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Abstract. Hong posed the question when rational numbers map to integers for the generat-
ing function of Fibonacci numbers. This problem was solved by Pongsriiam and independently
by Bulawa and Lee. The key to solving this problem is to consider the Fibonacci sequence
and the Lucas sequence as sequences obtained from the integer solutions of Pell’s equation
5x2 − y2 = ±4. In this study, based on previous research, we change Hong’s question and
consider the case of the generating functions for the sequences obtained from the integer
solutions of Pell’s equation x2 − dy2 = ±1 (d is a nonsquare natural number). Similar to
previous results, our main results are expressed in the form of ratios of adjacent terms of the
sequences obtained from the integer solutions of Pell’s equation x2 −dy2 = ±1. Furthermore,
the results of Bulawa and Lee pertained to a class of sequences with recurrence relations that
were more generalized than those obeyed by the Fibonacci and Lucas sequences. These se-
quences in our study arise as solutions to the equation x2 − dy2 = ±1, and, as such, obey the
type of recurrence relations considered by Bulawa and Lee; however, the initial conditions of
these sequences were not considered by those authors. Therefore, our study extends previous
research.

1. Previous Results and Main Results

The Fibonacci sequence {Fn}n∈N is defined by F0 = 0, F1 = 1, and

Fn+2 = Fn+1 + Fn.

Its generating function is

F (t) =
∞∑
n=0

Fnt
n =

t

1− t− t2
.

The Lucas sequence {Ln}n∈N is defined by L0 = 2, L1 = 1, and

Ln+2 = Ln+1 + Ln.

Its generating function is given by

L(t) =

∞∑
n=0

Lnt
n =

2− t
1− t− t2

.

For the generating functions F (t) and L(t), Hong [2] proved that

if t ∈
{

Fn

Fn+1

}
n∈N

, then F (t) ∈ Z;

if t ∈
{

Fn

Fn+1

}
n∈N

or t ∈
{

Ln

Ln+1

}
n∈N

, then L(t) ∈ Z.

He questioned whether values of generating function for the Fibonacci sequence (respectively
the Lucas sequence) would be integers only in these cases. His question is important; without
this question, our results would not exist. To answer this question, Pongsriiam [4] provided a
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necessary and sufficient condition when rational numbers map to integers by the generating
function of the Fibonacci numbers (respectively the Lucas numbers). In addition, Bulawa and
Lee [1] independently provided a necessary and sufficient condition when rational numbers in
the interval of convergence map to integers by the generating function of generalized Fibonacci
numbers (respectively the Lucas numbers). Their results are the basis for our research.

Theorem 1.1 (Hong [2], Pongsriiam [4], Bulawa and Lee [1]). Let t be a rational number.
For the generating function L(t), we have L(t) ∈ Z if and only if

t ∈
{

Fn

Fn+1
,−Ln+1

Ln
,
Ln

Ln+1

}
n∈N

or t ∈
{
−Fn+1

Fn

}
n∈N+

.

Theorem 1.2 (Hong [2], Pongsriiam [4], Bulawa and Lee [1]). Let t be a rational number.
For the generating function F (t), we have F (t) ∈ Z if and only if

t ∈
{

Fn

Fn+1

}
n∈N

or t ∈
{
−Fn+1

Fn

}
n∈N+

.

In the proof of the above theorems, the following well-known identities for Fibonacci and
Lucas numbers are employed.

Fn−1Fn+1 − F 2
n = (−1)n (n ≥ 1), [3,p. 86, Theorem 5.3]

Ln−1Ln+1 − L2
n = 5(−1)n−1 (n ≥ 1), [3, p. 117, 36]

LnFm = Fn+m − (−1)mFn−m (n ≥ m), [3, p. 118, 58, 59]

5FnFm = Ln+m − (−1)mLn−m (n ≥ m), [3,p. 111, 83, 84]

FnLm − LnFm = 2(−1)mFn−m (n ≥ m), [3,p. 427, 13]

Ln = Fn−1 + Fn+1 (n ≥ 1), [3, p. 93, Corollary 5.5]

5Fn = Ln−1 + Ln+1 (n ≥ 1), [3,p. 86, Theorem 5.3]

F2n = FnLn, [3,p. 86, Theorem 5.3]

Further, the following theorem for Fibonacci and Lucas numbers is important in the proof
of the above theorems.

