EXTENDED RESULTS ON INTEGER VALUES OF GENERATING
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ABSTRACT. Hong posed the question when rational numbers map to integers for the generat-
ing function of Fibonacci numbers. This problem was solved by Pongsriiam and independently
by Bulawa and Lee. The key to solving this problem is to consider the Fibonacci sequence
and the Lucas sequence as sequences obtained from the integer solutions of Pell’s equation
522 — y?> = 44. In this study, based on previous research, we change Hong’s question and
consider the case of the generating functions for the sequences obtained from the integer
solutions of Pell’s equation 2® — dy> = +1 (d is a nonsquare natural number). Similar to
previous results, our main results are expressed in the form of ratios of adjacent terms of the
sequences obtained from the integer solutions of Pell’s equation % — dy? = +1. Furthermore,
the results of Bulawa and Lee pertained to a class of sequences with recurrence relations that
were more generalized than those obeyed by the Fibonacci and Lucas sequences. These se-
quences in our study arise as solutions to the equation z* — dy? = +1, and, as such, obey the
type of recurrence relations considered by Bulawa and Lee; however, the initial conditions of
these sequences were not considered by those authors. Therefore, our study extends previous
research.

1. PREVIOUS RESULTS AND MAIN RESULTS
The Fibonacci sequence {F), }nen is defined by Fyp =0, F; = 1, and
Fn+2 :Fn+1+Fn-

Its generating function is

E:Ftn_l—t—ﬂ

The Lucas sequence {Ly, }nen is defined by Ly =2, L1 = 1, and
Ln+2 = Ln+1 + Ln

Its generating function is given by

2 —t
n _
E:L“ 1—t—t2

For the generating functions F'(t) and L(t), Hong [2] proved that

Fy
ifte{ } , then F(t) € Z;
Fn+1 N

E L
ifte{ n} orte{ n} , then L(t) € Z.
Fn+1 neN Ln+1 neN

He questioned whether values of generating function for the Fibonacci sequence (respectively
the Lucas sequence) would be integers only in these cases. His question is important; without
this question, our results would not exist. To answer this question, Pongsriiam [4] provided a
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necessary and sufficient condition when rational numbers map to integers by the generating
function of the Fibonacci numbers (respectively the Lucas numbers). In addition, Bulawa and
Lee [1] independently provided a necessary and sufficient condition when rational numbers in
the interval of convergence map to integers by the generating function of generalized Fibonacci
numbers (respectively the Lucas numbers). Their results are the basis for our research.

Theorem 1.1 (Hong [2], Pongsriiam [4], Bulawa and Lee [1]). Let t be a rational number.
For the generating function L(t), we have L(t) € Z if and only if

te{ F ,—LnH, Ln } or te{—Fn—H} .

Fn+1 Ln Ln+1 neN Fn neN+

Theorem 1.2 (Hong [2], Pongsriiam [4], Bulawa and Lee [1]). Let t be a rational number.
For the generating function F(t), we have F(t) € Z if and only if

F, F,
te{ ”} orte{— "“} .
Frta neN Fy, neNt

In the proof of the above theorems, the following well-known identities for Fibonacci and
Lucas numbers are employed.

Fo 1Fp — F2=(=1)" (n > 1), [3,p. 86, Theorem 5.3]
Ly 1Lpy1 — L2 =5(=1)""1 (n > 1), [3,p. 117, 36

LnFo = Fopm — (=1)™Fp_p (n > m), [3,p. 118, 58, 59]
5F,Fy = Lism — (—1)™Ly_m (n >m), [3,p. 111, 83, 84]
FyLu — LnFy = 2(~1)"Fy_p (n > m), [3,p. 427, 13]
L,=F, 1+ Foy1 (n>1), [3,p. 93, Corollary 5.5]
5F,=Ln_1+4+ Lpt1 (n >1), [3,p. 86, Theorem 5.3]

F5, = F, Ly, [3,p. 86, Theorem 5.3]

Further, the following theorem for Fibonacci and Lucas numbers is important in the proof
of the above theorems.

