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Abstract. We find various ordinary generating functions for sequences involving products
between the harmonic numbers and the Fibonacci numbers. These are then used to establish
some classes of series associated with these products. Our approach is based on applying
well-known ordinary generating functions for the harmonic numbers.

1. Introduction

The nth harmonic number is defined by

Hn =
n∑

k=1

1

k
. (1.1)

By convention, H0 ≡ 0. The study of infinite series involving harmonic numbers was initiated
by Euler in the mid-18th century, but it was not until the mid-1990s and the work of Bailey,
Borwein, and Girgensohn [1] and Borwein, Borwein, and Girgensohn [3] that interest in series
of this type was revived. Since this time, infinite series containing harmonic numbers have been
well studied, with the literature on such sums now vast (for a sample, see [12]). However, with
perhaps two exceptions, the author is not aware of any attempt to establish series that involve
the product between the harmonic numbers and the Fibonacci numbers. This is surprising
considering the variety of series containing the harmonic numbers that have been investigated
to date. Chen, in two papers spaced 10 years apart [4, 5], gave three series for the related
problem of a product between the Fibonacci numbers and a variant harmonic number term
Λn, where

Λn = 1 +
1

3
+ · · ·+ 1

2n− 1
=

n∑
k=1

1

2k − 1
= H2n − 1

2
Hn.

As we shall see, numerous interesting series involving the product between the harmonic
numbers and the Fibonacci numbers can be found. Here, we apply Lehmer’s definition [8]
regarding when a particular series can be considered interesting. Lehmer writes a series can
be considered interesting if its sum can be expressed in closed form in terms of well-known
constants. We would add the number of constants appearing in the expression found should
not be too long or complicated in appearance.

It is the purpose of the present paper to establish a number of ordinary generating functions
for sequences containing products between the harmonic numbers and the Fibonacci numbers.
These are found using well-known generating functions involving the harmonic numbers. As
a demonstration of the general method, classes of series of the form

∞∑
n=1

(±1)nHa(n)Fb(n)

2b(n)
and

∞∑
n=1

(±1)nHa(n)Fb(n)

2b(n)(b(n) + 1)
, (1.2)
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are given. Here, a(n) and b(n) are equal to n or 2n, whereas Fn are the Fibonacci numbers
defined, as usual, through the recurrence relation Fn = Fn−1+Fn−2, with F0 = 0 and F1 = 1.
All sums found are believed to be new with many considered to be interesting.

Throughout this paper, the golden ratio, having the numerical value of (1+
√
5)/2, is denoted

φ. We shall often have a need for the following algebraic properties of φ.

1− 1/φ2 = 1/φ, (1.3a)

1 + φ = φ2, (1.3b)

φ− 1/φ = 1, (1.3c)
√
5 = 2φ− 1, (1.3d)

5 +
√
5 = 2φ

√
5, (1.3e)

and 5−
√
5 = 2

√
5/φ. (1.3f)

2. Some Ordinary Generating Functions

In this section, we establish a number of ordinary generating functions for sequences involv-
ing the product between the harmonic numbers and the Fibonacci numbers.

Theorem 2.1. For |x| < 1/φ, the ordinary generating function for the sequence {HnFn}n⩾1

is
∞∑
n=1

HnFnx
n =

1√
5

[
φ

φ+ x
log

(
φ+ x

φ

)
− 1

1− φx
log (1− φx)

]
. (2.1)

Proof. Recalling the ordinary generating function for the sequence {Hn}n⩾1, namely [6, 1.513(6),
p.52]

∞∑
n=1

Hnx
n = − log(1− x)

1− x
, |x| < 1, (2.2)

enforcing, in turn, substitutions of x 7→ φx and x 7→ − x
φ into the above ordinary generating

function for the sequence of harmonic numbers gives
∞∑
n=1

Hnφ
nxn = − log(1− φx)

1− φx
, (2.3)

and
∞∑
n=1

(−1)nHnx
n

φn
= −

φ log
(
φ+x
φ

)
φ+ x

, (2.4)

respectively. From Binet’s formula

Fn =
1√
5

(
φn − (−1)n

φn

)
,

combining (2.3) and (2.4) yields the desired result. □

Theorem 2.2. For |x| < 1/φ, the ordinary generating function for the sequence{
1+(−1)n