Theorem 1.3 ([3, Theorem 5.8]; [5]). Let (x, y) be a pair of nonnegative integers. If (x, y)
satisfies Pell’s equation

5x2 − y2 = ±4,

there exists a nonnegative integer n such that x = Fn and y = Ln. Conversely,

5F 2
n − L2

n = 4(−1)n+1

for any nonnegative integer n.

Pell’s equation

5x2 − y2 = ±4

was important in the previous studies discussed. In other words, the results of those studies
are related to the integer values of the generating functions of the sequences obtained from
the integer solutions of Pell’s equation 5x2 − y2 = ±4. If this Pell’s equation is changed to
another type of Pell’s equation, how will the results change? In this paper, we consider the
Pell’s equation

x2 − dy2 = ±1 (d is a nonsquare natural number).
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First, let (a, b) be the minimal solution of Pell’s equation x2 − dy2 = ±1 (i.e., (a, b) is the
positive integer solution of x2 − dy2 = 1 or x2 − dy2 = −1 such that (a, b) minimizes the

quantity a+ b
√
d).

Let

Xn =
(a+ b

√
d)n + (a− b

√
d)n

2
(1)

Yn =
(a+ b

√
d)n − (a− b

√
d)n

2
√
d

(2)

for n ≥ 0.
Then (Xn, Yn) (n ≥ 0) are solutions of Pell’s equation x2 − dy2 = ±1. Moreover, all

nonnegative integer solutions are given by (Xn, Yn) (n ≥ 0). See, for example, [6, p. 214,
Theorem 3.8]. Let

δ = a2 − db2.
Thus, the generating function of the sequence {Xn}n∈N is given by

X(t) =
1− at

1− 2at+ δt2
,

and the generating function of the sequence {Yn}n∈N is given by

Y (t) =
bt

1− 2at+ δt2
.

These functions are obtained from equations (1) and (2) and

Yn+2 = 2aYn+1 − δYn (3)

Xn+2 = 2aXn+1 − δXn (4)

Furthermore, the convergence radii of these generating functions is

1

a+ b
√
d
.

Here, we describe the main results of this study.

Theorem 1.4. Let t be a rational number. Then, we have X(t) ∈ Z if and only if

t ∈
{

Yn
Yn+1

,
Xn

Xn+1
, δ
Xn+1

Xn

}
n∈N

or t ∈
{
δ
Yn+1

Yn

}
n∈N+

.

Theorem 1.5. Let t be a rational number. Then, we have Y (x) ∈ Z if and only if

t ∈
{

Yn
Yn+1

}
n∈N

or x ∈
{
δ
Yn+1

Yn

}
n∈N+

.

It is interesting that our main results have the same form as the theorems given by Hong;
Pongsriiam; and Bulawa and Lee. This poses the question, “Will all solutions to other types
of Pell’s equations have the same form?”

We have the following corollaries from the main results.

Corollary 1.6. Let t be a rational number. We assume that t is in the interval of convergence
of the generating function X(t). If δ = 1, then X(t) ∈ Z if and only if

t ∈
{

Yn
Yn+1

}
n∈N

.
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If δ = −1, then X(t) ∈ Z if and only if

t ∈
{

Y2n
Y2n+1

,
X2n+1

X2n+2

}
n∈N

.

Corollary 1.7. Let t be a rational number. We assume that t is in the interval of convergence
of the generating function Y (t). If δ = 1, then we have Y (t) ∈ Z if and only if

t ∈
{

Yn
Yn+1

}
n∈N

.

If δ = −1, then we have Y (t) ∈ Z if and only if

t ∈
{

Y2n
Y2n+1

}
n∈N

.

These are deduced from (1) and (2) and because {Xn}n∈N and {Yn}n∈N are monotonically
increasing sequences.

Remark 1.8. Let s1 and s2 be nonzero integers. Also, assume that s1 is divisible by s2.
Consider the sequence {Rn}n∈N defined by

Rn+2 = s1Rn+1 + s2Rn

with some initial values R0 and R1. For R0 = 0 and R1 = 1, Bulawa and Lee [1] provided a
necessary and sufficient condition when rational values in the interval of convergence of the
generating function for the sequence {Rn}n∈N are integers. Let (a, b) be the minimal solution
of Pell’s equation x2− dy2 = ±1. Although our research considers a special case (s1 = 2a and
s2 = ±1), our approach is more general with respect to initial values (R0 and R1).

