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Abstract. We give new identities for the Fibonacci and Lucas polynomials that can be seen
as inverses of the well-known, closed-form expressions for these polynomials, and generalize
an identity that was posed as a problem for solution by Paul S. Bruckman. We also give the
corresponding inverse identities for Lucas and other sequences.

1. Introduction

The Fibonacci and Lucas polynomials are defined by the recurrences

Fn(x) = xFn−1(x) + Fn−2(x) and Ln(x) = xLn−1(x) + Ln−2(x), (1.1)

with the initial values F0(x) = 0 and F1(x) = 1, and L0(x) = 2 and L1(x) = x. For x = 1,
these polynomials reduce to the Fibonacci and Lucas numbers. The first few Fibonacci and
Lucas polynomials are easily determined as

F0(x) = 0, F1(x) = 1, F2(x) = x, F3(x) = x2 + 1, F4(x) = x3 + 2x,

and
L0(x) = 2, L1(x) = x, L2(x) = x2 + 2, L3(x) = x3 + 3x, L4(x) = x4 + 4x2 + 2.

As with the Fibonacci and Lucas numbers, one can reverse the recurrences to derive the
Fibonacci and Lucas polynomials at negative indices, and easily verify the reflection formulas

F−n(x) = −(−1)nFn(x) and L−n(x) = (−1)nLn(x). (1.2)

Closed-form expressions are given by

Fn+1(x) =

⌊n/2⌋∑
i=0

(
n− i

i

)
xn−2i for n = 0, 1, 2, . . ., (1.3)

and

Ln(x) =

⌊n/2⌋∑
i=0

n

n− i

(
n− i

i

)
xn−2i for n = 1, 2, 3, . . .. (1.4)

These definitions and identities can be found in various textbooks on the Fibonacci numbers
and associated sequences, such as Koshy [3].

2. Motivation

In the elementary problem section of the August 2010 issue of The Fibonacci Quarterly,
Paul Bruckman [1] posed Problem B-1075 and asked to show that

xn =
n∑

i=0

(−1)i
(
n

i

)
Fn+1−2i(x) for n = 0, 1, 2, . . .. (2.1)

This identity can be seen as an inverse relation to (1.3) and allows one to express the mono-
mial xn as a weighted sum over the Fibonacci polynomials. A year passed with no solutions
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being received, other than the proposer’s, and prompted the editors to extend the deadline by
another three months. This “last call” was answered by Ángel Plaza and Sergio Falcón [8],
who provided a succinct proof in the November 2011 issue using an induction argument.

3. Generalization

It turns out that with little effort one can generalize Bruckman’s result and gave the impetus
to write this short note. Let p and q be nonzero constants. For n = 0, 1, 2, . . ., define the
recurrent sequence µn by

µn+2 = pµn+1 − qµn, (3.1)

with initial values µ0 and µ1, not both being zero. Note that one can reverse the recurrence
definition and determine µn as a function of µn+1 and µn+2, so that µn is also defined for
negative indices and thus, (3.1) holds true for all integers n. We shall refer to µn as the
general Lucas sequence.

Theorem 3.1. For nonnegative integers n and all integers r,

pnµr =
n∑

i=0

(
n

i

)
qiµn+r−2i and qnµr =

n∑
i=0

(−1)i
(
n

i

)
pn−iµn+r+i. (3.2)

Proof. By induction. For n = 0, the first identity in (3.2) holds trivially for all values of r.
Now, assume that the identity holds for n and all values of r, and consider the sum

n+1∑
i=0

(
n+ 1

i

)
qkµn+1+r−2i =

n+1∑
i=0

((
n

i

)
+

(
n

i− 1

))
qiµn+1+r−2i

=

n∑
i=0

(
n

i

)
qiµn+r+1−2i +

n+1∑
i=1

(
n

i− 1

)
qiµn+1+r−2i

= pnµr+1 + qpnµr−1 = pn+1µr,

where we use the property that the binomial coefficient
(
n
i

)
is zero, when i > n or i < 0.