Theorem 1.3 ([3, Theorem 5.8]; [5]). Let (x,y) be a pair of nonnegative integers. If (x,y)
satisfies Pell’s equation

5a? — % = +4,
there exists a nonnegative integer n such that © = F,, and y = L,. Conversely,
5F2 - 12 =4(-1)"™!
for any nonnegative integer n.

Pell’s equation
52—y = +4
was important in the previous studies discussed. In other words, the results of those studies
are related to the integer values of the generating functions of the sequences obtained from
the integer solutions of Pell’s equation 5z? — y? = 44. If this Pell’s equation is changed to
another type of Pell’s equation, how will the results change? In this paper, we consider the
Pell’s equation
22— dy? = +1 (d is a nonsquare natural number).
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First, let (a,b) be the minimal solution of Pell’s equation 2% — dy? = +1 (i.e., (a,b) is the

positive integer solution of z? — dy? = 1 or 22 — dy?> = —1 such that (a,b) minimizes the
quantity a + bv/d).
Let
Y, _ (a + bV/d) ;(a—b\/&) )
n __ —b n

2Vd
for n > 0.
Then (X,,Y,) (n > 0) are solutions of Pell’s equation x? — dy?> = £1. Moreover, all
nonnegative integer solutions are given by (X,,Y,) (n > 0). See, for example, [6, p. 214,
Theorem 3.8]. Let

§ =a® — db.
Thus, the generating function of the sequence { X, },en is given by
1—at
Xt)y=—
®) 1 — 2at + 6t2’
and the generating function of the sequence {Y,, },en is given by
bt
Yt) = ——.
®) 1 — 2at + 5t2
These functions are obtained from equations (1) and (2) and
Yn+2 = 2aYn+1 — (SYn (3)
Xn+2 = 2aXn+1 — (5Xn (4)

Furthermore, the convergence radii of these generating functions is
1

a+bVd

Here, we describe the main results of this study.

Theorem 1.4. Let t be a rational number. Then, we have X (t) € Z if and only if

Y, X X Y,
te{ ) nH} ort€{5 nH} .
Yn+1 Xn+1 Xn neEN Yn neN+

Theorem 1.5. Lett be a rational number. Then, we have Y (x) € Z if and only if

Y, Y,
te { n } or x € {5 ntl } .
Yot neN Yy, neN+

It is interesting that our main results have the same form as the theorems given by Hong;
Pongsriiam; and Bulawa and Lee. This poses the question, “Will all solutions to other types
of Pell’s equations have the same form?”

We have the following corollaries from the main results.

Corollary 1.6. Lett be a rational number. We assume that t is in the interval of convergence
of the generating function X (t). If 6 = 1, then X (t) € Z if and only if

Y,
t e{ L } )
Yn'H neN
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If 6 = —1, then X (t) € Z if and only if

{ Yon, X2n+1}

te , .

Yont1 Xon+2 J pen

Corollary 1.7. Let t be a rational number. We assume that t is in the interval of convergence
of the generating function Y (t). If 6 = 1, then we have Y (t) € Z if and only if

Y,
te{ n } )
Y”'H neN

If § = —1, then we have Y (t) € Z if and only if

Y-
t e{ 2n } )
Y2n—|—1 neN

These are deduced from (1) and (2) and because { X, }nen and {Y;, }nen are monotonically
increasing sequences.

Remark 1.8. Let s1 and so be nonzero integers. Also, assume that sy is divisible by ss.
Consider the sequence {Ry}nen defined by

Ryio=s51Rpp1 + 52y,

with some initial values Ry and Ry. For Ry = 0 and Ry = 1, Bulawa and Lee [1] provided a
necessary and sufficient condition when rational values in the interval of convergence of the
generating function for the sequence { R, }nen are integers. Let (a,b) be the minimal solution
of Pell’s equation x* — dy? = +1. Although our research considers a special case (51 = 2a and
s9 = £1), our approach is more general with respect to initial values (Ry and Ry).

