
LUCAS SEQUENCES CONTAINING FEW PRIMES

MARK BRODERIUS AND JOHN GREENE

Abstract. Whereas proving that a Lucas sequence contains infinitely many primes is a
difficult problem, there are many Lucas sequences that contain no primes or finitely many
primes. We give two families of Lucas sequences containing only finitely many primes. We
conjecture that all other Lucas sequences without obvious obstructions contain infinitely many
primes.

1. Introduction

It is well known [1, 4, 7] that for positive integers a and d, an arithmetic sequence a, a+ d,
a + 2d, . . . contains infinitely many primes when gcd(a, d) = 1, exactly one prime when a is
prime and gcd(a, d) > 1, and no primes when a is not prime and gcd(a, d) > 1. A similar
classification can be made if one does not restrict a and d to the positive integers, assuming
numbers such as −7 are viewed as primes. If one translates to recurrence relations, we could
say that prime numbers in the recurrence

a0 = a, an = an−1 + d for n ≥ 1

are well understood. However, even the slightest generalization, say to

a0 = a, an = can−1 + d for n ≥ 1

makes the problem intractable with current methods. For example, when c = 2, a = 0, d = 1,
and an = 2n − 1, we have the Mersenne numbers. Heuristically [10], one expects infinitely
many primes in this sequence, but at present there is no proof.

The nonhomogeneous recurrence above can be converted to a second order homogeneous
recurrence relation, an = (c + 1)an−1 − can−2. In this paper, we look at primes in more
general second order homogeneous recurrence relations. Again, with one trivial exception,
we are unable to prove that any such sequence contains infinitely many primes, but there
are sequences that contain no primes or few primes. We attempt to categorize some of these
sequences here.

Following usual conventions [7, 8], for integers P and Q, we define the Lucas sequence
Un = Un(P,Q) by

U0 = 0, U1 = 1, Un = PUn−1 −QUn−2 for n ≥ 2. (1.1)

Associated with sequences Un are sequences Vn satisfying the same recurrence, but with initial
conditions V0 = 2 and V1 = P . If the characteristic polynomial of the recurrence, z2−Pz+Q,
has zeros x and y, then {

Un = xn−yn
x−y , Vn = xn + yn, if x 6= y;

Un = nxn−1, Vn = 2xn, if x = y.
(1.2)

When stressing x and y, we write Un(x+ y, xy), because P = x+ y and Q = xy.
Just as a and d must be relatively prime for arithmetic sequences to contain infinitely

many primes, P and Q must be relatively prime for Lucas sequences to contain infinitely
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many primes. This is because if d = gcd(P,Q), then dbn/2c divides Un(P,Q). Thus, for
n ≥ 4, Un(P,Q) cannot be prime unless P and Q are relatively prime, a fact we use throughout
this paper. However, even when P and Q are relatively prime, we show that certain Lucas
sequences contain only finitely many primes. That is, although it is beyond current techniques
to prove any Lucas sequences other than Un(2, 1) or Un(−2, 1) contain infinitely many primes,
we have the following negative results.

Theorem 1.1. If P and Q are integers and Q is a square, then the sequence Un(P,Q) contains
only finitely many primes.

Theorem 1.2. If x and y are complex numbers, not both 1 and not both -1, for which xy and
x+ y are integers and k > 1 is an integer, then Un(xk + yk, xkyk) contains only finitely many
primes.

When x and y are real, we can say more.

Theorem 1.3. If P 2 > 4Q and Q a square, then Un(P,Q) can only be prime when n = 2.

Theorem 1.4. Suppose x and y are real, xy and x+ y are integers, and k > 1 is an integer.
Then, Un(xk + yk, xkyk) can only be prime when n = p and k = pr for some prime p and
positive integer r.

Lucas sequences satisfy a large number of identities. We will make use of the following
identities.

Um+n = UmUn+1 −QUm−1Un, (1.3)

U2n+1 = U2
n+1 −QU2

n, (1.4)

Un(x+ y, xy) = xUn−1(x+ y, xy) + yn−1. (1.5)

Of these, formula (1.3) is well-known [7, (IV.4), p. 57] and formula (1.4) is an immediate
consequence of it (with m = n+ 1). Formula (1.5) follows easily from formula (1.2). We need
the following connections between the sequences Un and Vn [7, (IV.2), p. 56, (IV.11), p. 59].