This shows that the identity also holds for n+ 1 and all values of r, completes the induction
step, and proves the first identity in (3.2). The proof of the second identity proceeds mutatis
mutandis along the same lines and proves the Theorem. □

Taking r = −n in the second identity of (3.2) gives

qnµ−n =

n∑
i=0

(−1)i
(
n

i

)
pn−iµi, (3.3)

and an explicit expression for µn with a negative index in terms of the original sequence µn,
defined on the nonnegative indices. More succinct expressions are provided later.

4. Applications

Theorem 3.1 can be used to derive results for a variety of special cases. The Fibonacci and
Lucas polynomials are obtained from the recurrent sequence µn by taking the constants as
p = x, q = −1 and the initial conditions as µ0 = 0 and µ1 = 1, and µ0 = 2 and µ1 = x,
respectively. Applying this to the first identity in (3.2) gives the following corollary.
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Corollary 4.1. For nonnegative integers n and all integers r,

xnFr(x) =
n∑

i=0

(−1)i
(
n

i

)
Fn+r−2i(x) and xnLr(x) =

n∑
i=0

(−1)i
(
n

i

)
Ln+r−2i(x). (4.1)

For r = 1, the former gives Bruckman’s inversion formula (2.1). For r = 0, the latter gives
the identity

2xn =
n∑

i=0

(−1)i
(
n

i

)
Ln−2i(x), (4.2)

and can be seen as an inverse relation to (1.4). Similar identities and inverse relations for
the Fibonacci and Lucas polynomials are obtained from (4.1) by taking r = 2 and r = 1,
respectively. Note that the Lucas identity in (4.1) also follows from the Fibonacci identity
in (4.1), as Ln(x) = Fn+1(x)+Fn−1(x). Using the reflection formulas in (1.2) for the Fibonacci
and Lucas polynomials, one can derive condensed versions of the identities (2.1) and (4.2),
containing about half the number of summands, as

xn =

⌊n/2⌋∑
i=0

(−1)in+ 1− 2i

n+ 1

(
n+ 1

i

)
Fn+1−2i(x) (4.3)

and

xn =

⌊n/2⌋∑
i=0

(−1)i
(
n

i

)
Ln−2i(x)− (−1)n/2

(
n

n/2

)
δ(n is even), (4.4)

where δx is the Kronecker delta, which is 1 when x is true and 0 when x is false. Rather than
proving these identities separately, we note that they are special cases of the more general
identities (5.7) and (5.8). Although (4.3) and (4.4) are computationally more efficient than
their counterparts (2.1) and (4.2), the latter are more elegant and can sometimes be easier to
work with in proofs and the manipulation of formulas.

5. Lucas Sequences

The Lucas sequences are named after the French mathematician François Édouard Anatole
Lucas (1842–1891), who first studied them in 1878 in a seminal article (in French) in the first
volume of the American Journal of Mathematics [4], established earlier that year at the Johns
Hopkins University by the English mathematician James Joseph Sylvester (1814–1897).1

Let p and q be nonzero and coprime integers. The particular Lucas sequences Un(p, q) and
Vn(p, q) are defined by the recurrences

Un = pUn−1 − qUn−2 and Vn = pVn−1 − qVn−2, (5.1)

with the initial values U0 = 0 and U1 = 1, and V0 = 2 and V1 = p. For notational brevity,
we omit the arguments p and q, and use Un and Vn. The first few elements of these Lucas
sequences are easily derived as

U0 = 0, U1 = 1, U2 = p, U3 = p2 − q, U4 = p3 − 2pq,

and
V0 = 2, V1 = p, V2 = p2 − 2q, V3 = p3 − 3pq, V4 = p4 − 4p2q + 2q2.

1An English translation was commissioned by The Fibonacci Association and published in 1969. The elec-
tronic version can be found on its website [6].
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As with the Fibonacci and Lucas polynomials, one can reverse the recurrence relations to
derive the Lucas sequences at negative indices, and easily verify the reflection formulas

U−n = −q−nUn and V−n = q−nVn. (5.2)

Lucas [4, Section XII] gave the closed-form expressions

Un+1 =

⌊n/2⌋∑
i=0

(
n− i

i

)
(−q)ipn−2i for n = 0, 1, 2, . . ., (5.3)

and

Vn =

⌊n/2⌋∑
i=0

n

n− i

(
n− i

i

)
(−q)ipn−2i for n = 1, 2, 3, . . .. (5.4)

Taking the initial conditions in Theorem 3.1 as µ0 = 0 and µ1 = 1, and µ0 = 2 and µ1 = p
yields the Lucas sequences. The first identity in (3.2) then gives the following corollary.

