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Abstract. Edouard Zeckendorf [5] proved that every positive integer n can be uniquely writ-
ten as the sum of nonadjacent Fibonacci numbers, known as the Zeckendorf decomposition.
Based on Zeckendorf’s decomposition, we have the Zeckendorf game for multiple players. We
show that when the Zeckendorf game has at least three players, none of the players have a
winning strategy for n ≥ 5. Then we extend the multiplayer game to the multialliance game,
finding some interesting situations in which no alliance has a winning strategy. This includes
the two-alliance game, and some cases in which one alliance always has a winning strategy.

1. Introduction

1.1. Rules of Zeckendorf Game. The Fibonacci sequence is one of the most fabulous se-
quences with a number of beautiful properties. Among these properties is a theorem by
Edouard Zeckendorf [5]. Zeckendorf proved that every positive integer n can be uniquely writ-
ten as the sum of distinct nonconsecutive Fibonacci numbers. This sum is also known as the
Zeckendorf decomposition of n. We define the Fibonacci sequence as F1 = 1, F2 = 2, F3 = 3,
and Fn+1 = Fn + Fn−1. If we stuck with F1 = F2 = 1, we lose uniqueness.

Baird-Smith, Epstein, Flint, and Miller [1, 2] created a game based on the Zeckendorf
decomposition. We quote from [2] to describe the game.

We first introduce some notation. By {1n} or {F1
n}, we mean n copies of 1, or F1. If we

have three copies of F1, two copies of F2, and seven copies of F4, we write {F1
3 + F2

2 + F4
7}

or {13 + 22 + 57}.

Definition 1.1 (The Zeckendorf Game). At the beginning of the game, there is an unordered
list of n 1’s. Let F1 = 1, F2 = 2, and Fi+1 = Fi + Fi−1; therefore the initial list is {F1

n}. On
each turn, a player can do one of the following moves.

(1) If the list contains two consecutive Fibonacci numbers, Fi−1, Fi, these can be combined
to create Fi+1. We denote this move by Fi−1 + Fi = Fi+1.

(2) If the list has two of the same Fibonacci number, Fi, Fi, then
(a) if i = 1, F1, F1 can be combined to create F2, denoted by 1 + 1 = 2,
(b) if i = 2, a player can change F2, F2 to F1, F3, denoted by 2 + 2 = 1 + 3, and
(c) if i ≥ 3, a player can change Fi, Fi to Fi−2, Fi+1, denoted by Fi+Fi = Fi−2+Fi+1.

The players alternate moving. The game ends when one player moves to create the Zeckendorf
decomposition.

In the following results, p represents the number of players in the Zeckendorf game.

1.2. Previous Results. Baird-Smith, Epstein, Flint, and Miller [2] proved the following re-
sults in the Zeckendorf game.
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Theorem 1.2. Every game terminates in a finite number of moves at the Zeckendorf decom-
position.

Theorem 1.3. In the two-player game (p = 2), for any n > 2, player 2 always has a winning
strategy.

It is worth noting that the proof of Theorem 1.3 is nonconstructive, and it is still an open
problem to find a constructive winning strategy for player 2.

1.3. New Results.

Theorem 1.4. When n ≥ 5, for any p ≥ 3, no player has a winning strategy.

Now we extend the multiplayer games to the game of more than two alliances, or teams.
We use t to represent the number of teams. We then have the following theorems.

Theorem 1.5. For any n ≥ 2k2+4k and t ≥ 3, if each team has exactly k = t−1 consecutive
players, then no team has a winning strategy.

Theorem 1.6. Let n ≥ 30 and p = 6. If one alliance has four players and the other alliance
has two players, then the 4-player alliance always has a winning strategy.

Theorem 1.7. Let n ≥ 32 and p ≥ 7. If there are two alliances, one alliance with p−2 players
(called the big alliance), and the other with exactly two players (called the small alliance), then
the big alliance always has a winning strategy.

Finally, we extend this to larger alliances with the following theorems.

Theorem 1.8. For any n ≥ 4pb + 2p − 2b, if one alliance contains more than two-thirds
of the players and there is some integer b such that if player i is not in the alliance, player
(i− b) mod p is in it, and the alliance has at least 2b players in a row, then that alliance has
a winning strategy.