2 Hn
2
Fn

}
n⩾1

is

∞∑
n=1

HnF2nx
2n =

1√
5

[
φ2

φ2 − x2
log

(
φ2 − x2

φ2

)
− 1

1− φ2x2
log(1− φ2x2)

]
. (2.5)
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Proof. On replacing x with x2 in (2.2), we have

∞∑
n=1

Hnx
2n = − log(1− x2)

1− x2
, |x| < 1.

Enforcing, in turn, substitutions of x 7→ φx and x 7→ x
φ into the above ordinary generating

function, after combining the results with Binet’s formula in a manner similar to what was
done in Theorem 2.1, the desired result follows. □

We next give, as a lemma, the generating function for the sequence {H2n}n⩾1 , as it does
not seem to be well known.

Lemma 2.3. For |x| < 1, the ordinary generating function for the sequence {H2n}n⩾1 is

∞∑
n=1

H2nx
n =


2
√
x arctanh(

√
x)− log(1− x)

2(1− x)
, 0 ⩽ x < 1;

−2
√
−x arctan(

√
−x)− log(1− x)

2(1− x)
, −1 < x < 0.

(2.6)

Proof. Let

f(x) =
∞∑
n=1

H2nx
2n and g(x) =

∞∑
n=1

H2n−1x
2n−1.

Observe for 0 ⩽ x < 1, the desired ordinary generating function will be f(
√
x), whereas for

−1 < x < 0, the desired ordinary generating function will be f(
√
−x).

From the recurrence relation for the harmonic numbers H2n = H2n−1 +
1
2n , we can rewrite

f(x) as

f(x) = x

∞∑
n=1

H2nx
2n−1

= x
∞∑
n=1

(
H2n−1 +

1

2n

)
x2n−1

= x

∞∑
n=1

H2n−1x
2n−1 +

1

2

∞∑
n=1

x2n

n

= xg(x)− 1

2
log(1− x2). (2.7)

Furthermore, from properties for power series, we have

f(x) =
1

2

∞∑
n=1

Hnx
n +

1

2

∞∑
n=1

(−1)nHnx
n,

and

g(x) =
1

2

∞∑
n=1

Hn−1x
n−1 +

1

2

∞∑
n=1

(−1)nHn−1x
n−1

=
1

2

∞∑
n=1

Hnx
n − 1

2

∞∑
n=1

(−1)nHnx
n,
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after reindexing n 7→ n+ 1 on both sums and recalling H0 = 0. Adding gives

f(x) + g(x) =
∞∑
n=1

Hnx
n = − log(1− x)

1− x
. (2.8)

Eliminating g(x) from (2.7) and (2.8) yields

f(x) =
2x arctanh(x)− log(1− x2)

2(1− x2)
. (2.9)

For 0 ⩽ x < 1, enforcing a substitution of x 7→
√
x in (2.9) yields the desired result. For

−1 < x < 0, enforcing a substitution of x 7→ i
√
−x, where i is the imaginary unit in (2.9),

results in the term

i
√
−x arctanh(i

√
−x) = −

√
−x arctan(

√
−x),

from which the desired result then follows. □

Theorem 2.4. If |x| < 1/φ, the ordinary generating function for the sequence {H2nFn}n⩾1 is

∞∑
n=1

H2nFnx
n =



φ

2
√
5(φ+ x)

[
2
√

x
φ arctan

(√
x
φ

)
+ log

(
φ+x
φ

)]
+

1

2
√
5(1− φx)

[
2
√
φx arctanh(

√
φx) + log(1− φx)

]
, 0 ⩽ x < 1

φ ;

− 1

2
√
5(1− φx)

[2
√
−φx arctan(

√
−φx) + log(1− φx)]

− φ

2
√
5(φ+ x)

[
2
√

−x
φ arctanh

(√
−x
φ

)
+ log

(
φ+x
φ

)]
, − 1

φ < x < 0.

