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Abstract. Using graph-theoretic tools, we confirm six sums involving gibonacci polynomial
products explored in [3]. The graph-theoretic versions of their Pell counterparts follow from
them.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 2].

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively. In particular, the Pell numbers Pn and Pell-Lucas numbers Qn

are given by Pn = pn(1) = fn(2) and 2Qn = qn(1) = ln(2), respectively [2].
In the interest of brevity, clarity, and convenience, we omit the argument in the functional

notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or

ln, bn = pn or qn, ∆ =
√
x2 + 4, 2α(x) = x +∆, and 2β(x) = x −∆, and omit a lot of basic

algebra.

1.1. Sums Involving Gibonacci Polynomial Products. In [3], we investigated the fol-
lowing sums involving gibonacci polynomial products:

m∑
n=0

x

f2
2n + 1

=
f2m+2

f2m+1
; (1.1)

m∑
n=0

x3 + 2x

f2
2n+1 + x2

=
f4m+4

f2m+3f2m+1
; (1.2)

x2 + 2

f4
n − (−1)n(x2 − 1)f2

n − x2
=

1

fn−2fn−1fnfn+1
+

1

fn−1fnfn+1fn+2
; (1.3)

m∑
n=0

x

l22n + x2
=

f2m+2

∆2f2m+1
; (1.4)

m∑
n=0

x3 + 2x

l22n+1 + (x2 + 2)2
=

f4m+4

∆2f2m+3f2m+1
; (1.5)

x2 + 2

l4n + (−1)n(x2 − 1)∆2l2n −∆4x2
=

1

ln−2ln−1lnln+1
+

1

ln−1lnln+1ln+2
. (1.6)
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Our goal is to confirm them using graph-theoretic techniques. To this end, we first develop
the needed tools.

2. Graph-theoretic Tools

Consider the Fibonacci digraph D in Figure 1 with vertices v1 and v2, where a weight is
assigned to each edge [2, 4].

Figure 1. Weighted Fibonacci Digraph D1

It follows by induction from its weighted adjacency matrix Q =

[
x 1
1 0

]
that

Qn =

[
fn+1 fn
fn fn−1

]
,

where n ≥ 1 [2, 4].
A walk from vertex vi to vertex vj is a sequence vi-ei-vi+1-· · · -vj−1-ej−1-vj of vertices vk

and edges ek, where edge ek is incident with vertices vk and vk+1. The walk is closed if vi = vj ;
otherwise, it is open. The length of a walk is the number of edges in the walk. The weight of
a walk is the product of the weights of the edges along the walk.

The sum of the weights of closed walks of length n originating at v1 in the digraph is fn+1

and that of those originating at v2 is fn−1 [2, 4]. Consequently, the sum of the weights of all
closed walks of length n in the digraph is fn+1 + fn−1 = ln. These facts play a pivotal role in
the graph-theoretic proofs.

Let A and B denote sets of walks of varying lengths originating at a vertex v. Then the
sum of the weights of the elements (a, b) in the product set A × B is defined as the product
of the sums of weights from each component. This definition can be extended to any finite
number of components [4].

With these tools, we are now ready for the graph-theoretic proofs.

3. Graph-theoretic Proof

3.1. Confirmation of Identity (1.1).
Proof. Let An denote the sum of the weights of walks in the set A of closed walks of length
2n − 1 in the digraph originating at v1, where 1 ≤ n ≤ m. Then, the sum of the weights of
the elements in the product set A×A is given by A2

n. Let Sn = A2
n + 1, and

Sm =

m∑
n=1

x

Sn
=

m∑
n=1

x

A2
n + 1

.

We will now compute Sm in a different way. To this end, let w be an arbitrary walk in A.
It can land at v1 or v2 at the (n− 1)st step:
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w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n−1

v − · · · − v1︸ ︷︷ ︸
subwalk of length n

, where v = v1 or v2.