Theorem 1.9. Let n ≥ 2p + 4b. If there is some integer b such that if player i is not in the
alliance, then player (i − b) mod p is in the alliance, and the alliance has at least 3b players
in a row, then that alliance has a winning strategy.

Theorem 1.10. Assume we have one big alliance (size 2d) and one small alliance (size d).
In this two-alliance game consisting of 3d players (d can be any positive integer), when the
small alliance consists of d consecutive players and the big alliance consists of 2d consecutive
players, if n ≥ 12d2 + 4d, then the big alliance always has a winning strategy.

2. Winning Strategy for the Zeckendorf Game

2.1. Proof of Theorem 1.4.
Note: In all the following proofs of this section, player 0 is player p modulo p.

To prove Theorem 1.4, we introduce the following property.

Property 1. Suppose player m has a winning strategy (1 ≤ m ≤ p). For any p ≥ 3, if player
m is not the player who takes Step 2 listed below, then any winning path of player m does not
contain the following three consecutive steps:

Step 1: 1 + 1 = 2.
Step 2: 1 + 1 = 2.
Step 3: 2 + 2 = 1 + 3.
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Proof. Suppose player m has a winning strategy and there is a winning path that contains
these three consecutive steps. Then, there exists a player a where 1 ≤ a ≤ p, a ̸= m, such
that player a− 1 (mod p) can take Step 1, player a can take Step 2, and player a+1 (mod p)
can take Step 3.

Note that instead of doing 1+1 = 2, player a can do 1+2 = 3. Then, player m−1 (mod p)
has a winning strategy, which is a contradiction.

Therefore, by using the stealing strategy, Property 1 holds. □

We now prove Theorem 1.4 by splitting it into the following two lemmas, Lemma 2.1 and
Lemma 2.2.

Lemma 2.1. When n ≥ 13, for any p ≥ 4, no player has a winning strategy.

Proof. Suppose player m has a winning strategy (1 ≤ m ≤ p).
Consider the following two cases.

Case 1. If m ≥ 4, then players 1, 2, 3 can do the following:
Player 1: 1 + 1 = 2.
Player 2: 1 + 1 = 2.
Player 3: 2 + 2 = 1 + 3.
This contradicts Property 1, so player m does not have a winning strategy for any

m ≥ 4.

Case 2. If m ≤ 3, then after player m’s first move, players m + 1, m + 2, m + 3 can do the
following:

Player m+ 1: 1 + 1 = 2.
Player m+ 2: 1 + 1 = 2.
Player m+ 3: 2 + 2 = 1 + 3.
This contradicts Property 1, so player m does not have a winning strategy for any

m ≤ 3.

By Case 1 and Case 2, Lemma 2.1 is proved. □

Lemma 2.2. When n ≥ 13, for p = 3, no player has a winning strategy.

Proof. Suppose player m has a winning strategy (1 ≤ m ≤ 3).
After player m’s first move, players m+1 and m+2 can do the following (if m = 3, we can

start the following process from the first step of the game):
Player m+ 1: 1 + 1 = 2 (Step 1).
Player m+ 2: 1 + 1 = 2 (Step 2).
Player m: Player m can do any valid move (Step 3).

Note that if player m does 2 + 2 = 1 + 3, then Steps 1, 2, and 3 violate Property 1, which
is a contradiction.

If player m does any valid move other than 2 + 2 = 1 + 3, then after player m’s first move,
the other two players can do the following (continuing after the first three steps listed above
with two more steps; if m = 3, player m+ 1 is player 1):

Player m+ 1: 1 + 1 = 2 (Step 1).
Player m+ 2: 1 + 1 = 2 (Step 2).
Player m: Player m can do any valid move (Step 3).
Player m+ 1: 1 + 1 = 2 (Step 4).
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Player m+ 2: 2 + 2 = 1 + 3 (Step 5).
Note that Step 3 removes at most one 2, but Step 1 and Step 2 generate two 2’s in total, so

there will be at least one 2 remaining after Step 3. Therefore, player m+ 1 can do 1 + 2 = 3
instead in Step 4. By doing so, now player m− 1 (mod p) has a winning strategy, which is a
contradiction.

Thus by using the stealing strategy, Lemma 2.2 is proved. □

By Lemmas 2.1 and 2.2, and brute force computations for n < 13, Theorem 1.4 is proved.