(2.10)

Proof. The proof proceeds as in Theorem 2.1, applied to the ordinary generating function
given in Lemma 2.3. □

Theorem 2.5. If |x| ⩽ 1/φ and x ̸= 1/φ, the ordinary generating function for the sequence
{HnFn/(n+ 1)}n⩾1 is

∞∑
n=1

HnFn

n+ 1
xn =

1

2
√
5x

[
1

φ
log2 (1− φx) + φ log2

(
φ+ x

φ

)]
. (2.11)

Proof. Integrating the ordinary generating function given by (2.2) from 0 to x immediately
yields

∞∑
n=1

Hnx
n

n+ 1
=

log2(1− x)

2x
, |x| ⩽ 1, x ̸= 1. (2.12)

We now proceed as in Theorem 2.1, applied to the ordinary generating function given above,
thus completing the proof. □
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Lemma 2.6. If |x| ⩽ 1 and x ̸= 1, the ordinary generating function for the sequence {H2n/(n+
1)}n⩾1 is

∞∑
n=1

H2nx
n

n+ 1

=


arctanh2(

√
x)− 2

√
x arctanh(

√
x)− log(1− x) + 1

4 log
2(1− x)

x
, 0 ⩽ x < 1;

− arctan2(
√
−x) + 2

√
−x arctan(

√
−x)− log(1− x) + 1

4 log
2(1− x)

x
, −1 ⩽ x < 0.

(2.13)

Proof. For 0 ⩽ x < 1, replacing x with t in (2.6), before integrating from 0 to x, gives

∞∑
n=1

H2nx
n+1

n+ 1
=

∫ x

0

√
t arctanh(

√
t)

1− t
dt− 1

2

∫ x

0

log(1− t)

1− t
dt.

The second of the integrals appearing to the right of the equality is elementary. Here,

∫ x

0

log(1− t)

1− t
dt = −1

2
log2(1− x).

In the first of the integrals, enforcing a substitution of t 7→ t2, followed by a partial fraction
decomposition, gives

∫ x

0

√
t arctanh(

√
t)

1− t
dt = 2

∫ √
x

0

t2 arctanh(t)

1− t2
dt

= 2

∫ √
x

0

arctanh(t)

1− t2
dt− 2

∫ √
x

0
arctanh(t) dt

= arctanh2(
√
x)− 2

√
x arctanh(

√
x)− log(1− x).

Combining the results found for the two integrals completes the proof. For −1 ⩽ x < 0,
replacing

√
x with i

√
−x, where i is the imaginary unit, results in the terms

arctanh2(i
√
−x) = − arctan2(

√
−x),

and

i
√
−x arctanh(i

√
−x) = −

√
−x arctan(

√
−x),

and gives the desired result. □
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Theorem 2.7. If |x| ⩽ 1/φ and x ̸= 1/φ, the ordinary generating function for the sequence
{H2nFn/(n+ 1)}n⩾1 is

∞∑
n=1

H2nFnx
n

n+ 1

=



1

φ
√
5x

[
arctanh2(

√
φx)− 2

√
φx arctanh(

√
φx)− log(1− φx) + 1

4 log
2(1− φx)

]
+

φ√
5x

[
− arctan2

(
x
φ

)
+ 2
√

x
φ arctan

(√
x
φ

)
− log

(
φ+x
φ

)
+ 1

4 log
2
(
φ+x
φ

)]
,

0 ⩽ x < 1
φ ;

1

φ
√
5x

[
− arctan2(

√
−φx) + 2

√
−φx arctan(

√
−φx)− log(1− φx) + 1

4 log
2(1− φx)

]
+

φ√
5x

[
arctanh2

(
−x
φ

)
− 2
√

−x
φ arctanh

(√
−x
φ

)
− log

(
φ+x
φ

)
+ 1

4 log
2
(
φ+x
φ

)]
,

− 1
φ ⩽ x < 0.

(2.14)

Proof. The proof proceeds as in Theorem 2.1, applied to the ordinary generating function
given in Lemma 2.6. □

3. Two Classes of Series Leading to Some Interesting Sums

We now present two classes of series, these being those given in (1.2). We give eight series in
the first class and six in the second. Some of the series we find can be described as interesting
according to Lehmer’s criterion. These are found by substituting particular values into the
ordinary generating functions given in Section 2, together with series manipulations using
classic results for convergent series where needed.