2. Proofs of the Main Results

Before we prove the main results, consider the following identities.

Yn−1Yn+1 − (Yn)2 = −δn−1b2 (n ≥ 1) (5)

2Xn−1Xn+1 = X2n + δn−1X2 (n ≥ 1) (6)

YnXm −XnYm = δmYn−m (n ≥ m) (7)

XnYm =
Yn+m − δmYn−m

2
(n ≥ m) (8)

YnYm =
Xn+m − δmXn−m

2d
(n ≥ m) (9)

Xn+1 = aXn + dbYn (n ≥ 0) (10)

Yn+1 = aYn + bXn (n ≥ 0) (11)

2(Xn)2 = X2n + δn (n ≥ 0) (12)

2XnXn+1 = X2n+1 + δna (n ≥ 0) (13)

These identities are obtained from (1) and (2).
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2.1. Proof of Theorem 1.4. First, we show that

X

(
Yn
Yn+1

)
, X

(
Xn

Xn+1

)
, X

(
δ
Xn+1

Xn

)
(n ≥ 0),

and

X

(
δ
Yn+1

Yn

)
(n ≥ 1).

are integers.
If n = 0, the result is clear. If n ≥ 1, using (3) and (5), we obtain

X

(
Yn
Yn+1

)
=

Yn+1(Yn+1 − aYn)

Yn+1(Yn+1 − 2aYn) + δ(Yn)2

(3)
=

Yn+1(Yn+1 − aYn)

−δYn+1Yn−1 + δ(Yn)2

(5)
=
Yn+1(Yn+1 − aYn)

δnb2
.

Moreover, Yn (n ≥ 0) is divisible by b because we have Y0 = 0, Y1 = b, and Yn+2 = 2aYn+1 −
δYn. Therefore, X( Yn

Yn+1
) ∈ Z. In the same manner, we have

X

(
Xn

Xn+1

)
=

Xn+1(Xn+1 − aXn)

Xn+1(Xn+1 − 2aXn) + δX2
n

(4)
=

Xn+1(Xn+1 − aXn)

−δXn+1Xn−1 + δX2
n

(6)(12)
=

Xn+1(Xn+1 − aXn)

−dδnb2
(10)
=
−Xn+1Yn

δnb

by using (4), (6), (10), (12), and a2 − db2 = δ. Therefore, X( Xn
Xn+1

) ∈ Z.

Similarly, we have

X

(
δ
Yn+1

Yn

)
=

Yn(Yn − δaYn+1)

δYn+1(Yn+1 − 2aYn) + Y 2
n

(3)
=

Yn(Yn − δaYn+1)

(Yn)2 − Yn+1Yn−1

(5)
=
Yn(Yn − δaYn+1)

δn−1b2

by using (3) and (5). Therefore, X(δ Yn+1

Yn
) ∈ Z.

In the same manner, we have

X

(
δ
Xn+1

Xn

)
=

Xn(Xn − aδXn+1)

δXn+1(Xn+1 − 2aXn) + (Xn)2
(4)
=

Xn(Xn − aδXn+1)

−Xn+1Xn−1 + (Xn)2

(6)(12)
=

Xn(Xn − aδXn+1)

−δn−1db2
(10)
=

Xn(bXn + aYn)

δnb

by (4), (6), (10), (12), and a2 − db2 = δ. Hence, X(δXn+1

Xn
) ∈ Z.

Next, if X(t) = k (k is an integer) for some rational number t, we show that

t ∈
{

Yn
Yn+1

,
Xn

Xn+1
, δ
Xn+1

Xn

}
n∈N

or t ∈
{
δ
Yn+1

Yn

}
n∈N+

.

If k = 0, then
1− at

1− 2at+ δt2
= 0.

Hence,

t =
1

a
=
X0

X1
.
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If k 6= 0, then
1− at

1− 2at+ δt2
= k.

Therefore,

δkt2 + a(1− 2k)t+ k − 1 = 0.

Hence,

t =
−a(1− 2k)±

√
a2(1− 2k)2 − 4δk(k − 1)

2δk
.

Here, there exists a nonnegative integer M such that

a2(1− 2k)2 + 4δk(k − 1) = M2,

because t is a rational number. Moreover,

M2 − db2(2k − 1)2 = δ,

because a2 − db2 = δ. Using (8), we have Y2N = 2XNYN for any nonnegative integer N .
Because YN is divisible by b,

M2 − d(Y2N )2 6= δ.

