theorem 1.1 gives the identity
∑n

m=1 a0(m) = a0(n+2)−1,
which is the well-known identity

∑n
m=1 Fm = Fn+2 − 1.

Our next result gives a combinatorial interpretation of ak(n). For n ∈ N, define

sk(n) = #{S ⊂ {1, 2, . . . , n} : |S| ≥ k and minS ≥ |S|}.

Sets with minS ≥ |S| are called Schreier sets. Schreier [2] used these sets to solve a problem
in Banach space theory, and they were also independently discovered in combinatorics and
are connected to Ramsey-type theorems for subsets of N. Table 2 summarizes some initial
numbers sk(n) for different values of k and n.

k\n 1 2 3 4 5 6 7 8 9 10 11 12
0 2 3 5 8 13 21 34 55 89 144 233 377
1 1 2 4 7 12 20 33 54 88 143 232 376
2 0 0 1 3 7 14 26 46 79 133 221 364
3 0 0 0 0 1 4 11 25 51 97 176 309
4 0 0 0 0 0 0 1 5 16 41 92 189
5 0 0 0 0 0 0 0 0 1 6 22 63

Table 2. Initial numbers sk(n) for different values of k and n.

We obtain Table 2 with the help of a simple program. Comparing Tables 1 and 2, we see that
sk(n) is a shift of ak(n). The following theorem describes this relationship.

Theorem 1.3. For k ≥ 0, we have

sk(n) = ak(n− 2(k − 1)).

Remark 1.4. In Theorem 1.3, if n− (2k − 1) ≤ 0, then ak(n− 2(k − 1)) = 0 by convention.
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2. Proofs

We use induction repeatedly and several straightforward observations to prove Theorems
1.1 and 1.3. The following lemma is useful.

Lemma 2.1. For k ≥ 0, we have ak(3) =
(
k+2
k

)
+ 1.

Proof. We prove the lemma by induction.
Base case. For k = 0, a0(3) = F3 = 2 =

(
2
0

)
+ 1.

Inductive hypothesis. Suppose that the formula holds for all k ≤ ` for some ` ≥ 0. We show
that it holds for k = ` + 1. We have

a`+1(3) = a`+1(2) + a`(3) by how we construct Table 1

= (` + 2) +

((
` + 2

`

)
+ 1

)
by the inductive hypothesis

=

(
` + 2

` + 1

)
+

((
` + 2

`

)
+ 1

)
=

(
` + 3

` + 1

)
+ 1.

This completes our proof. �

Proof of Theorem 1.1. We prove the theorem by induction on k.
Base case. For k = 1, the identity is

∑n
m=1 a0(m) = a0(n + 2) − 1, which is true because∑n

m=1 Fm = Fn+2 − 1.
Inductive hypothesis. Suppose that the identity is true for k ≤ ` for some ` ≥ 1. We show

that
n∑

m=1

a`(m) = a`(n + 2)−
(
n + ` + 1

`

)
. (2.1)

We prove (2.1) by induction on n.

Base case. If n = 1, then the left side is a`(1) = 1, whereas the right side is a`(3)−
(
`+2
`

)
= 1

by Lemma 2.1.
Inductive hypothesis. Suppose that (2.1) holds for n ≤ j for some j ≥ 1. We show that it

holds for n = j + 1; that is,

j+1∑
m=1

a`(m) = a`(j + 3)−
(
j + ` + 2

`

)
.

We have
j+1∑
m=1

a`(m) = a`(j + 1) +

j∑
m=1

a`(m)

=

(
a`−1(j + 3)−

(
j + ` + 1

`− 1

))
+

(
a`(j + 2)−

(
j + ` + 1

`

))
by our inductive hypotheses

= (a`−1(j + 3) + a`(j + 2))−
(
j + ` + 2

`

)
= a`(j + 3)−

(
j + ` + 2

`

)
.

This completes our proof. �
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Next, we prove Theorem 1.3. We will need the following lemma.

Lemma 2.2. Fix n ≥ 1. We have

#{S ⊂ {1, 2, . . . , n} : |S| = k and minS ≥ k} =

(
n− k + 1

k

)
.

Proof. Observe that to form a set S ⊂ {1, 2, . . . , n} with |S| = k and minS ≥ k, we choose
k numbers in {1, 2, . . . , n} such that the smallest number is at least k. To satisfy these
requirements, we need to choose k numbers from k to n inclusive. Therefore, the number of
ways is

(
n−k+1

k

)
. �

The following corollary is immediate.

Corollary 2.3. Fix ` ≥ 0 and n ≥ 1. We have

s`+1(n) = s`(n)−
(
n− ` + 1

`

)
.

Proof of Theorem 1.3. We prove the theorem by induction on k.
Base case. For k = 0, we want to show that s0(n) = a0(n + 2) = Fn+2. This follows from

[1, Theorem 1].
Inductive hypothesis. Suppose that the formula holds for k ≤ ` for some ` ≥ 0. We want to

show that

s`+1(n) = a`+1(n− 2`). (2.2)

For n ≤ 2`, the right side of (2.2) is 0 by convention. The left side counts the number
of subsets S ⊂ {1, 2, . . . , n} such that |S| ≥ ` + 1 and minS ≥ |S| ≥ ` + 1. Because |S| ≥
`+ 1 > n/2, we know that S must contain a number smaller than or equal to n/2 ≤ `. Hence,
minS ≤ `, which contradicts that minS ≥ ` + 1. Therefore, the left side is also 0.

For n > 2`, we have

a`+1(n− 2`) = a`(n− 2` + 2)−
(
n− ` + 1

`

)
by Theorem 1.1. On the other hand, we have

s`+1(n) = s`(n)−
(
n− ` + 1

`

)
by Corollary 2.3. By the inductive hypothesis, s`(n) = a`(n − 2` + 2); therefore, we have
s`+1(n) = a`+1(n− 2`). This completes our proof. �
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