The first class of series are of the form
∞∑
n=1

(±1)nHa(n)Fb(n)

2b(n)
,

where a(n) and b(n) are equal to n or 2n. Setting x = ±1
2 in (2.1) gives

∞∑
n=1

HnFn

2n
= log(4) +

12√
5
log(φ), (3.1)

and
∞∑
n=1

(−1)nHnFn

2n
=

1

5
log

(
5

4

)
− 2√

5
log(φ). (3.2)

For absolutely convergent series, because
∞∑
n=1

a2n =
1

2

∞∑
n=1

an +
1

2

∞∑
n=1

(−1)nan, (3.3)

on applying this result, we immediately see that
∞∑
n=1

H2nF2n

4n
=

1

2

∞∑
n=1

HnFn

2n
+

1

2

∞∑
n=1

(−1)nHnFn

2n
.
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Combining with the results for the sums found in (3.1) and (3.2), one obtains

∞∑
n=1

H2nF2n

4n
=

1

10
log(1280) +

√
5 log(φ). (3.4)

The series found in (3.1), (3.2), and (3.4) are interesting. The alternating case corresponding to
the sum given in (3.4) can also be found by applying the following classic result for convergent
series. If an > 0 and all series converge, then

∞∑
n=1

(−1)na2n = Re
∞∑
n=1

inan. (3.5)

Here, i is the imaginary unit, whereas Re denotes the real part. Applying this result to our
series of interest gives

∞∑
n=1

(−1)nH2nF2n

4n
= Re

∞∑
n=1

in
HnFn

2n
.

Setting x = i
2 and i

2 in (2.1), noting that

log

(
2φ+ i

2φ

)
=

1

2
log

(
1 +

1

4φ2

)
+ i arctan

(
1

2φ

)
,

and

log

(
2− iφ

2

)
=

1

2
log

(
1 +

φ2

4

)
− i arctan

(φ
2

)
,

we find
∞∑
n=1

(−1)nH2nF2n

4n
=

4

25 + 3
√
5

[
φ log

(
1 +

1

4φ2

)
+ arctan

(
1

2φ

)]
− 4

5 + 11
√
5

[
log

(
1 +

φ2

4

)
+ φ arctan

(φ
2

)]
,

(3.6)

a not particularly interesting series due to its rather long, complicated looking expression.
Setting x = i

2 in (2.5) gives the two interesting series

∞∑
n=1

HnF2n

4n
=

1

5
log

(
256

25

)
+

4√
5
log(φ), (3.7)

and
∞∑
n=1

(−1)nHnF2n

4n
=

2

29
log

(
29

16

)
− 44

29
√
5
arccoth

(
11√
5

)
. (3.8)

For the final two series in the first class of series, setting x = ±1
2 in (2.10) gives

∞∑
n=1

H2nFn

2n
=

φ2

√
5

[√
2φ arctanh

(√
φ

2

)
+ log(2φ2)

]
+

1

φ2
√
5

[√
2

φ
arctan

(
1√
2φ

)
+ log

(
φ2

2

)]
,

(3.9)
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and

∞∑
n=1

(−1)nH2nFn

2n
= − 1

5φ

[√
2φ arctan

(√
φ

2

)
+ log

(
φ
√
5

2

)]

− φ

5

[√
2

φ
arctanh

(
1√
2φ

)
+ log

(
2φ√
5

)]
,

(3.10)

two series that again are not particularly interesting due to their long and complicated form.
The second class of series are those of the form

∞∑
n=1

(±1)nHa(n)Fb(n)

2b(n)(b(n) + 1)
,

where a(n) and b(n) are equal to either n or 2n. Setting x = ±1
2 in (2.11) gives

∞∑
n=1

HnFn

2n(n+ 1)
= log2(2) + 4 log2(φ)− 4√

5
log(2) log(φ), (3.11)

and
∞∑
n=1

(−1)nHnFn

2n(n+ 1)
=

1√
5
log

(
5

4

)
log(φ)− log2

(√
5

2

)
− log2(φ). (3.12)