Vn = Un+1 −QUn−1 (1.6)

Un =

dn/2e∑
k=1

Qk−1Vn+1−2k = Vn−1 +QVn−3 +Q2Vn−5 + · · · . (1.7)

Lucas sequences are divisibility sequences. That is, they satisfy the arithmetic property:

Uk divides Un when k divides n. (1.8)

A simple calculation using formula (1.2) gives the following formula.

Ukm(x+ y, xy) = Uk(x+ y, xy)Um(xk + yk, xkyk). (1.9)

Because xk + yk = Vk(x + y, xy) is an integer, Ukm can be explicitly written as Uk times an
integer. An iteration of formula (1.9) gives

Un(xk + yk, xkyk) =
Un(x+ y, xy)Uk(x

n + yn, xnyn)

Uk(x+ y, xy)
. (1.10)

When P and Q are relatively prime, the result in (1.8) can be strengthened to

gcd(Um, Un) = Ugcd(m,n), (1.11)

as found in [7, (IV.26), p. 64]. In particular, if gcd(m,n) = 1, then gcd(Um, Un) = 1, when P
and Q are relatively prime.

MAY 2021 137



THE FIBONACCI QUARTERLY

Given complex numbers x and y, we define the nth cyclotomic number for x and y to be

Φn(x, y) =
∏

gcd(r,n)=1
1≤r≤n

(x− ζry),

where ζ is a primitive nth root of unity. Cyclotomic numbers have the following properties [7,
p. 82], [9].

Theorem 1.5. If x and y are zeros of z2 − Pz +Q, then

a. for all natural numbers n, Φn(x, y) is an integer,

b. for all natural numbers n, Un(P,Q) =
∏

d|n, d>1

Φd(x, y).

Critical to this study, we need a condition on the growth of cyclotomic numbers. With φ(n)
representing Euler’s totient function, we quote the following result from Stewart [9], Theorem
4.2.

Theorem 1.6. If xy and (x + y)2 are integers and x/y is not a root of unity, then there is
an effectively computable positive number c for which

|Φn(x, y)| > |x|φ(n)/2 (1.12)

for all n > c.

At the other extreme, it is easy to characterize the cases where Un is small.

Theorem 1.7. Let S be the set {(0, 0), (±1, 0), (0,±1), (±1, 1)}. Then, |Un(P,Q)| ≤ 1 for all
n if and only if (P,Q) ∈ S.

Proof. It is easy to see that for (P,Q) in the given set, |Un(P,Q)| is 0 or 1 for every n. In
the other direction, because U2(P,Q) = P , we must have |P | ≤ 1. Because Un(−P,Q) =
(−1)nUn(P,Q), without loss of generality, let P be 0 or 1. If P = 0, then U3 = −Q forces
Q = 0,±1. If P = 1, then U3 = 1−Q forces Q = 0 or Q = 2. Finally, if (P,Q) = (1, 2), then
|U4| = 3 > 1. �

Most of our attention is focused on Lucas sequences Un(P,Q) where n is prime. This is
because, as mentioned in Theorem 2.1, there is a known finite list of composite n for which
Un(P,Q) can be prime. In Section 3, we compare heuristic estimates to our data. We prove
Theorem 1.1 and Theorem 1.2 in Section 4. In Section 5, we prove Theorem 1.3 and Theorem
1.4. We conclude this section by characterizing those Lucas sequences for which x/y is a root
of unity. This material is well-known, but we include it here in our notation.

Lemma 1.8. If P and Q are integers, then x/y is a root of unity if and only if P 2 = kQ,
where k ∈ {0, 1, 2, 3, 4}.

Proof. It is easy to see that x/y is a root of unity when P 2 = kQ with k ∈ {0, 1, 2, 3, 4}.
On the other hand, suppose that x/y is a root of unity. Because x/y is at worst quadratic,

if x/y = e2πij/m for relatively prime integers j and m, then φ(m) is 1 or 2, because the degree

of e2πij/m is φ(m). Consequently, m has one of the values 1, 2, 3, 4, or 6. If m = 1, then x = y
and P 2 = 4Q. If m = 2, x = −y and P = 0. When m = 4, P = (1± i)y and Q = ±iy2 gives
P 2 = 2Q. When m = 3, x is ωy or ω2y, where ω is a primitive cube root of unity. In each
case, P 2 = Q. Finally, if m = 6, then x = −ωy or x = −ω2y. In either case, P 2 = 3Q. �

Theorem 1.9. If P and Q are relatively prime and x/y is a root of unity, then (P,Q) ∈
{(0,±1), (±1, 1), (±2, 1)}.

