GRAPH-THEORETIC CONFIRMATIONS OF FOUR SUMS OF
JACOBSTHAL POLYNOMIAL PRODUCTS OF ORDER 4

THOMAS KOSHY

ABSTRACT. Using graph-theoretic tools, we establish four identities involving sums of Jacob-
sthal polynomial products of order 4.

1. INTRODUCTION

Eztended gibonacci polynomials z,(x) are defined by the recurrence z,+2(z) = a(x)zp+1(x)+
b(x)zn (), where x is an arbitrary complex variable; a(x), b(x), zo(x), and z1(x) are arbitrary
complex polynomials; and n > 0 [1, 2, 5].

Suppose a(x) = 1 and b(x) = z. When zp(x) = 0 and z1(x) = 1, z,(z) = Ju(x), the nth
Jacobsthal polynomial; and when zg(z) = 2 and z1(x) = 1, z,(x) = jn(x), the nth Jacobsthal-
Lucas polynomial [1, 2]. Clearly, J,(1) = F, and j,(1) = L,.

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(x). We also omit a lot of basic
algebra.

Table 1 lists some well known fundamental Jacobsthal identities [3]. We will employ them
in our discourse.

JnJrl +2Jp1 = Jn Jon = Jnjn
J2+1 + $Jrzz = Jant1 Int2 + 22 J, 0 = 2z +1)J,
Imtn = JImt1dn + ImJIn—1

Table 1: Fundamental Jacobsthal Identities

1.1. Sums of Jacobsthal Polynomial Products of Order 4. Several sums of gibonacci
polynomial products of order 4 are investigated in [5]; the following are six of them. Identities
(1.1), (1.2), (1.5), and (1.6) form the cornerstone for our discourse:

Jin = Joiodn —22J2 0 J2 — 2 T2 0T dn—o + 2(2* + 2) Jpia?

+ 2t Ty dnd? 5 = 20at + 2 I3 0o 4+ 225 T2 T2, — 25T, T3 (1.1)
Jint1 = Jppo —AxTo o0y +2(32% + 22)J2 02 — (42° + 627 + 2) T2

— 223 02 T o + (22 + )2 T2 + (22t + 23) T3 T, o; (1.2)
Jinse = Jnio— 302 T2 0 J2 + 20t Jpqo i dn—o + 2t Ty — 28 T2 T2y, (1.3)
Jints = (x4+ DI — 42 T3 5 Jn + (62 + 22)J2, 0 J2 — (4o’ + 62° + 1) Ty 0 T3

+ (2% 4+ 3zt + 23) I + (225 + 2V T3 T, — 28 T2 T2, (1.4)
Janiz = (2x+1)Jny — 822 T2 o Jn + (122% + 522)J2 L J2 — 2(da + 62° + 22) T2

— 20 Joy0 2 0o + (225 + 52t 4 223).J)

+ 222 + 2 T3 Ty g — 28 T2 T2, (1.5)

NOVEMBER 2021 319



THE FIBONACCI QUARTERLY

Janis = B+ 1)Jhy — 422 T3 o Jn + 22 T2 0 T2 — (42 + 62° + 2%) Jpp0 g3
+ 425 T, 02 T o 4 (32° + 32 + %) T + (22° + 21 I3 T,
— (227 + )3T s, (1.6)

where J, = Jp,(z) and j,(z) = jn(z).
Our objective is to confirm the Jacobsthal identities (1.1), (1.2), (1.5), and (1.6) using
graph-theoretic techniques.

2. SOME GRAPH-THEORETIC TOOLS

To confirm these Jacobsthal results, consider the weighted Jacobsthal digraph D; in Figure
1 with vertices v; and va [3, 4].

V:
A 2

F1GUuRrRE 1. Weighted Fibonacci Digraph Dq

It follows from its weighted adjacency matrix M = E g] that
J, xJ,
n __ n+1 n
= )

where J,, = Jp(x) and n > 1.

It then follows that the sum of the weights of closed walks of length n originating at v is
Jn+1, and that of those originating at ve is xJ,—1. So, the sum of the weights of all closed
walks of length n in the digraph is J,411 + xJ,—1 = jn. These facts play a major role in the
graph-theoretic proofs.

Let A, B,C, and D denote the sets of closed walks of varying lengths originating at vertex
v, respectively. Then, the sum of the weights of the elements in the product set Ax BxC x D
is defined as the product the sums of the walks in each component [4].

With these tools at our disposal, we are now ready to explore the graph-theoretic proofs.

3. GRAPH-THEORETIC CONFIRMATIONS

3.1. Proof of Identity (1.1).
Proof. Let S denote the sum of the weights of closed walks of length 4n — 1 originating at v;.
Clearly, S = Jyp.

