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THOMAS KOSHY

Abstract. We explore infinite sums involving Jacobsthal polynomial products and their
Jacobsthal-Lucas counterparts, and then extract the corresponding gibonacci versions.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 2].

On the other hand, let a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) =
Jn(x), the nth Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the
nth Jacobsthal-Lucas polynomial. They can also be defined by the Binet-like formulas

Jn(x) =
un(x)− vn(x)

D
and jn(x) = un(x) + vn(x),

where 2u(x) = 1 + D, 2v(x) = 1 − D, and D =
√
4x+ 1. Correspondingly, Jn = Jn(2)

and jn = jn(2) are the nth Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly,
Jn(1) = Fn; and jn(1) = Ln.

Fibonacci and Jacobsthal polynomials, and Lucas and Jacobsthal-Lucas polynomials are
closely related by the relationships Jn(x) = x(n−1)/2fn(1/

√
x) and jn(x) = xn/2ln(1/

√
x) [2].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). We let ∆ =

√
x2 + 4, 2α(x) =

x+∆, and 2β(x) = x−∆, and omit a lot of basic algebra.

2. Sums Involving Gibonacci Polynomial Products

The following sums of gibonacci polynomial products are studied in [3].
∞∑
n=0

1

F 2
2n + 1

=
1 +

√
5

2
,

∞∑
n=0

1

F 2
2n+1 + 1

=

√
5

3
,

∞∑
n=0

1

F 2
n + 1

=
3 + 5

√
5

6
,

∞∑
n=3

1

F 4
n − 1

=
35

18
− 5

√
5

6
,

∞∑
n=0

1

L2
2n + 1

=
α

5
,

∞∑
k=0

1

L2
2n+1 + 9

=

√
5

15
,

∞∑
n=3

1

L4 − 25
=

5

63
−

√
5

30
.

We will revisit them in our investigations.
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3. Sums Involving Jacobsthal Polynomial Products

Our discourse hinges on the identities Jn+1 + xJn−1 = jn, Jn+2 + x2Jn−2 = (2x + 1)Jn,
J2n = Jnjn, Jn+kJn−k−J2

n = −(−x)n−kJ2
k , −(−x)bJa−b = Ja+1Jb−JaJb+1, j

2
n−D2J2

n = 4(−x)n,
Jn+3 + x2Jn−1 = (2x+ 1)Jn+1 [2].

With this background, we begin our explorations with the first infinite sum.

Theorem 3.1. Let Jn = Jn(x). Then,

∞∑
n=0

x2n−1

J2
2n + x2n−1

= u(x). (3.1)

Proof. First, we will establish the summation formula

m∑
n=0

x2n−1

J2
2n + x2n−1

=
J2m+2

J2m+1
, (3.2)

using recursion [2, 3]. To this end, let Am denote the left side of equation (3.2) and Bm its
right side. Using the Jacobsthal addition formula and the Cassini-like identity, we have

Bm −Bm−1 =
J2m+2

J2m+1
− J2m

J2m−1

=
J2m+2J2m−1 − J2m+1J2m

J2m+1J2m−1

=
x2m−1J(2m+2)−2m

J2
2m + x2m−1

=
x2m−1

J2
2m + x2m−1

= Am −Am−1.

Thus, Am−Am−1 = Bm−Bm−1; so Am−Bm = Am−1−Bm−1 = · · · = A0−B0 = 1−1 = 0.
This implies, Am = Bm.

Because lim
m→∞

Jm+1

Jm
= u(x), it follows from equation (3.2) that

∞∑
n=0

x2n−1

J2
2n + x2n−1

= u(x), (3.3)

as desired. □

It follows from equations (3.2) and (3.1) that

m∑
n=0

1

F 2
2n + 1

=
F2m+2

F2m+1
;

∞∑
n=0

1

F 2
2n + 1

=
1 +

√
5

2
,
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respectively, as in [3, 4, 6]; we also have

m∑
n=0

22n−1

J2
2n + 22n−1

=
J2m+2

J2m+1
;

∞∑
n=0

22n−1

J2
2n + 22n−1

= 2.

Next, we explore a corresponding result for odd-numbered Jacobsthal polynomials.

Theorem 3.2.