Making use of (3.3), when combined with (3.11) and (3.12), yields

∞∑
n=1

H2nF2n

4n(2n+ 1)
=

3

2
log2(φ)− 1

8
log2(5) +

1

2
log(2) log(5)− 1

2
√
5
log

(
64

5

)
log(φ). (3.13)

Containing three or four terms, series (3.11), (3.12), and (3.13) are borderline interesting. The
corresponding alternating case of (3.13) is found on applying (3.5) to our series of interest.
Doing so yields

∞∑
n=1

(−1)nH2nF2n

4n(2n+ 1)
= Re

∞∑
n=1

in
HnFn

2n(n+ 1)
.

Setting x = i
2 in (2.11), we find

∞∑
n=1

(−1)nH2nF2n

4n(2n+ 1)
=

1√
5

[
φ log

(
1 +

1

4φ2

)
arctan

(
1

2φ

)
− 1

φ
log

(
1 +

φ2

4

)
arctan

(φ
2

)]
,

(3.14)
a series that could not be said to be interesting.

Setting x = ±1
2 in (2.14) gives

∞∑
n=1

H2nFn

2n(n+ 1)
=

2

φ
√
5

[
acrtanh2

(√
φ

2

)
−
√

2φ arctanh

(√
φ

2

)
+ log(2φ2) +

1

4
log2(2φ2)

]

+
2φ√
5

[
− arctan2

(
1√
2φ

)
+

√
2

φ
arctan

(
1√
2φ

)
− log

(
φ2

2

)
+

1

4
log2

(
φ2

2

)]
,

(3.15)
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and
∞∑
n=1

(−1)nH2nFn

2n(n+ 1)

=
2

φ
√
5

[
arctan2

(√
φ

2

)
−
√

2φ arctan

(√
φ

2

)
+ log

(
φ
√
5

2

)
− 1

4
log2

(
φ
√
5

2

)]

− 2φ√
5

[
arctanh2

(
1√
2φ

)
−
√

2

φ
arctanh

(
1√
2φ

)
+ log

(
2φ√
5

)
+

1

4
log2

(
2φ√
5

)]
.

Neither of these series could be said to be interesting due to their extended forms.

4. Other Ordinary Generating Functions and Series

As our method for finding ordinary generating functions containing the product between
harmonic numbers and Fibonacci numbers makes clear, many series containing such products
are possible, provided the ordinary generating function for the sequence containing the har-
monic number of interest can be found. For example, ordinary generating functions for the
sequences {Hn/n}n⩾1, {Hn/n

2}n⩾1, and {Hn/n
3}n⩾1 are all known [2, 7, 11], meaning ordinary

generating functions for the sequences {HnFn/n}n⩾1, {HnFn/n
2}n⩾1, and {HnFn/n

3}n⩾1 can
be found. Turning these into interesting series is problematic. As all the ordinary generating
functions in these cases contain polylogarithmic functions of order two (dilogarithms), three
(trilogarithms), or four (tetralogarithms), the difficultly lies in singling out any series of inter-
est as the dilogarithm and trilogarithm are only known to be reducible to more fundamental
constants for a limited number of values. Recall, the polylogarithm function Lis(x) of order s
is defined by

∑∞
n=1 x

n/ns for |x| ⩽ 1, provided s > 1.
As an example of the difficulties faced when it comes to finding interesting series containing

the product between the harmonic numbers and the Fibonacci numbers, let us find the sum
for the simple but intriguing looking series

∞∑
n=1

(
HnFn

2n

)2

. (4.1)

We start by first giving as a lemma, the ordinary generating function for the sequence {H2
n}n⩾1.

It seems this result was first given without proof in [3]. An alternative proof to the one we are
about to give can be found in [10].

Lemma 4.1. For |x| < 1, the ordinary generating function for the sequence {H2
n}n⩾1 is

∞∑
n=1

H2
nx

n =
Li2(x) + log2(1− x)

1− x
. (4.2)

Here, Li2(x) is the dilogarithm function
∑∞

n=1 x
n/n2.