Corollary 5.1. For nonnegative integers n and all integers r,

pnUr =
n∑

i=0

(
n

i

)
qiUn+r−2i and pnVr =

n∑
i=0

(
n

i

)
qiVn+r−2i. (5.5)

Taking r = 1 in the former and r = 0 in the latter gives the identities

pn =

n∑
i=0

(
n

i

)
qiUn+1−2i and 2pn =

n∑
i=0

(
n

i

)
qiVn−2i. (5.6)

These can be seen as inverse relations to (5.3) and (5.4). Note that the second identity in (5.5)
also follows from the first as Vn = Un+1− qUn−1. Using the reflection formulas for Un and Vn,
these identities can be condensed to

pn =

⌊n/2⌋∑
i=0

n+ 1− 2i

n+ 1

(
n+ 1

i

)
qiUn+1−2i (5.7)

and

pn =

⌊n/2⌋∑
i=0

(
n

i

)
qiVn−2i −

(
n

n/2

)
qn/2δ(n is even). (5.8)

A proof for these identities is provided in Section 8. Note that taking p = x and q = −1 turns
Un into the Fibonacci polynomial Fn(x) and Vn into the Lucas polynomial Ln(x), so that
identities (4.3) and (4.4) are seen to be special cases of (5.7) and (5.8). Using the same initial
conditions in Theorem 3.1 as before, the second identity in (3.2) gives the following corollary.

Corollary 5.2. For nonnegative integers n and all integers r,

qnUr =

n∑
i=0

(−1)i
(
n

i

)
pn−iUn+r+i and qnVr =

n∑
i=0

(−1)i
(
n

i

)
pn−iVn+r+i. (5.9)

Taking r = 1 in the former and r = 0 in the latter gives the identities

qn =
n∑

i=0

(−1)i
(
n

i

)
pn−iUn+1+i and 2qn =

n∑
i=0

(−1)i
(
n

i

)
pn−iVn+i (5.10)

as companions to (5.6).
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6. Reflection Formula

In the proof of Theorem 3.1, we tacitly assumed that we have a way of determining the
values of µn for negative indices. Although we showed that these values are indeed defined
and gave an explicit formula to determine them in (3.3), one still needs an efficient and more
practical way of deriving them. The particular Lucas sequences Un and Vn can serve as a basis
to express the general Lucas sequence µn in and is captured by the identity

µn =
(
µ1 − 1

2µ0p
)
Un + 1

2µ0Vn. (6.1)

This identity is well known and goes back to Lucas [5, p. 309, eqn. (5)]. It is easy to prove.
Observe that the expressions on both sides of (6.1) define a Lucas sequence, and that both
expressions have the same initial values, as shown by taking n = 0 and n = 1. Thus, they
define the same sequence and proves the identity. In a similar fashion, one can show that

µn = µ1Un − µ0qUn−1 and µn =
pµ1 − 2qµ0

p2 − 4q
Vn +

pµ0 − 2µ1

p2 − 4q
qVn−1. (6.2)

For the first identity, use the values U−1 = −q−1, U0 = 0, and U1 = 1 to show that the right
side and the left side agree for n = 0 and n = 1, and thus define the same Lucas sequence.
For the second identity, use the values V−1 = q−1p, V0 = 2, and V1 = p to show that both
sides define the same Lucas sequence. This argument can also be reversed. One can express
the particular Lucas sequences in terms of the general Lucas sequence and show that

Un =
µ1µn − µ0µn+1

µ2
1 − µ0µ2

and Vn =
pµ1 − 2µ2

µ2
1 − µ0µ2

µn +
2µ1 − pµ0

µ2
1 − µ0µ2

µn+1. (6.3)

It is easily verified that these identities hold for n = 0 and n = 1, and thus for all n, as they
define the same Lucas sequences.