∞∑
n=0

(2x+ 1)x2n−1

J2
2n+1 + x2n−1

=
√
4x+ 1. (3.4)

Proof. First, we will establish that

m∑
n=0

(2x+ 1)x2n−1

J2
2n+1 + x2n−1

=
J4m+4

J2m+3J2m+1
, (3.5)

using recursion. Let Am and Bm denote the left and right side of equation (3.5), respectively.
Using the addition formula, Cassini-like identity, and the identities J2n = Jnjn, jn = Jn+1 +
xJn−1, and Jn+3 + x2Jn−1 = (2x+ 1)Jn+1, we get

Bm −Bm−1 =
J4m+4

J2m+3J2m+1
− J4m

J2m+1J2m−1

=
J2m+2(J2m+3 + xJ2m+1)

J2m+3J2m+1
− J2m(J2m+1 + xJ2m−1)

J2m+1J2m−1

=
J2m+3(J2m+2J2m−1 − J2m+1J2m)− xJ2m−1(J2m+3J2m − J2m+2J2m+1)

J2m+3J2m+1J2m−1

=
x2m−1J2m+3J2 − x(−x2m)J2m−1J2

J2m+3J2m+1J2m−1

=
x2m−1(J2m+3 + x2J2m−1)

J2m+3J2m+1J2m−1

=
(2x+ 1)x2m−1

J2m+3J2m−1

=
(2x+ 1)x2m−1

J2
2m+1 + x2m−1

= Am −Am−1.

Consequently, Am − Bm = Am−1 − Bm−1 = · · · = A0 − B0 =
2x+ 1

x+ 1
− 2x+ 1

x+ 1
= 0. So,

Am = Bm.
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It then follows from equation (3.5) that

∞∑
n=0

(2x+ 1)x2n−1

J2
2n+1 + x2n−1

= lim
m→∞

J2m+2j2m+2

J2m+3J2m+1

= lim
m→∞

J2m+2

J2m+3
· lim
n→∞

j2m+2

J2m+1

=
1

u(x)
· u(x)D

= D,

as expected. □

It follows from equations (3.5) and (3.4) that

m∑
n=0

3

F 2
2n+1 + 1

=
F4m+4

F2m+3F2m+1
;

∞∑
n=0

1

F 2
2n+1 + 1

=

√
5

3
;

m∑
n=0

5 · 22n−1

J2
2n+1 + 22n−1

=
J4m+4

J2m+3J2m+1
;

∞∑
n=0

22n−1

J2
2n+1 + 22n−1

=
3

5
;

see [3, 6].

3.1. Additional Implications. Using the relationship Jn(x) = x(n−1)/2fn(1/
√
x), we can

extract in two steps the Fibonacci versions of equations (3.2) and (3.5), and hence, equations
(3.1) and (3.4).

Consider equation (3.2). Replacing 1/
√
x with x and then x with 1/x2, we get

LHS =
m∑

n=0

x2n−1[
x(2n−1)/2f2n(1/

√
x)
]2

+ x2n−1

=

m∑
n=0

x2n−1

x2n−1f2
2n(1/

√
x) + x2n−1

=
m∑

n=0

1

x4n−2

[
1

x4n−2
f2
2n(x) +

1

x4n−2

]
=

m∑
n=0

1

f2
2n(x) + 1

;

RHS =
x(2m+1)/2f2m+2(1/

√
x)

x(2m)/2f2m+1(1/
√
x)

=
f2m+2(x)

xf2m+1(x)
.
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Combining the two sides, we get

m∑
n=0

x

f2
2n(x) + 1

=
f2m+2

f2m+1
;

∞∑
n=0

x

f2
2n(x) + 1

= α(x),

as in equations (2.1) and (2.2) of [3].
Next, consider equation (3.5). Using the Jacobsthal-Fibonacci relationship and the two

steps, we get

LHS =

m∑
n=0

(2x+ 1)x2n−1[
x(2n)/2f2n+1(1/

√
x)
]2

+ x2n−1

=
m∑

n=0

(2x+ 1)x2n−1

x2nf2
2n+1(1/

√
x) + x2n−1

=

m∑
n=0

x2 + 2

x2
[
1

x2
f2
2n+1(x) + 1

]
=

m∑
n=0

x2 + 2

f2
2n+1(x) + x2

;

RHS =
x(4m+3)/2f4m+4(1/

√
x)

x(2m+2)/2f2m+3(1/
√
x) · x(2m)/2f2m+1(1/

√
x)

=

√
xf4m+4(1/

√
x)

f2m+3(1/
√
x)f2m+1(1/

√
x)

=
f4m+4(x)

xf2m+3(x)f2m+1(x)
.