Table 1 shows the possible cases and the sum of the weights in each case. It follows from the
table that the sum An of the weights of walks in A is given by An = fn+1fn + fnfn−1 = f2n.
So Sn = A2

n + 1 = f2
2n + 1, and hence

Sm =

m∑
n=1

x

f2
2n + 1

.

w lands at v1 at w lands at v1 at sum of the weights
the (n− 1)st step? the (2n− 1)st step? of walks w

yes yes fnfn+1

no yes fn−1fn

Table 1: Sums of the Weights of Closed Walks Originating at v1

Based on the initial values

S1 =
x

x2 + 1
=

f2
f3

;

S2 =
x3 + 2x

x4 + 3x2 + 1
=

f4
f5

; and

S3 =
x5 + 4x3 + 3x

x6 + 5x4 + 6x2 + 1
=

f6
f7

,

of Sm, we conjecture that
m∑

n=1

x

f2
2n + 1

=
f2m
f2m+1

. (3.1)

This can be confirmed using induction or recursion [3]. For example, let Cm and Dm denote
the left side and right side of (3.1). By the addition formula fa−b = (−1)b(fafb−1 − fa−1fb)
and the Cassini-like identity fn+1fn−1 − f2

n = (−1)n [2], we have

Dm −Dm−1 =
f2m
f2m+1

− f2m−2

f2m−1

=
(−1)2m−1(f2m+1f2m−2 − f2mf2m−1)

f2m+1f2m−1

=
f(2m+1)−(2m−1)

f2m+1f2m−1

=
x

f2
2m + 1

= Cm − Cm−1.

So Cm −Dm = Cm−1 −Dm−1 = · · · = C1 −D1 = 0, and hence Cm = Dm, as expected. Thus,
the conjecture is true.

264 VOLUME 59, NUMBER 3



SUMS OF POLYNOMIAL PRODUCTS

It follows from equation (3.1) that
m∑

n=0

x

f2
2n + 1

=
f2m+2

f2m+1
,

as desired. □

It particular, we have
∞∑
n=0

1

F 2
2n + 1

=
1 +

√
5

2
,

as in [3, 5, 7].

3.2. Confirmation of Identity (1.2).
Proof. Let An denote the sum of the weights of elements in the set A of closed walks of length
2n in the digraph originating at v1, where we define A0 = 1 and 0 ≤ n ≤ m. Then, the sum of
the weights of the elements in the product set A×A is given by A2

n. Let Sn = A2
n + (weight

of the loop)2 = A2
n + x2, and

Sm =

m∑
n=0

x3 + 2x

Sn
=

m∑
n=0

x3 + 2x

A2
n + x2

.

We will now compute An and hence Sm in a different way. Let w be an arbitrary walk in
A. It can land at v1 or v2 at the nth step:

w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v1︸ ︷︷ ︸
subwalk of length n

, where v = v1 or v2.

It follows from Table 2 that the sum An of the weights of walks w in A is given by An =
f2
n+1 + f2

n = f2n+1. So, Sn = A2
n + x2 = f2

2n+1 + x2. Then,

Sm =

m∑
n=0

x3 + 2x

f2
2n+1 + x2

.

w lands at v1 at w lands at v1 at sum of the weights
the nth step? the (2n)th step? of walks w

yes yes fn+1fn+1

no yes fnfn

Table 2: Sums of the Weights of Closed Walks Originating at v1

With the initial values

S0 =
x3 + 2x

x2 + 1
=

f4
f3f1

;

S1 =
(x3 + 2x)(x4 + 4x2 + 2)

(x4 + 3x2 + 1)(x2 + 1)
=

f8
f5f3

; and

S2 =
(x5 + 4x3 + 3x)(x6 + 6x4 + 9x2 + 2)

(x6 + 5x4 + 6x2 + 1)(x4 + 3x2 + 1)
=

f12
f7f5

,
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of Sm, we conjecture that
m∑

n=0

x3 + 2x

f2
2n+1 + x2

=
f4m+4

f2m+3f2m+1
.

This can be confirmed by recursion [3], as before; and gives the desired result. □

This result implies that
∞∑
n=0

1

F 2
2n+1 + 1

=

√
5

3
,

as in [7].
Next, we pursue the sum in equation (1.3).

3.3. Confirmation of Identity (1.3).
Proof. Let An denote the sum of the weights of closed walks of length n originating at v1. Let

S1 = An−3An−2An−1An, S2 = An−2An−1AnAn+1, and S =
1

S1
+

1

S2
. Because An = fn+1, we

then have

S =
1

An−3An−2An−1An
+

1

An−2An−1AnAn+1

=
1

fn−3fn−2fn−1fn
+

1

fn−2fn−1fnfn+1
.