Therefore, there exists a nonnegative integer n such that M = X2n+1. Moreover, we obtain
b(2k − 1) = Y2n+1 (n ≥ 0) or b(2k − 1) = −Y2n+1 (n ≥ 1). Hence,

k =
Y2n+1 + b

2b
(n ≥ 0)

or

k =
−Y2n+1 + b

2b
(n ≥ 1).

From the above, we have

t =
aY2n+1 + bX2n+1

δ(Y2n+1 + b)
(n ≥ 0), (A)

t =
aY2n+1 − bX2n+1

δ(Y2n+1 + b)
(n ≥ 0), (B)

t =
−aY2n+1 + bX2n+1

δ(−Y2n+1 + b)
(n ≥ 1), (C)

or t =
−aY2n+1 − bX2n+1

δ(−Y2n+1 + b)
(n ≥ 1) (D)

For (A) to (D), using equations (5) through (13), we obtain

t ∈
{

Yn
Yn+1

,
Xn

Xn+1
, δ
Xn+1

Xn

}
n∈N

or t ∈
{
δ
Yn+1

Yn

}
n∈N+

.

To prove this claim, we first assume that n is even or δ = 1.
For (A), we have

t =
aY2n+1 + bX2n+1

δ(Y2n+1 + b)

(8)
=

2aXn+1Yn + ab+ bX2n+1

2δ(Xn+1Yn + b)

(7)(13)
=

2aXn+1Yn + 2bXnXn+1

2δYn+1Xn

(11)
= δ

Xn+1

Xn
.

For (B), we have

t =
aY2n+1 − bX2n+1

δ(Y2n+1 + b)

(8)(13)
=

2aXn+1Yn + 2ab− 2bXnXn+1

2δ(Xn+1Yn + b)

(7)
=
aYn+1 − bXn+1

δYn+1

(10)(11)
=

Yn
Yn+1

.
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For (C), we have

t =
−aY2n+1 + bX2n+1

δ(−Y2n+1 + b)

(8)(13)
=
−2aXn+1Yn − 2ab+ 2bXnXn+1

−2δXn+1Yn
(7)
=
−2aXnYn+1 + 2bXnXn+1

−2δYnXn+1

(10)(11)
=

Xn

Xn+1
.

For (D), we have

t =
−aY2n+1 − bX2n+1

δ(−Y2n+1 + b)

(8)(13)
=
−2aXn+1Yn − 2bXnXn+1

−2δXn+1Yn

(11)
= δ

Yn+1

Yn
.

Next, we consider that n is odd and δ = −1.
For (A), we have

t =
aY2n+1 + bX2n+1

−Y2n+1 − b
(8)
=

2aXn+1Yn + (−1)nab+ bX2n+1

−2Xn+1Yn − (−1)nb− b
(13)
= −aYn + bXn

Yn

(11)
= −Yn+1

Yn
.

For (B), we have

t =
aY2n+1 − bX2n+1

−Y2n+1 − b
(8)(13)

=
2aXn+1Yn − 2bXnXn+1 − 2ab

−2Xn+1Yn
(7)
=
Xn(aYn+1 − bXn+1)

−Xn+1Yn

(10)(11)
=

Xn

Xn+1
.

For (C), we have

t =
−aY2n+1 + bX2n+1

Y2n+1 − b
(8)(13)

=
−2aXn+1Yn + 2bXnXn+1 − 2(−1)nab

2Xn+1Yn − 2b

(7)
= −aYn+1 − bXn+1

Yn+1

(10)(11)
=

Yn
Yn+1

.

For (D), we have

t =
−aY2n+1 − bX2n+1

Y2n+1 − b
(8)(13)

=
−2aXn+1Yn − 2bXnXn+1

2Xn+1Yn − 2b

(7)
= −Xn+1(aYn + bXn)

Yn+1Xn

(11)
= −Xn+1

Xn
.

This completes the proof.

2.2. Proof of Theorem 1.5. First, we show that

Y

(
Yn
Yn+1

)
(n ≥ 0)

and

Y

(
δ
Yn+1

Yn

)
(n ≥ 1)

are integers. If n ≥ 0, the result is clear. If n ≥ 1, using (3) and (5), we obtain

Y

(
Yn
Yn+1

)
=

bYnYn+1

Yn+1(Yn+1 − 2aYn) + δ(Yn)2
(3)
=

bYnYn+1

−δYn+1Yn−1 + δ(Yn)2
(5)
=
YnYn+1

δnb
.