We will now compute the sum S in a different way. To this end, let w be an arbitrary closed
walk of length 4n — 1 originating at v;. It can land at v; or vy at the nth, 2nth, and 3nth
steps:

w= V1 — -+ —V vV— -0 =0 v— - =0 vV— - — ,

-~ —_—
subwalk of length n subwalk of length n subwalk of length n subwalk of length n—1

where v = v1 or vs.
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Table 2 shows the possible cases and the sums of weights of the corresponding walks w,
where J,, = Jp ().

w lands at v; at | w lands at v at | w lands at vy at w lands at v at sum of the weights
the nth step? the 2nth step? | the 3nth step? | the (4n — 1)st step? of walks w
yes yes yes yes J3 11Jn
yes yes no yes T g Y Y
yes no yes yes o S
yes no no yes $2Jn+1 JnJr%q
no yes yes yes O S
no yes no yes 22 J3 T 1
no no yes yes 22 T30 1
no no no yes 23T, J3

Table 2: Sums of the Weights of Closed Walks Originating at v;
It follows from the table that the sum S of the weights of such walks w is given by

S = JEaJn+adiIndno1 4+ 22 dn i1 dp + 2t T Ty + 202 T3 Ty + 2P T, TR
= A+B+C+D+E+F,
where
A = Jgﬂjn

(Jn+2 - xJn)an
= J3odn — 32 0 J2 + 32 Tygads — 2T
B = zJl  Jndna
= 2(Jpyo — 2Jn) (0 — 2Jp_2)
= wJ2 o J = 2T Ty T2 — 222 Jn o ds 4+ 223 Ty g0 J Jn—g + 2P T8 — 2t T3 T o
C = 2zJ,1J2
22J3 (Jpso — xJy)
2xJpy0ds — 222 T2
D = 22 . 1dnJ?
= 22 (Jnyo — 2dn)Jn(Jp — xJp_2)?
= 2P J0dd = 203 0 P T o + 2t Ty dn Ry — 23T 224 T30, o — 25 T2TE
E = 22730, 1
= 202 J3(J, — xJy )
= 222J — 22337, o;
F = 227,32,
= 230, (Jn — 2y _2)?
= 2 =32 T3 T o + 325 T2 0%, — 28,3,
where J,, = Jp ().
Thus,
S = I3 odn— 22T TR — 2t T Ty dne + 2(2® + ) JpgadE 4+ 2t Jyiadn 2,
— 2t + )T T o+ 225 T2 T2, — 250,03,
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This value of S, coupled with its earlier value, yields identity (1.1), as desired. O

3.2. Proof of Identity (1.2).
Proof. Let S’ denote the sum of the weights of closed walks of length 4n originating at v in
the digraph. Then S’ = Jyp41.

To compute S’ in a different way, we first let w be an arbitrary closed walk of length 4n
originating at v1. It can land at v; or vy at the nth, 2nth, and 3nth steps:

w= vy — -+ — v— - =0 vV— -0 =0 V— - =1,

subwalk of length n subwalk of length n subwalk of length n subwalk of length n

where v = v1 or vs.
Table 3 summarizes the possible cases and the sums of the weights of the respective walks
w, where J, = Jp,(z).

w lands at vy at | w lands at v; at | w lands at v; at | w lands at v; at || sum of the weights
the nth step? the 2nth step? the 3nth step? the 4nst step? of walks w
yes yes yes yes J2 11
yes yes no yes wJi  J?
yes no yes yes zJ2 ,J2
yes no no yes 352Jn+1 JﬁJn,1
no yes yes yes wJ2,  J2
no yes no yes 22 J?
no no yes yes 22 T2 In—1
no no no yes x3J2J2

Table 3: Sums of the Weights of Closed Walks Originating at v;
It follows from the table that

S = T+ 3aJE TR 20 T SR T+ 2T a3 TR
G+H+I1+J+K,
where
G = JZ‘,H

= (Jng2 — xJn)4
= Jh a3 TR+ 622 T2 T2 — 42 Ty s + 2t Tl
H = 3zJ2.,J2
= 3xJ2(Jpyo —xJy)?
= 3xJ2, 0 J2 — 62,20 + 32T
I = 22°J 12T
= 20202 (Jpyo — xJn)(Jn — 2n_2)
= 202 402 — 2030002 00 — 203 T2 4 220 T3 T, o,
J = %I
K = 23J2J% ,
= 23J3(J, — zJp_2)?
= I 2 BT, o+ 2P TRTR .
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Consequently,
S = Ty —Axdi o gy + 32207 + 2) IR 0 T2 — 223 T 0 R Tn o
— 4(90 + 2 T i + (22 + )2 T + 2P T2 T2, (3.1)
To get the desired form for S’, consider
L=aJ2 ,J% — (222 + 2) JpyoJ3 + (22* + 2) T3 Ty — 2P J2 T2, (3.2)