Now, let Tn = An−3An−2An−1AnAn+1. Using the identities fn+2 + fn−2 = (x2 + 2)fn and
fn+kfn−k − f2

n = (−1)n+k+1f2
k [2], we then have

S =
An−3

An−3An−2An−1AnAn+1
+

An+1

An−3An−2An−1AnAn+1

=
An−3

Tn
+

An+1

Tn

=
fn+2 + fn−2

fn−2fn−1fnfn+1fn+2

=
(x2 + 2)fn

fn−2fn−1fnfn+1fn+2

=
x2 + 2

fn−2fn−1fn+1fn+2

=
x2 + 2

(fn+2fn−2)(fn+1fn−1)

=
x2 + 2

[f2
n − (−1)nx2][f2

n + (−1)n]

=
x2 + 2

f4
n − (−1)n(x2 − 1)f2

n − x2
.

Equating the two values of S yields the desired result. □

It follows from this result that
∞∑
n=3

1

F 4
n − 1

=
35

18
− 5

√
5

6
,

as in [3, 5, 7].
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Next, we confirm the Lucas sums in equations (1.4) through (1.6).

3.4. Confirmation of Identity (1.4).
Proof. Let Bn denote the sum of the weights of the elements in the set B of closed walks of
length 2n in the digraph, where we define B0 = 2 and 0 ≤ n ≤ m. Then the sum of the weights
of the elements in the product set B×B is B2

n. Let Sn = B2
n+ (weight of the loop)2 = B2

n+x2,
and

Sm =
m∑

n=0

x

Sn
=

m∑
n=0

x

B2
n + x2

.

We will now compute Bn and hence Sm in a different way. To this end, let w be an arbitrary
element in B.

Case 1. Suppose w originates at v1. It can land at v1 or v2 at the nth step:

w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v1︸ ︷︷ ︸
subwalk of length n

, where v = v1 or v2.

It follows from Table 3 that the sum of the weights of such walks w is f2
n+1 + f2

n = f2n+1.

w lands at v1 w lands at v1 sum of the weights
at the nth step? at the (2n)th step? of walks w

yes yes fn+1fn+1

no yes fnfn

Table 3: Sums of the Weights of Closed Walks Originating at v1

Case 2. Suppose w originates at v2. It can land at v1 or v2 at the nth step:

w = v2 − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v2︸ ︷︷ ︸
subwalk of length n

, where v = v1 or v2.

It follows from Table 4 that the sum of the weights of such walks w is f2
n + f2

n−1 = f2n−1.

w lands at v1 w lands at v2 sum of the weights
at the nth step? at the (2n)th step? of walks w

yes yes fnfn
no yes fn−1fn−1

Table 4: Sums of the Weights of Closed Walks Originating at v2

Thus, the sum Bn of the weights of all closed walks w is given by Bn = f2n+1 + f2n−1 = l2n.
Consequently,

Sm =

m∑
n=0

x

l22n + x2
.
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Using the initial values

S0 =
x

∆2
=

f2
∆2f1

;

S1 =
x3 + 2x

∆2(x2 + 1)
=

f4
∆2f3

; and

S2 =
x5 + 4x3 + 3x

∆2(x4 + 3x2 + 1)
=

f6
∆2f5

,

of Sm, we conjecture that
m∑

n=0

x

l22n + x2
=

f2m+2

∆2f2m+1
.

We can establish its validity by recursion [3]. Let Cm and Dm denote the left side and right
side of this equation, respectively. Using the addition formula fa−b = (−1)b(fafb−1 − fa−1fb)
and the identity l2n −∆2f2

n = 4(−1)n [2], we then have

Dm −Dm−1 =
f2m+2

∆2f2m+1
− f2m

∆2f2m−1

=
f2m+2f2m−1 − f2m+1f2m

∆2f2m+1f2m−1

=
f(2m+2)−2m

∆2
(
f2
2m + 1

)
=

x

l22m + x2

= Cm − Cm−1.

Then, Cm −Dm = Cm−1 −Dm−1 = · · · = C0 −D0 = 0. So Cm = Dm, as expected.
Thus, the conjecture is true, as expected. □

In particular, we have
∞∑
n=0

1

L2
2n + 1

=
1 +

√
5

10
,

as in [3].
We now confirm equation (1.5).

3.5. Confirmation of Identity (1.5).
Proof. Let Cn denote the sum of the weights of elements in the set C of all closed walks of
length 2n+1 in the digraph, where 0 ≤ n ≤ m. Then, the sum of the weights of the elements
in the product set C × C is C2

n. Let Sn = C2
n + (x2 + 2)2 and

Sm =
m∑

n=0

x3 + 2x

Sn
=

m∑
n=0

x3 + 2x

C2
n + (x2 + 2)2

.