138 VOLUME 59, NUMBER 2



LUCAS SEQUENCES CONTAINING FEW PRIMES

Proof. If P = 0, then Q = ±1. If P 6= 0 and P 2 = kQ, then any prime divisor of Q is also a
divisor of P . This forces Q = 1. By Lemma 1.8, P = ±1 if k = 1, and P = ±2 if k = 4, and
these are the only possibilities. �

2. Lucas Primes with Composite Index

Because Lucas sequences are divisibility sequences, one might think n must be prime for
Un to be prime. A Wikipedia article [11] makes this explicit claim. However, even among the
Fibonacci numbers, F4 = 3. Prime Lucas numbers of composite index are mostly classified.

Theorem 2.1. For composite n, a Lucas number Un(P,Q) can only be prime for

n ∈ {4, 6, 8, 9, 10, 15, 25, 26, 65}.

Moreover, for n ∈ {6, 8, 10, 15, 25, 26, 65}, there are only finitely many P,Q for which Un(P,Q)
is prime, and this list of (n, P,Q) is known.

Proof. The proof, with the list of values (n, P,Q), is given in Theorem 3.1 of [6]. �

When P 2 − 4Q > 0, we can say more.

Theorem 2.2. If P and Q are integers and P 2 − 4Q > 0, then Un is composite for all
composite n > 4.

Proof. As mentioned in Lemma 5.1, for P 2 − 4Q > 0, Un is increasing for all n ≥ 2. Thus,
for n = km with k ≥ m > 1, by hypothesis, k > 2, so Un > Uk > 1. Because Un has Uk as a
factor, Un is composite. �

Because U4(P,Q) = P (P 2−2Q), this expression is prime for infinitely many (P,Q). In par-
ticular, U4

(
1, 12(1± q)

)
is prime for all odd primes q and U4

(
P, 12(P 2 ± 1)

)
is prime, whenever

P is an odd prime.
We have a partial characterization of P,Q for which U9 is prime.

Theorem 2.3. For integers P > 0 and Q, U9(P,Q) is prime if and only if one of the two
conditions hold:

Q = P 2 + 1 and 3P 6 + 9P 4 + 6P 2 − 1 is prime,

or

Q = P 2 − 1 and 3P 6 − 9P 4 + 6P 2 + 1 is prime.

Proof. We have U9(P,Q) = (P 2−Q)(P 6− 6P 4Q+ 9P 2−Q3). This second expression can be
written as (P 3−3PQ)2−Q3, or m2−n3 for some integers m and n. Now m2 = n3−1 has m = 0,
n = 1 as its only integer solution and m2 = n3 +1 has only (m,n) = (−1, 0), (0,±1), (2,±3) as
integer solutions. These results date back to Euler, see [2, pp. 533–534]. None of the solutions
to m2 = n3±1 lead to a case where |P 6−6P 4Q+9P 2−Q3| = 1, with P,Q integers and P > 0.
Thus, to be prime, we need P 2 −Q = ±1, which leads to the given characterization. �

By Bouniakowski’s conjecture [1, Hypothesis H, p. 15], we expect infinitely many cases of
P,Q for which U9 is prime.
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3. Heuristic Expectations

Let p be a prime number. In [10], it is stated that the expected probability that a Mersenne
number Mp = 2p − 1 be prime is

eγ
log(2p)

logMp
,

where γ is the Euler-Mascheroni constant. The argument is as follows (see [10] or [1, p. 23]
for a more careful argument). First, by the Prime Number Theorem, the expected probability
that a random number N is prime is 1

logN . However, Mp is not a random number. Any prime

divisor of Mp must be congruent to 1 modulo p. Thus, Mp is not divisible by any prime
q < 2p + 1. This is expected to increase the probability that Mp be prime by a factor of∏
q<2p+1

q
q−1 , and this product is asymptotic to eγ log(2p) by Mertens Theorem [1, Theorem

1.4.2, p. 32].
In the case where P and Q are relatively prime, if p does not divide Q or D, then one should

have the same heuristic probability that Up(P,Q) is prime. That is, aside from the exceptions
named in Theorem 1.1 and Theorem 1.2, one expects Up(P,Q) to be prime with probability

eγ
log(2p)

log | Up |
. (3.1)

For 1 ≤ P ≤ 100, −100 ≤ Q ≤ 100, and 1 ≤ n ≤ 1000, we found all pairs (P,Q, n) where n is
prime and Un(P,Q) is a probable prime. We tested our data against heuristic expectations in

two different ways. First, for each prime p < 1000 we added log(2p)
log |Up| over all P,Q in our range

to get an “expected” number of primes Up, and compared this against the actual number of
prime Up in our data set. A least squares fit gave

Actual number of prime Up
Estimated number of prime Up

= 1.632− .000036p.