2. PROOFS OF THE MAIN RESULTS

Before we prove the main results, consider the following identities.

Yo 1Yo — (V)2 =—0""1% (n>1) (5)

2X, 1 Xpt1 = Xop + 6" 1 Xy (n>1) (6)

Y X — XnYon = 0™Yy (0 >m) (7)
Yn m 6mYn—m

XY, = 4 5 (n>m) (8)
Xn m anfm

Y, Y, = =24 22 (n>m) (9)

Xnt1 = aX, +dbY, (n>0) (10)

Y1 = aY, +bX, (n>0) (11)

2(X,)?% = Xop + 6" (n>0) (12)

2XnXn+1 = Xony1 + 0"a (n > 0) (13)

These identities are obtained from (1) and (2).
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2.1. Proof of Theorem 1.4. First, we show that
Y, X Xni1
X ”>X< ”),X(é ”*) n>0),
<Yn+1 Xn+1 Xn ( )

Y,
X (5 ;jl) (n>1).
n
are integers.

If n =0, the result is clear. If n > 1, using (3) and (5), we obtain

and

X < Yn ) . Yn+1(Yn+1 - aYn)

Yn+1 Yn+1(Yn+1 — QCLYn) + 5(Yn)2
3)  Yog1(Yn1 —aYn)
=Y 1Yo+ 0(Y,)?
5) Yni1(Yni1 —a¥s)

B nb?

Moreover, Y,, (n > O) is divisible by b because we have Yy =0, Y7 = b, and Y42 = 2aY, 41 —
3Y,,. Therefore, X ( ) € Z. In the same manner, we have

—

—

X Xn _ Xn+1(Xn+1 - aXn) (:) XnJrl (Xn+1 - aXn)
Xn+1 Xn+1(Xn+1 — QCLXn) + (5X1,2L *5Xn+1anl + 5X7%
©)(12) Xn41(Xn1 — aXn) (10 —Xpy1Yn
—doémb? omb
by using (4), (6), (10), (12), and a® — db?® = 6. Therefore, X(X +1) € Z.
Similarly, we have

x <5Yn+1> B Yo (Y, —daYyi1) 3) Yo(Yn —daYni1) 5) Yn(Yy —daYsiq)

Y, Yt (Vni1 — 2aYp) + Y2 (V)2 — YpiVy 5n—1p2

by using (3) and (5). Therefore, X((SY?,—ZI) € Z.
In the same manner, we have

( Xn+1) o Xn(Xn - a(SXn—H) “) Xn(Xn - aéXn—&—l)
X |6 = =
Xn 5Xn+1(Xn+1 - ZUJXn) + (Xn)2 - n+1Xn71 + (Xn)2
6)(12) Xp(Xp —adXpy1) (10) X0 (0 Xy + aYy)
N —on—1dp? N onb

by (4), (6), (10), (12), and a? — db?® = 6. Hence, X (& "H) cZ.
Next, if X (t) = k (k is an integer) for some rational number t, we show that

Yo Xn Xy Yy
tE{ , ,0 +1} orte{(SH} )
Yn+1 Xn+1 Xn neN Yn neN+

If k =0, then
1—at _
1—2at +0t2
Hence,
1 Xy
t=—=—.
a Xl
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If k£ # 0, then
1—at -
1 —2at +6t2
Therefore,
Skt? +a(l —2k)t+k—1=0.
Hence,

—a(l - 2k) £ \/a2(1 — 2k)2 — 45k(k — 1)
26k '
Here, there exists a nonnegative integer M such that

a®(1 — 2k)? + 40k(k — 1) = M2,

t:

because t is a rational number. Moreover,
M? — db*(2k — 1)? = 6,

because a®> — db?® = §. Using (8), we have Yoy = 2X Yy for any nonnegative integer N.
Because Yy is divisible by b,