To compute Sm in a different way, we let w be an arbitrary walk in C.

Case 1. Suppose w originates at v1. It can land at v1 or v2 at the nth step:

w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v1︸ ︷︷ ︸
subwalk of length n+1

, where v = v1 or v2.
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Table 5 implies that the sum of the weights of such walks w is given by fn+2fn+1+fn+1fn =
f2n+2.

w lands at v1 w lands at v1 at sum of the weights
at the nth step? the (2n+ 1)st step? of walks w

yes yes fn+1fn+2

no yes fnfn+1

Table 5: Sums of the Weights of Closed Walks Originating at v1

Case 2. Suppose w originates at v2. It can land at v1 or v2 at the nth step:

w = v2 − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v2︸ ︷︷ ︸
subwalk of length n+1

, where v = v1 or v2.

It follows from Table 6 that the sum of the weights of such walks is fn+1fn + fnfn−1 = f2n.

w lands at v1 w lands at v2 at sum of the weights
at the nth step? the (2n+ 1)st step? of walks w

yes yes fnfn+1

no yes fn−1fn

Table 6: Sums of the Weights of Closed Walks Originating at v1

Thus, the sum Cn of the weights of all walks in C is given by Cn = f2n+2 + f2n = l2n+1.
Consequently,

Sm =
m∑

n=0

x3 + 2x

l22n+1 + (x2 + 2)2
.

It then follows that

S0 =
x3 + 2x

∆2(x2 + 1)
=

f4
∆2f3f1

;

S1 =
(x3 + 2x)(x4 + 4x2 + 2)

∆2(x4 + 3x2 + 1)(x2 + 1)
=

f8
∆2f5f3

; and

S2 =
(x5 + 4x3 + 3x)(x6 + 6x4 + 9x2 + 2)

∆2(x4 + 3x2 + 1)(x6 + 5x4 + 6x2 + 1)
=

f12
∆2f7f5

.

Based on these initial values of Sn, we conjecture that

Sm =
f4m+4

∆2f2m+3f2m+1
.

We can confirm this using recursion, as in [3].
Equating the two values of Sm yields the desired result. □

This result implies that
∞∑
k=0

1

L2
2n+1 + 9

=

√
5

15
,
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as in [3].
Finally, we confirm equation (1.6).

3.6. Confirmation of Identity (1.6).
Proof. Let Bn denote the sum of the weights of all closed walks of length n in the digraph.

We also let S∗
1 = Bn−2Bn−1BnBn+1, S

∗
2 = Bn−1BnBn+1Bn+2, and S =

1

S∗
1

+
1

S∗
2

. Because

Bn = ln, we have

S =
1

Bn−2Bn−1BnBn+1
+

1

Bn−1BnBn+1Bn+2

=
1

ln−2ln−1lnln+1
+

1

ln−1lnln+1ln+2
.

We now compute S in a different way. Let Tn = Bn−2Bn−1BnBn+1Bn+2. Using the
identities ln+2 + ln−2 = (x2 + 2)ln and ln+kln−k − l2n = (−1)n+k∆2f2

k [2], we then have

S =
Bn+2

Bn−2Bn−1BnBn+1Bn+2
+

Bn−2

Bn−2Bn−1BnBn+1Bn+2

=
Bn+2 +Bn−2

Tn

=
ln+2 + ln−2

ln−2ln−1lnln+1ln+2

=
(x2 + 2)ln

ln−2ln−1lnln+1ln+2

=
x2 + 2

(ln+2ln−2)(ln+1ln−1)

=
x2 + 2

[l2n + (−1)n∆2x2][l2n − (−1)n∆2]

=
x2 + 2

l4n + (−1)n(x2 − 1)∆2l2n −∆4x2
.

This value of S, coupled with the earlier one, gives the desired result. □

It then follows that
∞∑
n=3

1

L4 − 25
=

5

63
−

√
5

30
,

as in [3, 6, 8].

4. Conclusion

Because bn(x) = gn(2x), the graph-theoretic confirmations of the Pell versions of the sum-
mation formulas in equations (1.1) through (1.6) follow from the above proofs. In the interest
of brevity, we omit them.
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