Because we left off the scaling factor eγ ≈ 1.781, we expected the constant term to be closer
to 1.781. However, this fit did not take Theorem 1.1 or Theorem 1.2 into account. When
we modified our expectation to only sum over those P,Q not subject to these theorems, the
constant rose to 1.733, still a bit below eγ . This might be because of the influence of the
smallest primes p. If we exclude the first 10 primes, the fit becomes 1.771− .000030p.

We also examined the total number of primes found in our search vs. the expected number.
All told, we found 43, 683 triples (P,Q, p) for which p is prime and Up(P,Q) is a probable
prime. Summing the expression in (3.1) over all triples (P,Q, p) gives 54, 053, off by about
24%. There are two confounding effects: the effect of small primes, and the effect of those
(P,Q) known to contain only finitely many primes in their Lucas sequences. If we ignore the
first 10 primes, and those (P,Q) covered by Theorem 1.1 or Theorem 1.2, the expected number
of primes (found by summing (3.1) over the allowable (P,Q) with p > 29) was 22, 834 and the
number of primes found in our search was 22, 352, pretty good matches.

4. Proofs of Theorem 1.1 and Theorem 1.2

A Proof of Theorem 1.2. As usual, without loss of generality, we may assume P > 0. More-
over, we need not consider any (P,Q) in S, the set in Theorem 1.7, and we may assume
gcd(P,Q) = 1. Because we are assuming x and y are not both 1, by Theorem 1.9, we may
assume x/y is not a root of unity. Recalling formula (1.10),

Un(xk + yk, xkyk) =
Un(x+ y, xy)Uk(x

n + yn, xnyn)

Uk(x+ y, xy)
,
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we fix k, so C = |Uk(x+ y, xy)| is a fixed nonzero integer. By Theorem 1.6, |Un(x+ y, xy)| ≥
|Φn(x, y)| > C for n sufficiently large. Similarly,

Uk(x
n + yn, xnyn) =

Ukn(x+ y, xy)

Uk(x+ y, xy)
=

∏
d|kn, d>1 Φd(x, y)∏
d|n, d>1 Φd(x, y)

is divisible by |Φkn(x, y)| > C for sufficiently large n. Thus, Un(xk + yk, xkyk) is composite
for all large n. �

A Proof of Theorem 1.1. We may again ignore cases where P or Q is 0, or when |P | = |Q| = 1.
Let x and y be zeros of z2 − Pz + Q, and select complex numbers u and v satisfying u2 = x
and v2 = y. Then, (u+ v)2 = P + 2Q, an integer, and Theorem 1.6 applies. By Theorem 2.1,
only finitely many primes can occur when n is even, so we restrict our attention to odd n. By
formula (1.4), if n = 2m+ 1, then Un = (Um+1 −

√
QUm)(Um+1 +

√
QUm). That is, Un is the

product of two integers. We have

Um+1 +
√
QUm =

xm+1 − ym+1

x− y
+ uv

xm − ym

x− y

=
u2m+1 − v2m+1

u− v
= U2m+1(u+ v, uv)

and

Um+1 −
√
QUm =

u2m+1 + v2m+1

u+ v
=
U4m+2(u+ v, uv)

U2m+1(u+ v, uv)
.

By Theorem 1.5, Φ2m+1(u, v) divides Um+1 +
√
QUm and Φ4m+2(u, v) divides Um+1−

√
QUm.

By Theorem 1.6, for sufficiently large n, each term is larger than 1. Consequently, Un is
composite for all large n. �

5. The Real Case

In this section, we provide elementary proofs (that is, proofs not relying on the theory of
linear forms in logarithms of algebraic numbers) for Theorem 1.3 and Theorem 1.4. We assume
that x and y, the zeros of z2 − Pz +Q are real. That is, we assume P 2 − 4Q ≥ 0.