Using the identity J,, 12 = (22 + 1)J,, — 2%J,,_2, we have
L = adnpiod?[Jnse — 2+ 1) Jp] + 2 J2 025 [22 + 1) J, — 22 J,-9]
= 0.
Thus, adding L in equation (3.2) to S’ in equation (3.1) yields
S = Jhy —AxTD o dn +2(32% + 22) I3, 5 T2 — (42% 4 62° + ) Jyp0 s
— 203 02 T o + (2 + )2 T + (22" + %) I3 T2,
By equating the two values of S/, we get the desired result, as expected. [l

3.3. Proof of Identity (1.5).
Proof. Let S* denote the sum of the weights of all closed walks of length 4n+2 in the digraph.
Clearly, S* = jynt2.

We will now compute S* in a different way, and then equate the two values. To this end,
let w be an arbitrary closed walk of length 4n + 2.

Case 1. Suppose w originates (and ends) at v;. It can land at v; or vy at the (n + 1)st
(2n + 2)nd, and (3n + 2)nd steps:

w = ’Ul_..._v v— - — U v— - — U ’U_"'_'Ul,

———— ——
subwalk of length n+1 subwalk of length n+1 subwalk of length n subwalk of length n
where v = v1 or vs.
It follows from Table 4 that the sum S} of the weights of all such walks w is given by

St = T2 Jr tadio i+ wdnvedi Jn + 22 Jngo i1 Indno1 +
+ 202 T2 I+ 2P T ) T
= (J2+2 +xJ +1) (Jn+1 + I'Jn) + IL‘Jn+1Jn(Jn+2 + l’Jn)(JnJrl + ZL‘Jnfl)
= Jont3Jont1 + xJont2don

= J4n+3-
w lands at v, at w lands at v, at w lands at v, at w lands at vy, at sum of the weights
the (n + 1)st step? | the (2n + 2)nd step? | the (3n + 2)nd step? | the (4n + 2)nd step? of walks w
yes yes yes yes Jn+2Jn+1
yes yes no yes xJ? +2J
yes no yes yes xJn+2J +1Jn
yes no no yes 22 Jptodnt1InIn—1
no yes yes yes fo; +1
no yes no yes 12J2+1J72L
no no yes yes x2J72L+1J721
no no no yes xSJn+1J,21J721 1

Table 4: Sums of the Weights of Closed Walks Originating at v;
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Case 2. Suppose w originates at vy. It also can land at vy or vy at the (n + 1)st, (2n + 2)nd,
and (3n + 2)nd steps:

w = fU2—..._fU v— - — U v— - — U 1)_"'_1)2,

~———— —_— —~—
subwalk of length n+1 subwalk of length n+1 subwalk of length n subwalk of length n

where v = v1 or vs.
It follows from Table 5 that the sum S5 of the weights of all such walks w is given by

Sy = wdnpyodi I+ 2 Jnpodni1Jndn1 + 2022 T2+ 2P T2 TR
+ 2P T STy + 23T TR TE
= @dnt1In(Jnsa + 2Jn) (Jng1 + @dno1) + 22 (T2 +2J2) (J2+2J2 )

2
= zJoptodon + 27 Jon1Jon—1

= xJany1.
w lands at vy at w lands at vy at w lands at vy at w lands at vo at sum of the weights
the (n + 1)st step? | the (2n + 2)nd step? | the (3n + 2)nd step? | the (4n + 2)nd step? of walks w
yes yes yes yes xJn+2J72L+1Jn
yes yes no yes $2Jn+2Jn+1Jan_1
yes no yes yes 1'2J721+1J,21
yes no no yes x3 JT2L+1 Jg_l
no yes yes yes x2J72L+1J72L
no yes no yes xSJn+1J,21Jn_1
no no yes yes x3J2
no no no yes a:4JT2LJ72171

Table 5: Sums of the Weights of Closed Walks Originating at vo

Combining the two cases and using identities (1.2) and (1.4), we get
St = ST+
= [(x+1)Jp oy —42? T2 o Jn + (62° + 2%)J2, T2 — (42 + 62° + 27) T i0 g3
+ (2% + 32t + 23) T 4 (225 + 2V T3 o — 28 T2 T2 )
+ x[Th iy — dadd T, +2(32% 4 22) J2, 5 T2 — (42° + 627 + ) T2 ]l
— 203 02 o + (2 4 )2 T + (221 4 23) T3 T, 0]
= 2z +1)Jp o — 822 T2 o Jn + (122% 4 522)J2 5 J2 — 2(4a* + 62° + 1) Ji0 ]2
— 20 Jpy0 2 T + (225 + 52t 4 223) JE + 2(22° 4+ 2) I3 T, 0 — 28 T2 T2,
Equating this value of S* with its earlier value yields identity (1.3), as desired. O
Finally, we explore the graph-theoretic confirmation of identity (1.6).