Theorem 6.1 (Reflection Formula). Let µn be the recurrence defined by (3.1) with the initial
conditions µ0 and µ1, not both being zero, and p2 ̸= 4q. Then,

qnµ−n =
(2µ1 − pµ0)µ0

µ2
1 − pµ0µ1 + qµ2

0

µn+1 −
µ2
1 − qµ2

0

µ2
1 − pµ0µ1 + qµ2

0

µn. (6.4)

Proof. Start with the first identity in (6.2), negate n, and apply the reflection formula for Un

from (5.2) to derive qnµ−n = µ0Un+1−µ1Un. Now, use the first identity in (6.3) and substitute
the corresponding expressions for Un and Un+1. Simplifying the resulting expression gives the
reflection formula (

µ0µ2 − µ2
1

)
qnµ−n = µ2

0µn+2 − 2µ0µ1µn+1 + µ2
1µn. (6.5)

Note that the condition µ0µ2 ̸= µ2
1 is the same as p2 ̸= 4q. Making the substitutions µn+2 =

pµn+1−qµn and µ2 = pµ1−qµ0, and rearranging terms give (6.4) and proves the Theorem. □

Note that (6.4) shows that there are only two fundamental cases, where µ−n is proportional

to µn for all integers n. The first corresponds to µ0 = 0 and the second to µ1 = 1
2pµ0. These

initial conditions give scaled versions of Un and Vn, respectively.

7. Miscellaneous

Bruckman’s problem B-1075 motivated the brothers Dence [2] to study generalizations of
the Fibonacci and Lucas polynomials, defined in analogy to the closed-form expressions (1.3)
and (1.4). Their definitions [2, eqn. (2.1), (4.2)] amount to a slightly different parametrization
of the closed-form expressions (5.3) and (5.4) for the Lucas sequences, and can be obtained
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by replacing p by Px and q by Q. The authors posit inverse formulas and prove them by
means of Binet’s formula and an induction argument. These inverse formulas correspond
to our condensed identities (5.7) and (5.8). It might have been easier and more general to
start with Lucas’ expressions (5.3) and (5.4), prove the inverse formulas, and then apply the
parametrization.2

7.1. Chebyshev Polynomials. Although the initial setting of our note was that of the Fi-
bonacci polynomials, the identities in Section 5 have further application. Consider the Cheby-
shev polynomials, named after the Russian mathematician Pafnuty Lvovich Chebyshev (1821–
1894). These polynomials feature prominently in numerical analysis and can be defined by
the recurrence

Tn(x) = 2xTn−1(x)− Tn−2(x),

with the initial values T0(x) = 1 and T1(x) = x. It is easily verified that Tn(x) =
1
2Vn(2x, 1)

and thus, corresponds to a scaled Lucas sequence.3 We can use (5.4) to derive the closed-form
expression

Tn(x) =
1

2

⌊n/2⌋∑
i=0

n

n− i

(
n− i

i

)
(−1)i(2x)n−2i for n = 1, 2, 3, . . ..

An application of (5.8) gives the inverse relation

(2x)n = 2

⌊n/2⌋∑
i=0

(
n

i

)
Tn−2i(x)−

(
n

n/2

)
δ(n is even).

These two formulas are, of course, well known and agree with the standard references, such
as Mason and Handscomb [7], and Rivlin [9]. Note that, by (5.2), we have the reflection
formula T−n(x) = Tn(x). Applying the second identity in Corollaries 5.1 and 5.2, with p = 2x
and q = 1, gives

(2x)nTr(x) =
n∑

i=0

(
n

i

)
Tn+r−2i(x) and Tr(x) =

n∑
i=0

(−1)i
(
n

i

)
(2x)n−iTn+r+i(x),

valid for nonnegative integers n and all integers r. These identities appear to be new.