In the same manner, using (3) and (5), we obtain

Y

(
δ
Yn+1

Yn

)
=

bYnYn+1

δYn+1(Yn+1 − 2aYn) + (Yn)2
(3)
=

bYnYn+1

−Yn+1Yn−1 + (Yn)2
(5)
=
YnYn+1

δn−1b
.

Because Yn (n ≥ 0) is divisible by b, Y ( Yn
Yn+1

) and Y (δ Yn+1

Yn
) are integers.
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Next, if Y (t) = k (k is an integer) for some rational number t, we show that

t ∈
{

Yn
Yn+1

}
n∈N

or t ∈
{
δ
Yn+1

Yn

}
n∈N+

.

If k = 0, then
bt

1− 2at+ δt2
= 0.

Hence,

t = 0 =
Y0
Y1
.

If k 6= 0, then
bt

1− 2at+ δt2
= k.

Hence,

kδt2 + (−2ak − b)t+ k = 0.

Therefore,

t =
2ak + b±

√
(2ak + b)2 − 4δk2

2δk
.

Here, because t is a rational number, there exists a nonnegative integer M such that

(2ak + b)2 − 4δk2 = M2.

Moreover, using a2 − db2 = δ, we obtain

(2kbd+ a)2 − dM2 = δ.

Hence, there exists a nonnegative integer n such that

X2n+1 = δn(2kbd+ a), Y2n+1 = M(n ≥ 0).

If δ = 1, a± 1 is not divisible by db. If a± 1 is divisible by db, there exists a positive integer l
such that

a = dbl ± 1.

However,

(dbl ± 1)2 − db2 > 1

This is a contradiction because a2−db2 = 1. Moreover, using (12), for any nonnegative integer
N , X2N − 1 is divisible by db. Hence, X2N ± a is not divisible by db. Therefore, there exists
a nonnegative integer n such that

X2n+1 = ±(2kbd+ a).

Furthermore, if X2n+1 = −(2kbd + a), using (10) and (13), 2a is divisible by db because
X2n+1 − a is divisible by db. Hence, 4 is divisible by db. But, this is also a contradiction
because 4 is not divisible by db. Therefore,

X2n+1 = 2kbd+ a.

If δ = −1, for any nonnegative integer N , (X2N )2 − d(Y2N )2 6= −1. Hence, there exists a
nonnegative integer n such that

X2n+1 = ±(2kbd+ a).

Moreover, using (10) and (13), X2n+1 − (−1)na is divisible by 2bd. Therefore, we have

X2n+1 = (−1)n(2kbd+ a).
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Hence, we obtain

t =
aδnX2n+1 − δ + bdY2n+1

δn+1X2n+1 − δa
(n ≥ 0) (E)

or t =
aδnX2n+1 − δ − bdY2n+1

δn+1X2n+1 − δa
(n ≥ 0). (F)

To finish the proof, we first assume δ = 1.
For (E), we have

t =
aX2n+1 − 1 + bdY2n+1

X2n+1 − a
(10)
=

X2n+2 − 1

X2n+1 − a
(9)
=
Yn+1

Yn
.

For (F), we have

t =
aX2n+1 − 1− bdY2n+1

X2n+1 − a
(10)(11)

=
X2n − 1

X2n+1 − a
(9)
=

Yn
Yn+1

.

Next, we assume δ = −1.
If n is even, for (E),

t =
aX2n+1 + bdY2n+1 + 1

−X2n+1 + a

(10)
=

X2n+2 + 1

−X2n+1 + a

(9)
= −Yn+1

Yn
.

If n is odd, for (E),

t =
−aX2n+1 + bdY2n+1 + 1

X2n+1 + a

(10)(11)
=

X2n + 1

X2n+1 + a

(9)
=

Yn
Yn+1

.

If n is even, for (F),

t =
aX2n+1 − bdY2n+1 + 1

−X2n+1 + a

(10)(11)
=

−X2n + 1

−X2n+1 + a

(9)
=

Yn
Yn+1

.

If n is odd, for (F),

t =
−aX2n+1 − bdY2n+1 + 1

X2n+1 + a

(10)
=
−X2n+2 + 1

X2n+1 + a

(9)
= −Yn+1

Yn
.

This completes the proof.
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