Equating the two sides then yields

m∑
n=0

x3 + 2x

f2
2n+1 + x2

=
f4m+4

f2m+3f2m+1
;

∞∑
n=0

x3 + 2x

f2
2n+1 + x2

= α(x)− β(x),

as in equations (2.4) and (2.3) of [3], respectively.
Next, we explore the Jacobsthal counterpart of Theorem 2.3 in [3].

Theorem 3.3. Let u = u(x) and Jn = Jn(x). Then,

∞∑
n=3

(x+ 1)(2x+ 1)x2n

J4
n + (x− 1)(−x)n−2 − x2n−3

= (x2 + 1)

(
2x2 + 4x+ 1

x+ 1
− 4x+ 1

u

)
− x6

2x+ 1
. (3.6)

Proof. From the proof of Theorem 2.3 in [3], we have

m−1∑
n=1

x3 + x

fnfn+1fn+2fn+3
=

x4 + 4x2 + 2

x3 + x
−
(
fm−1

fm
+

(x2 + 2)fm
fm+1

+
fm+1

fm+2

)
.
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Using the relationship Jn(x) = x(n−1)/2fn(1/
√
x), this yields

LHS =
1

x
√
x

m−1∑
n=1

(x+ 1)x2n+1[
x(n−1)/2fn

] [
xn/2fn+1

] [
x(n+1)/2fn+2

] [
x(n+2)/2fn+3

]
=

1√
x

m−1∑
n=1

(x+ 1)x2n

JnJn+1Jn+2Jn+3
;

RHS =
(2x2 + 4x+ 1)

√
x

x+ 1

−

[
x3/2

x
· x

(m−2)/2fm−1

x(m−1)/2fm
+

(2x+ 1)x

x
√
x

· x
(m−1)/2fm

xm/2fm+1
+
√
x · xm/2fm+1

x(m+1)/2fm+2

]

=
(2x2 + 4x+ 1)

√
x

x+ 1
−
(√

x · Jm−1

Jm
+

2x+ 1√
x

· Jm
Jm+1

+
√
x · Jm+1

Jm+2

)
=

(2x2 + 4x+ 1)
√
x

x+ 1
−
√
x

(
Jm−1

Jm
+

2x+ 1

x

Jm
Jm+1

+
Jm+1

Jm+2

)
,

where fn = fn(1/
√
x) and Jn = Jn(x).

Combining the two sides, we then get

m−1∑
n=1

(x+ 1)x2n

JnJn+1Jn+2Jn+3
=

2x2 + 4x+ 1

x+ 1
−
[
x
Jm−1

Jm
+ (2x+ 1)

Jm
Jm+1

+ x
Jm+1

Jm+2

]
.

Consequently,
∞∑
n=3

(x+ 1)x2n

Jn−2Jn−1JnJn+1
=

2x2 + 4x+ 1

x+ 1
−
(
x

u
+

2x+ 1

u
+

x

u

)
=

2x2 + 4x+ 1

x+ 1
− 4x+ 1

u
;

∞∑
n=3

(x+ 1)x2n

Jn−1JnJn+1Jn+2
=

2x2 + 4x+ 1

x+ 1
− 4x+ 1

u
− x4

2x+ 1
.

Because Jn+2 + x2Jn−2 = (2x+ 1)Jn, Jn+kJn−k − J2
n = −(−x)n−kJ2

k [2] and

Jn−2Jn−1Jn+1Jn+2 = (Jn+1Jn−1)(Jn+2Jn−2)

=
[
J2
n − (−x)n−1

] [
J2
n − (−x)n−2

]
= J4

n + (x− 1)(−x)n−2J2
n − x2n−3,

we then have

2x+ 1

J4
n + (x− 1)(−x)n−2J2

n − x2n−3
=

(2x+ 1)Jn
Jn−2Jn−1JnJn+1Jn+2

=
Jn+2 + x2Jn−2

Jn−2Jn−1JnJn+1Jn+2

=
1

Jn−2Jn−1JnJn+1
+

x2

Jn−1JnJn+1Jn+2
,

∞∑
n=3

(x+ 1)(2x+ 1)x2n

J4
n + (x− 1)(−x)n−2J2

n − x2n−3
= (x2 + 1)

(
2x2 + 4x+ 1

x+ 1
− 4x+ 1

u

)
− x6

2x+ 1
,
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as desired. □

It follows from equation (3.6) that

∞∑
n=3

1

F 4
n − 1

=
35

18
− 5

√
5

6
,

as in [3, 4, 6]. In addition,

∞∑
n=3

22n

J4
n + (−2)n−2J2

n − 22n−3
= −209

450
.