Lemma 5.1. If P 6= 0 and P 2 > 4Q, then |Un(P,Q)| is a strictly increasing function of n for
n ≥ 2 and |Vn(P,Q)| is increasing for all n ≥ 1.

Proof. This is the result of Lemma 3 from [5]. �

A Proof of Theorem 1.3. Without loss of generality, we may assume P > 0 and x > y > 0.
Now, P 2 − 4Q = (P − 2

√
Q)(P + 2

√
Q) > 0. Thus, P > 2

√
Q. In particular, P ≥ 3. Because

U2 = P , U2 will be prime when P is prime. Note that U3 = P 2 − Q = (P −
√
Q)(P +

√
Q).

Because P −
√
Q >

√
Q ≥ 1, both factors are larger than 1, showing U3 is never prime.

Similarly, because P ≥ 3 and U4 = P (P 2 − 2Q), U4 is not prime. Thus, by Theorem 2.2,
Un will not be prime for any composite n. Suppose n is prime and n > 3. Since n is odd,
n = 2k + 1 for some k ≥ 2 and Un = (Uk+1 −

√
QUk)(Uk+1 +

√
QUk). This second term is an

integer larger than 1. For the first,

Uk+1 −
√
QUk = xUk −

√
xyUk + yk =

√
x(
√
x−√y)Uk + yk.

Note that
(
√
x−√y)2 = x+ y − 2

√
xy = P − 2

√
Q ≥ 1.

Consequently,
√
x > 1,

√
x−√y ≥ 1, Uk ≥ U2 > 1, and yk is positive. Thus, Uk+1−

√
QUk > 1,

so Un is not prime. This completes the proof. �

MAY 2021 141



THE FIBONACCI QUARTERLY

We next study Uk(x
n + yn, xnyn) as a function of n.

Lemma 5.2. If x > y > 0, then

Uk(x
n + yn, xnyn) > Uk(x

n−1 + yn−1, xn−1yn−1)

for all k ≥ 2 and n ≥ 2.

Proof. Because y > 0, we have Q > 0, meaning Q ≥ 1. Thus, Qi ≥ Qj for all i > j. Also,
Vk(x

n, yn) = Vkn(x, y) > Vkn−k(x, y) = Vk(x
n−1, yn−1), provided n > 1 by Lemma 5.1. Using

equation (1.7), we have

Uk(x
n, yn) =

dk/2e∑
j=1

Qn(j−1)Vk+1−2j(x
n + yn, xnyn)

>

dk/2e∑
j=1

Q(n−1)(j−1)Vk+1−2j(x
n−1 + yn−1, xn−1yn−1)

= Uk(x
n−1 + yn−1, xn−1yn−1),

as desired. �

The same proof shows a little more.

Lemma 5.3. For all x > y, if n is even, then Uk(x
n, yn) > Uk(x

m, ym) for all 0 < m < n.

Proof. We have

Uk(x
m + ym, xmym) =

dk/2e∑
j=1

Qm(j−1)Vk+1−2j(x
m + ym, xmym)

≤
dk/2e∑
j=1

|Q|m(j−1)Vk+1−2j(x
m + ym, xmym)

<

dk/2e∑
j=1

|Q|n(j−1)Vk+1−2j(x
n + yn, xnyn)

=

dk/2e∑
j=1

Qn(j−1)Vk+1−2j(x
n + yn, xnyn)

= Uk(x
n + yn, xnyn).

�

Finally, we have the following theorem.

Theorem 5.4. For all n > 1 and k > 1,

|Uk(xn + yn, xnyn)| > |Uk(xn−1 + yn−1, xn−1yn−1)|.

Proof. Without loss of generality, we may assume P > 0, x > y, and x > 0. We have verified
the result for y > 0 and also for n even, so suppose n is odd and y < 0. Then, Q < 0. The
proof follows by induction on k. When k = 0, Uk(x

n, yn) = 0 = Uk(x, y), and when k = 1,
Uk(x

n, yn) = 1 = Uk(x, y). Moreover, U2(x
n, yn) = xn + yn > x + y = U2(x, y). Assuming
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that Um(xn, yn) > Um(xn−1, yn−1) for all m with 2 ≤ m ≤ k − 1, by the defining recurrence
(1.1), we have

Uk(x
n, yn) = Vn(x, y)Uk−1(x

n, yn)−QnUk−2(xn, yn)

= Vn(x, y)Uk−1(x
n, yn) + |Q|nUk−2(xn, yn)