7.2. Jacobsthal Polynomials. The reader will have noticed that we focused on the first
identity in Theorem 3.1, driven by the context of the Fibonacci [and Lucas polynomials] in
Bruckman’s question. The second identity in Theorem 3.1 is no less useful and takes us to
inversion formulas for the Jacobsthal and Jacobsthal-Lucas polynomials. These polynomials
are named after the German mathematician Ernst Jacobsthal (1882–1965) and defined by the
recurrences

Jn(x) = Jn−1(x) + xJn−2(x) and jn(x) = jn−1(x) + xjn−2(x),

2There is a typographical error in formula (1.1) of the Dence article [2]. The term Fn(x) should be Fn+1(x).
In their analysis, the authors impose the restriction (Px)2 − 4Q > 0. This is an artifact of basing their proof
on Binet’s formula and the requirement for the roots of the characteristic equation t2 − (Px)t + Q = 0 to be
different and real. Our derivation shows that this restriction is not necessary.

3The scaling factor is to standardize the Chebyshev polynomials, so that Tn(1) = 1 for all integers n, and
originates from the standard trigonometric definition as Tn(x) = cos(nθ), when x = cos θ. Chebyshev is the
English transliteration of the Russian name. Tchebycheff is the French transliteration, hence Tn(x).
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with the initial values J0(x) = 0 and J1(x) = 1, and j0(x) = 2 and j1(x) = 1. They have the
closed-form expressions

Jn+1(x) =

⌊n/2⌋∑
i=0

(
n− i

i

)
xi and jn(x) =

⌊n/2⌋∑
i=0

n

n− i

(
n− i

i

)
xi,

see Koshy [3]. We can now apply Theorem 3.1 with p = 1 and q = −x to give the inversion
formulas

xn =
n∑

i=0

(−1)n−i

(
n

i

)
Jn+1+i(x) and 2xn =

n∑
i=0

(−1)n−i

(
n

i

)
jn+i(x).

These identities appear to be new.

8. Proofs

To prove (5.7), we start with the first identity in (5.6). The basic idea is to use the reflec-

tion property for the Lucas sequence Un, that is U−n = −q−nUn, and reduce the number of
summands by converting negatively indexed items to positively indexed ones. The derivation
and proof, followed by some explanatory comments, is as follows.

pn =

n∑
i=0

(
n

i

)
qiUn+1−2i =

n+1∑
i=0

(
n

i

)
qiUn+1−2i

=

⌊ 1
2
(n+1)⌋∑
i=0

(
n

i

)
qiUn+1−2i +

n+1∑
i=⌈ 1

2
(n+1)⌉

(
n

i

)
qiUn+1−2i −

(
n

1
2(n+ 1)

)
q

1
2
(n+1)U0δ(n is odd)

=

⌊ 1
2
(n+1)⌋∑
i=0

[(
n

i

)
−
(

n

n+ 1− i

)]
qiUn+1−2i =

⌊n/2⌋∑
i=0

n+ 1− 2i

n+ 1

(
n+ 1

i

)
qiUn+1−2i.

We start the derivation by extending the summation to include the index n + 1. This does
not change the value of the sum because the corresponding summand has value zero, by
virtue of the property that the binomial coefficient

(
n
i

)
is zero, when i > n or i < 0. The

purpose of this extension is to ensure that the number of negatively indexed items equals the
number of positively indexed ones. We now split the summation into two parts and adjust for
double counting the zero-indexed item when n is odd. We then perform a change of variables,
apply the reflection formula U−n = −q−nUn, collect terms with like indexed items, simplify
the difference of the two binomial coefficients, and drop the correction term because U0 = 0.
Because the summand corresponding to the index value

⌊
1
2(n+ 1)

⌋
is zero, we can replace

this value by ⌊n/2⌋. This completes the derivation and proof of identity (5.7). The proof
of identity (5.8) starts with the second identity in (5.6) and proceeds along the same lines.
The only difference being that we do not extend the summation, use the reflection formula
V−n = q−nVn, and that the correction term does not disappear because V0 = 2. We note that
one can derive condensed versions of the identities in (5.5) for other values of r. For small
values of r, this could potentially yield other formulae of interest. For large values of r, this
will not yield much or any reduction in the number of summands, and the resulting formulae
may be of little practical use.
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