Next, we investigate the Jacobsthal-Lucas consequences of the above Jacobsthal polynomial
sums. Our investigation hinges on the identity j2n −D2J2

n = 4(−x)n, where D =
√
4x+ 1 [2].

4. Jacobsthal-Lucas Implications

4.1. Counterparts of Equations (3.2) and (3.5). It follows from equation (3.2) that

m∑
n=0

x2n−1

D2J2
2n +D2x2n−1

=
J2m+2

D2J2m+1
;

m∑
n=0

x2n−1

j22n − 4(−x)2n +D2x2n−1
=

J2m+2

D2J2m+1
;

m∑
n=0

x2n−1

j22n + x2n−1
=

J2m+2

(4x+ 1)J2m+1
. (4.1)

Similarly, equation (3.5) yields

m∑
n=0

(2x+ 1)x2n−1

j22n+1 + (2x+ 1)2x2n−1
=

J4m+4

(4x+ 1)J2m+3J2m+1
. (4.2)

It follows from equations (4.1) and (4.2) that

m∑
n=0

22n−1

j22n + 22n−1
=

J2m+2

9J2m+1
;

∞∑
n=0

x2n−1

j22n + x2n−1
=

u(x)

4x+ 1
; (4.3)

∞∑
n=0

22n−1

j22n + 22n−1
=

2

9
; (4.4)

m∑
n=0

22n−1

j22n+1 + 25 · 22n−1
=

J4m+4

45J2m+3J2m+1
;

∞∑
n=0

(2x+ 1)x2n−1

j22n+1 + (2x+ 1)2x2n−1
=

1

D
; (4.5)

∞∑
n=0

22n−1

j22n+1 + 25 · 22n−1
=

1

15
. (4.6)
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Equations (4.3) and (4.5) imply that

∞∑
n=0

1

L2
2n + 1

=
1 +

√
5

10
;

∞∑
n=0

1

L2
2n+1 + 9

=

√
5

15
,

respectively, as found earlier.

4.2. Lucas Versions of Equations (4.1) and (4.2). Using the Jacobsthal-Lucas relationship

jn(x) = xn/2ln(1/
√
x) and the two steps used earlier, we can extract the Lucas counterparts

of equations (4.1) and (4.2).
First, consider equation (4.1). Following the two-step method, we get

LHS = D2
m∑

n=0

x2n−1

j22n(x) + x2n−1

= D2
m∑

n=0

x2n−1

x2nl22n(1/
√
x) + x2n−1

=
∆2

x2

m∑
n=0

1

x4n−2

[
1

x4n
l22n(x) +

1

x4n−2

]
=

m∑
k=0

∆2

l22n(x) + x2
;

RHS =
J2m+2(x)

J2m+1(x)

=
x(2m+1)/2f2m+2(1/

√
x)

x(2m)/2f2m+1(1/
√
x)

=

√
xf2m+2(1/

√
x)

f2m+1(1/
√
x)

=
f2m+2(x)

xf2m+1(x)
.

Equating the two sides yields

m∑
n=0

x

l22n + x2
=

f2m+2

∆2f2m+1
;

∞∑
n=0

x

l22n + x2
=

α(x)

x2 + 4
,

as in [3].
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Next, we begin with equation (4.2). Using the two-step procedure, we get

LHS = D2(2x+ 1)
m∑

n=0

x2n−1[
x(2n+1)/2l2n+1(1/

√
x)
]2

+ (2x+ 1)2x2n−1

=
∆2(x2 + 2)

x4

m∑
n=0

x4

l22n+1(x) + (x2 + 2)2

=
m∑

n=0

∆2(x2 + 2)

l22n+1(x) + (x2 + 2)2
;

RHS =
J4m+4(x)

J2m+3(x)J2m+1(x)

=
x(4m+3)/2f4m+4(1/

√
x)

x(2m+2)/2f2m+3(1/
√
x)x(2m)/2f2m+1(1/

√
x)

=

√
xf4m+4(1/

√
x)

f2m+3(1/
√
x)f2m+1(1/

√
x)

=
f4m+4(x)

xf2m+3f2m+1
.

Equating the two sides, we get

m∑
n=0

x3 + 2x

l22n+1 + (x2 + 2)2
=

f4m+4

∆2f2m+3f2m+1
;

∞∑
n=0

x3 + 2x

l22n+1 + (x2 + 2)2
=

1√
x2 + 4

,

as in [3].