3.4. Proof of Identity (1.6).
Proof. Let S denote the sum of the weights of all closed walks of length 4n + 3 in the digraph.
Then S = j4n+3.

We will now compute S in a different way. To this end, let w be an arbitrary walk of length
4n + 3.

Case 1. Suppose w originates (and ends) at v;. It can land at v; or ve at the (n + 1)st,
(2n + 2)nd, and (3n + 3)rd steps:
w = vl_..._/U v— *+++ — 0 vV— - — 'U_“’_Ul s

—_— —_———
subwalk of length n+1 subwalk of length n+1 subwalk of length n+1 subwalk of length n
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where v = v or vs.

It follows from Table 6 that the sum S; of the weights of all such walks w is given by

S1 = Jodni1 + 2 d2 o1 dn + 20 dns0 o + 2 Tnga i1 JE 4 2025 Ty + 2P T T
Jni1 (oo + 2002 1+ 22 T2) (Jnsa + 2yn)
= Jopto (JngQ + 2z i1t a:2J2)
Jonv2(Jonys + rJony1)

= Jun+ta-
w lands at v1 at w lands at v; at w lands at vy at w lands at v1 at sum of the weights
the (n + 1)st step? | the (2n + 2)nd step? | the (3n + 3)rd step? | the (4n + 3)rd step? of walks w

yes yes yes yes J;H_2Jn+1
yes yes no yes a:J 2Jn+1 JIn
yes no yes yes TJp42 JnJrl
yes no no yes 22 Jntodnt1 J?L
no yes yes yes xJnt2 JfH_l
no yes no yes x2J3 nt1dn
no no yes yes 2J +1Jn
no no no yes 3Jn+1J3

Table 6: Sums of the Weights of Closed Walks Originating at v;

Case 2. Suppose w originates at vy. It also can land at vy or vy at the (n + 1)st, (2n + 2)nd,
and (3n 4+ 3)rd steps:

w = fU2_..._fU v— - — 0 v— - — U U_"‘_UQ,
N———

~—— ~
subwalk of length n+1 subwalk of length n+1 subwalk of length n+1 subwalk of length n

where v = v or vs.
It follows from Table 7 that the sum Ss of the weights of all closed walks w originating at
vg is given by
Sy = adiigdni1dn + 22 TnrodiyJnot + 3P Jngadngr Jy + 22 To Ty + 220 T2 Tt
+ 2 1 I3+ 2t IS T
= 2Jni1 (Jng2dn + 2Jng1In—1) (Jng2 + 2dy) + 22 (J2 11 + 2J72) Jp(Jns1 + 2n1)
T Jon11(J2ns2 + vJ2n)

= zJani2.
w lands at v, at w lands at vy at w lands at v, at w lands at v, at sum of the weights
the (n + 1)st step? | the (2n + 2)nd step? | the (3n 4 3)rd step? | the (4n + 3)rd step? of walks w
yes yes yes yes :EJn+2Jn+1Jn
yes yes no yes x Jn_,_g n+1J" 1
yes no yes yes 2J +1Jn
yes no no yes T J2+1Jan 1
no yes yes yes 2Jn+2 Jn+1J
no yes no yes :1:3J72L+1 Indn—1
no no yes yes x3Jn+1J,?{
no no no yes 2 J3 Tn—1

Table 7: Sums of the Weights of Closed Walks Originating at vo
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Using equations (1.3) and (1.4), we then get
S = 5145
= Janta + xJang2

Jant3 + 2xJ4n o
(B + 1) Ty — 422 T3 o Jn + 22 T2 0 J2 — (42 + 62% + 22) T2 J0 + 42° Ty 2 J2 Jn2
+ (32 4+ 32t + 23Tt + (22° + 2N T3 T, 0 — (227 + 25 T2 T2 .

This value of .S, coupled with its earlier version, yields the desired result, as expected. O

4. CONCLUSION

The graph-theoretic confirmations of the Jacobsthal identities (1.3) and (1.4) follow using
similar arguments.
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