> Vn−1(x, y)Uk−1(x
n−1, yn−1) + |Q|n−1Uk−2(xn−1, yn−1)

> Vn−1(x, y)Uk−1(x
n−1, yn−1)−Qn−1Uk−2(xn−1, yn−1)

= Uk(x
n−1, yn−1),

as desired. �

A Proof of Theorem 1.4. Without loss of generality, we assume P > 0 and x > y, x > 0. First
note that

U4(x
k + yk, xkyk) = Vk(x+ y, xy)V2k(x+ y, xy),

so by Lemma 5.1, U4(x
k + yk, xkyk) is not prime. Consequently, by Theorem 2.2, we may

restrict ourselves to the case where n is a prime number. By formula (1.10), Lemma 5.1, and
Theorem 5.4, when n > k, Un(xk + yk, xkyk) is composite. For n ≤ k, suppose k is divisible
by a prime q 6= n, say k = qm. An application of formula (1.10) with variables xm and ym

and with q in place of k gives

Un(xk + yk, xkyk) = Un((xm)q + (ym)q, ((xy)m)q)

=
Un(xm + ym, xmym)Uq(x

mn + ymn, (xy)mn)

Uq(xm + ym, xmym)
.

Because q is prime to n, Uq is prime to Un in this product, so Uq(x
m + ym, xmym) properly

divides Uq(x
mn + ymn, (xy)mn), showing Un(xk + yk, xkyk) is composite. Thus, for Un(xk +

yk, xkyk) to be prime, it must be that n is prime and k is a power of n. This completes the
proof. �

6. Comments

With regard to Theorem 1.2 and Theorem 1.4, when n = p and k = pm for some prime p
and positive integer m, then

Up(x
pm + yp

m
, xp

m
yp

m
) = Φpm(x, y).

As a consequence of the Bouniakowski’s conjecture [1, Hypothesis H, p. 15], for any fixed p
and m, we expect this polynomial to be prime for infinitely many x and y.

In our data, as is to be expected, the slower Un grew with n, the more primes tended to
occur in the sequence. Because Un(2, 1) = n, this sequence produces a prime for all 168 primes
n < 1000. The sequence Un(1, 2) was prime for 33 values of n and Un(2, 5) was prime for 24
values. These sequences are aided because x and y are complex, so the oscillating nature of Un
gives many small values. For real x and y, the best performers were the Fibonacci numbers
((P,Q) = (1,−1)) and Un(2,−1), each prime for 21 values of n.

At the other extreme, in our search, we found 658 pairs (P,Q) with 1 ≤ P ≤ 100, −100 ≤
Q ≤ 100, gcd(P,Q) = 1 for which Un(P,Q) was composite for all n ≤ 1000. Taking into
account Theorem 1.1, Theorem 1.2, and expanding the search to all n ≤ 10, 000, the number
of pairs (P,Q) dropped to 97. If we include cases where P is prime, so U2(P,Q) is prime,
but Un is not prime for any other values of n ≤ 10, 000, then there were 156 examples. The
examples with smallest P and |Q| were (6,−29) and (13,−19). Is there something special
about Un(6,−29) or Un(5, 33) that they should never be prime for n ≥ 3? We suspect that
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this was a statistical artifact. That is, we tested 12, 174 pairs (P,Q) so, even if it is likely that
a given sequence contain primes, it is not surprising that some did not, in a limited search up
to only n = 10, 000.

Ronald L. Graham [3] exhibited a Fibonacci-like sequence (An = An−1 + An−2, but with
specific, well chosen initial conditions) that contained no primes. His method used covering
congruences to show that there was a list of 18 primes with the property that each An was
divisible by at least one of those primes. Such an approach is not possible here due to formula
(1.11), which forbids the existence of a finite set of primes with at least one dividing each
sufficiently large Un. Consequently, we think Theorem 1.1 and Theorem 1.2 are the only
obstructions to infinitely many primes in a Lucas sequence. That is, we make the following
conjecture.

Conjecture 1. If x and y are complex numbers, where P = x+ y and Q = xy are relatively
prime integers and

• (P,Q) 6∈ {(0,±1), (±1, 1), (±2, 1)},
• Q is not a square,
• there are no complex numbers α and β with the property that α+β and αβ are integers

and for some integer k > 1, x = αk, y = βk,

then there are infinitely many prime numbers p for which Up(P,Q) is prime.
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