Using the Lucas-Jacobsthal relationship jn(x) = xn/2ln(1/
√
x), next we explore the Jacob-

sthal version of equation (4.5) in [3]:

∞∑
n=3

(x2 + 1)(x3 + 2x)∆4

d(x)
=

2(x4 + 4x2 + 2)

x3 + x
+ 2∆2β(x)− 1

x3 + 2x
, (4.7)

where d(x) = l4n − (−1)n[(x2 − 1)∆2 + 8]l2n − (x3 + 2x)2.

4.3. Jacobsthal Version of Equation (4.7). Replacing x with
√
x in equation (4.7) and

then multiplying the resulting equation with x2n−4, we get

LHS =
1√
x

∞∑
n=3

(x+ 1)(2x+ 1)D4

{x4l4n + (−1)n[(x− 1)D2 − 8x2]x2l2n − x(2x+ 1)2}

=
1√
x

∞∑
n=3

(x+ 1)(2x+ 1)D4x2n−4

{j4n + (−1)n[(x− 1)D2 − 8x2]xn−4j2n − (2x+ 1)2x2n−3}
;

RHS =
2(2x2 + 4x+ 1)

√
x

x2 + x
+

(1−D)D2

x
√
x

− x
√
x

2x+ 1
,

where ln = ln(1/
√
x) and jn = jn(x).
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Combining the two sides yields

∞∑
n=3

(x+ 1)(2x+ 1)D4x2n−4

k(x)
=

2(2x2 + 4x+ 1)

x+ 1
+

(1−D)D2

x
− x2

2x+ 1
, (4.8)

where k(x) = j4n + (−1)n[(x− 1)D2 − 8x2]xn−4j2n − (2x+ 1)2x2n−3.
In particular, we then get

∞∑
n=3

1

L4
n − 8(−1)nL2

n − 9
=

7− 3
√
5

90
;

∞∑
n=3

22n

j4n − 23(−2)n−4j2n − 25 · 22n−3
=

368

18225
.

4.4. An Additional Jacobsthal Implication. Finally, we develop the Jacobsthal conse-
quence of equation (4.6) in [3]:

∞∑
n=3

(x2 + 2)(x4 + x2)

l4n + (−1)n(x2 − 1)∆2l2n −∆4x2
=

(x2 + 1)(x6 + 6x4 + 10x2 + 3)

(x2 + 2)(x2 + 3)(x4 + 4x2 + 2)
− x

∆
. (4.9)

Theorem 4.1. Let ln = ln(x), jn = jn(x), and D =
√
4x+ 1. Then,

∞∑
n=3

(x+ 1)(2x+ 1)x2n−3

j(x)
=

(x+ 1)(3x3 + 10x2 + 6x+ 1)

(2x+ 1)(3x+ 1)(2x2 + 4x+ 1)
− 1

D
, (4.10)

where j(x) = j4n − (x− 1)(−x)n−2D2j2n −D4x2n−3.
Proof. Replacing x with 1/

√
x in equation (4.9) and then using the relationship jn(x) =

xn/2ln(1/
√
x), we get

LHS =
∞∑
n=3

(x+ 1)(2x+ 1)

x3l4n − (−1)n(x− 1)xD2l2n −D4

=
∞∑
n=3

(x+ 1)(2x+ 1)x2n−3

(xn/2ln)4 − (x− 1)(−x)n−2D2(xn/2ln)2 −D4x2n−3

=
∞∑
n=3

(x+ 1)(2x+ 1)x2n−3

j4n − (x− 1)(−x)n−2D2j2n −D4x2n−3
;

RHS =
(x+ 1)(3x3 + 10x2 + 6x+ 1)x4

x4(2x+ 1)(3x+ 1)(2x2 + 4x+ 1)
− 1

D

=
(x+ 1)(3x3 + 10x2 + 6x+ 1)

(2x+ 1)(3x+ 1)(2x2 + 4x+ 1)
− 1

D
,

where ln = ln(1/
√
x) and jn = jn(x).

Combining the two sides, we get

∞∑
n=3

(x+ 1)(2x+ 1)x2n−3

j4n − (x− 1)(−x)n−2D2j2n −D4x2n−3
=

(x+ 1)(3x3 + 10x2 + 6x+ 1)

(2x+ 1)(3x+ 1)(2x2 + 4x+ 1)
− 1

D
,

as desired. □

NOVEMBER 2021 347



THE FIBONACCI QUARTERLY

It follows from equation (4.10) that
∞∑
n=3

1

L4 − 25
=

5

63
−

√
5

30
,

as in [3, 5, 7]. In addition, we have
∞∑
n=3

22n

j4n − 9(−2)n−2j2n − 81 · 22n−3
=

112

3825
.
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