M2 = d(Yon )2 # 6.
Therefore, there exists a nonnegative integer n such that M = Xs,11. Moreover, we obtain
b(2k — 1) = Yap4+1 (n >0) or b(2k — 1) = —Ya,41 (n > 1). Hence,

_ Yin—l—l +b

>
k 5 (n>0)
or b
_Y2n+1 +
= > .
k 5% (n>1)

From the above, we have
aYoni1 +b0Xon 41

t= n > 0), A
5(Y2n+1 +b) (n 2 0) (4)

aYani1 — bXont1
t= n > 0), B
5(Y2n+1 ‘|‘b) ( - ) ( )

—aYony1 + bXopt1

t= n>1), C
6(=Yany1 +0) =1 ©

- Yn - Xn
or o —%ont 52+1(n21) (D)

5(_Yén+1 + b)
For (A) to (D), using equations (5) through (13), we obtain

Y, X X Y,
tG{ ) n+1} ort6{5 n+1} .
Yn+1 Xn+1 Xn neN Yn neN+
To prove this claim, we first assume that n is even or § = 1.
For (A), we have

L aYont1 + 0Xoni1 (8) 2aXn 1Yo + ab+ bXon g1 (1013) 20X 1Yy + 26X, X 41 (11) 6Xn+1

5(Y2n+1 + b) 25(Xn+1yn + b) 25Yn+1Xn Xn .
For (B), we have

‘= aYont1 — bXony1 (S)Ll?’) 20X 1Yn + 2ab — 20X, X 11 (;) aYpy1 —bXp (10£11) Ya
d(Yon41 +0) 26(Xp1Yn +0) Y1 Y1
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For (C), we have
—aYont1 + bXont1 (8)(13) —2aXp 1Y, — 2ab + 20X, X511

t pu— p—
6(_Y2n+1 + b) _25Xn+1Yn
) —2aX,Yni1 + 20X, Xnt1 (10)(11) X,
_26Yan+1 Xn+1 .

For (D), we have

f —aYoni1 — bXony1 (8)013) —2a X511 Yn — 20X, Xpiq (11) 5@‘
0(—=Yan41 +b) —26X, 1Y, Y,

Next, we consider that n is odd and § = —1.

For (A), we have

aYoni1 + bXoni1 (8) 2aXn41Yn + (=1)"ab+ bXony1 (13)  a¥p +0Xyn (1) Yoqn

—Yoni1—0 —2Xp41Yn — (—1>”b —b Y. Y. '
For (B), we have

. aYoni1 — bXont1 (8)013) 2aXp 1Y — 20X, X iq — 2ab

—Yony1 —b —2Xn+1Yn
(M Xp(aYy41 — 0Xpt1) (10)(11) X,
- n+1Yn XnJrl.

For (C), we have

—aan_H + bX2n+1 (8)(13) —2aXn+1Yn + 2bXan+1 — 2(—1)”0,()
Yony1 —0 2Xp1Yn —2b

(M aYpp —bXyp1 01 Y,

t=

Yn—l— 1 Yn+1 .

For (D), we have
. —aYoni1 — bXonp1 (8)013) —2a X511 Yn — 26X, Xt (7) ~ Xpti1(aYn +bX,) (1) Xn41

Y2n+l -b 2Xn+1Yn —2b Yn+1Xn Xn .
This completes the proof.