Proof. Noting that

H2
n+1 −H2

n = (Hn+1 −Hn) (Hn+1 +Hn) =
2Hn

n+ 1
+

1

(n+ 1)2
,

where the recurrence relation of Hn+1 = Hn + 1
n+1 for the harmonic numbers has been used,

we have
∞∑
n=1

H2
n+1x

n −
∞∑
n=1

H2
nx

n = 2
∞∑
n=1

Hnx
n

n
+

∞∑
n=1

xn

(n+ 1)2
,
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or
∞∑
n=1

H2
nx

n−1 −
∞∑
n=1

H2
nx

n = 2
∞∑
n=1

Hnx
n

n+ 1
+

∞∑
n=1

xn−1

n2
, (4.3)

after the index in the leftmost sum on the left of the equality and the rightmost sum on the
right of the equality have been shifted by n 7→ n−1. The first sum to the right of the equality
in (4.3) is (2.12), whereas the second sum is Li2(x)/x. Thus,(

1− x

x

) ∞∑
n=1

H2
nx

n =
log2(1− x)

x
+

Li2(x)

x
,

from which the required result follows. □

Theorem 4.2. For |x| < 1/φ2, the ordinary generating function for the sequence {H2
nF

2
n}n⩾1

is
∞∑
n=1

H2
nF

2
nx

n =
Li2(φ

2x) + log2(1− φ2x)

5(1− φ2x)
−

2
(
Li2(−x) + log2(1 + x)

)
5(1 + x)

+
φ2

5(φ2 − x)

[
Li2

(
x

φ2

)
+ log2

(
φ2 − x

φ2

)]
.

(4.4)

Proof. In the ordinary generating function given by (4.2), enforcing substitutions of x 7→ φ2x
and x 7→ x

φ2 gives
∞∑
n=1

H2
nφ

2nxn =
Li2(φ

2x) + log2(1− φ2x)

1− φ2x
, (4.5)

and
∞∑
n=1

H2
nx

n

φ2n
=

φ2

φ2 − x

[
Li2

(
x

φ2

)
+ log2

(
φ2 − x

φ2

)]
, (4.6)

respectively. Also, if x is replaced with −x in (4.2), one has

∞∑
n=1

(−1)nH2
nx

n =
Li2(−x) + log2(1 + x)

1 + x
. (4.7)

From the square of Binet’s formula

F 2
n =

1

5

(
φ2n +

1

φ2n

)
− 2(−1)n

5
,

we have
∞∑
n=1

H2
nF

2
nx

n =
1

5

∞∑
n=1

H2
nφ

2nxn +
1

5

∞∑
n=1

H2
nx

n

φ2n
− 2

5

∞∑
n=1

(−1)nH2
nx

n. (4.8)

Combining (4.5), (4.6), and (4.7) with (4.8) yields the desired result. □

The sum for (4.1) can now be found by setting x = 1
4 in (4.4). Doing so yields

∞∑
n=1

(
HnFn

2n

)2

=
4φ

5
√
5

[
Li2

(
φ2

4

)
+ log2

(
4φ√
5

)]
− 8

25

[
Li2

(
−1

4

)
+ log2

(
5

4

)]

+
4

5
√
5φ

[
Li2

(
1

4φ2

)
+ log2

(
φ
√
5

4

)]
.
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The sum found for this simple looking series is not interesting. The real problem here in
finding interesting series from ordinary generating functions that contain the dilogarithm, or
the higher order polylogarithms, is the dilogarithm is only known to be reducible to simpler
constants for the eight arguments corresponding to: 0, 12 ,±1,−φ,± 1

φ , and
1
φ2 [9, pp. 4, 6–7].

5. Conclusion

We have shown how ordinary generating functions involving the product between the har-
monic numbers and the Fibonacci numbers can be found. These depended on the ordinary
generating function for the sequence of interest containing the harmonic numbers being known.
From these ordinary generating functions, some interesting series containing the product be-
tween the harmonic numbers and the Fibonacci numbers, that are almost nonexistent in the
literature, were then found.
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