2.2. Proof of Theorem 1.5. First, we show that

Y( Yo > (n>0)

Yn+1
and
Yo
y [ 62E > 1
(%) =
are integers. If n > 0, the result is clear. If n > 1, using (3) and (5), we obtain
Y( Yn ) _ anYnJrl (i) anYnJrl (:) YnYnJrl
YnJrl YnJrl (Yn+1 - QQYn) + 6(Yn)2 *5Yn+1Yn71 + 5(Yn)2 omb
In the same manner, using (3) and (5), we obtain
y <5Yn+1> _ anYnJrl (:5) anYnJrl (_E) YnYnJrl )
Y., 6Yn+1(Yn+1 — QCLYn) + (Yn)2 — n+1Yn—1 —+ (Yn)2 on—1p
Because Y,, (n > 0) is divisible by b, Y(Yﬁl) and Y(5Y§L,—:’Ll) are integers.
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Next, if Y (t) = k (k is an integer) for some rational number ¢, we show that

Y, Y,
te{ n} 0rt€{5 nH} .
Yn+1 neN Y, neNt

If kK =0, then
bt B
1—2at+6t2
Hence,
f—0= 20
=0=75-
If k # 0, then
bt B
1 —2at +6t2
Hence,
kot? + (—2ak — b)t + k = 0.
Therefore,

‘P 2ak + b+ /(2ak + b)2 — 46k2

26k
Here, because ¢ is a rational number, there exists a nonnegative integer M such that

(2ak + b)? — 40k* = M>.
Moreover, using a’® — db®> = §, we obtain
(2kbd 4 a)* — dM?* = §.
Hence, there exists a nonnegative integer n such that
Xopt+1 = 0" (2kbd + a),Yap11 = M(n > 0).

If 6 =1, a+1 is not divisible by db. If a + 1 is divisible by db, there exists a positive integer [
such that

a=dbl £1.

However,
(dbl £ 1)% — db® > 1
This is a contradiction because a® —db? = 1. Moreover, using (12), for any nonnegative integer

N, Xon — 1 is divisible by db. Hence, Xon £ a is not divisible by db. Therefore, there exists
a nonnegative integer n such that

X2n+1 = i(kad + CL).

Furthermore, if Xs,11 = —(2kbd + a), using (10) and (13), 2a is divisible by db because
Xon+1 — a is divisible by db. Hence, 4 is divisible by db. But, this is also a contradiction
because 4 is not divisible by db. Therefore,

X2n+1 = 2kbd + a.

If § = —1, for any nonnegative integer N, (Xaon)? — d(Yan)? # —1. Hence, there exists a
nonnegative integer n such that

X2n+1 = :|:(2k‘bd + (I).
Moreover, using (10) and (13), X2,4+1 — (—1)"a is divisible by 2bd. Therefore, we have
X2n+1 = (—l)n(kad + CL).
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Hence, we obtain
¢ a(SnXgnJrl -0+ de2n+1 (n > O) (E)
5n+1X2n+1 —da
a5”X2n+1 -0 — de2n+1
(5"+1X2n+1 —da
To finish the proof, we first assume § = 1.
For (E), we have

or t=

(n=>0). (F)

. aXont1 — 1 +0dYon11 (10) Xony2 —1 (9) Yot
Xon+1 —a Xont1 —a Y, '

For (F), we have

b= CLX2n+1 —1- de2n+1 (10)7(11) Xgn —1 Q Yn
Xopt1—a Xopr1—a Y1

Next, we assume § = —1.
If n is even, for (E),

_ 0Xopi1 +0dYon1 +1(10) Xoppo +1 (9 Yoy

—Xont1 t+a —Xont1 t+a Y,
If n is odd, for (E),
—aXopt1 +0dYou1 +1 (10)11) Xop+1 (9 Y,

t = gAS ) .
Xont1+a Xopg1+ta  Yup

If n is even, for (F),
. aXont1 — bdYoni1 +1 (1011 —Xon +1 (9 Vi
—Xopt1 t+a —Xopy1+a  Yop1

If n is odd, for (F),

. —aXon+1 — bdYon41 +1 (10) =Xony2 +1 (9 Yoy
Xont1 +a Xont1 +a Y,

This completes the proof.
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