2.2. Proof of Theorem 1.5. For the following proofs, team 0 is team t modulo t.
Note that player tk’s next player is player 1, and we regard player tk and player 1 as two

consecutive players. Therefore, without loss of generality, in all the following proofs, we assume
that team 1 has player 1, 2, 3, . . ., k; team 2 has player k+1, k+2, . . ., 2k; team 3 has player
2k + 1, 2k + 2, . . ., 3k and so on.

For this proof, we utilize the following property.

Property 2. Suppose team m has a winning strategy (1 ≤ m ≤ t). For any t ≥ 3 and
k = t − 1, if none of the middle k players listed below belong to team m, then any winning
path for team m does not contain the following 3k consecutive steps:

First k players all do: 1 + 1 = 2.
Middle k players all do: 1 + 1 = 2.
Last k players all do: 2 + 2 = 1 + 3.

Proof. Suppose team m has a winning strategy and there is a winning path for team m that
contains such 3k consecutive steps. Then there exists q (1 ≤ q ≤ p) such that player q belongs
to team m and takes the last step of the game.

For the middle k players, instead of doing 1 + 1 = 2, they can all do 1 + 2 = 3.
By doing so, player q − k now becomes the player who takes the last step.
Note that team m has k players, so player q − k belongs to team m− 1 (mod t).
So team m− 1 (mod t) has a winning strategy, which contradicts our assumption.
Therefore, by using the stealing strategy, it is proved that Property 2 holds. □

After proving Property 2, we prove Theorem 1.5 by splitting it into the following two
lemmas: Lemmas 2.3 and 2.4.

Lemma 2.3. When n ≥ 2k2+4k, for any t ≥ 4 and k = t−1, no team has a winning strategy.

Proof. Suppose team m has a winning strategy (1 ≤ m ≤ t).
Note that the last player in team m is player mk, so the first player after team m is player

mk + 1 (mod p).
Also, there are t − 1 = k other teams, and each team has k players, where k ≥ 4 − 1 = 3.

Therefore, there are k2 ≥ 3k consecutive players from other teams. After all the members of
team m’s first move, the consecutive t− 1 = k other teams can do the following:

(If m = t, we start the following steps from the first step of player 1.) In all the following,
all players’ numbers are mod p.

From player mk + 1 to (m+ 1)k, all do 1 + 1 = 2.
From player (m+ 1)k + 1 to player (m+ 2)k, all do 1 + 1 = 2.
From player (m+ 2)k + 1 to player (m+ 3)k, all do 2 + 2 = 1 + 3.
Because all these 3k players are not from team m, it contradicts Property 2, so team m

does not have a winning strategy. Therefore, Lemma 2.3 is proved. □

Lemma 2.4. When n ≥ 30, for any t = 3 and k = 2, no team has a winning strategy.

NOVEMBER 2021 311



THE FIBONACCI QUARTERLY

Proof. Suppose team m has a winning strategy (1 ≤ m ≤ 3). Note that the game has three
teams and six players in total, so all the players’ numbers listed below are modulo 6, and all
the teams’ numbers listed below are modulo 3. Team m+ 1 has players 2m+ 1 and 2m+ 2;
team m− 1 has players 2m+ 3 and 2m+ 4; team m has players 2m− 1 and 2m.

After player 2m’s (last player from team m) first move, let us do the following first:
(If m = 3, the same following process can start from first step of player 1.)
Player 2m+ 1: 1 + 1 = 2 (Step 1).
Player 2m+ 2: 1 + 1 = 2 (Step 2).
Player 2m+ 3: 1 + 1 = 2 (Step 3).
Player 2m+ 4: 1 + 1 = 2 (Step 4).
Player 2m− 1: Any valid move (Step 5).
Player 2m: Any valid move (Step 6).
Player 2m+ 1: 1 + 1 = 2 (Step 7).
Player 2m+ 2: 1 + 1 = 2 (Step 8).
Player 2m+ 3: 1 + 1 = 2 (Step 9).
Player 2m+ 4: 1 + 1 = 2 (Step 10).
Player 2m− 1: Any valid move (Step 11).
Player 2m: Any valid move (Step 12).
(Note: Steps 5, 6, 11, and 12 can be any valid move because they are controlled by team

m.)
Now, we prove this lemma in two cases.

Case 1. If Steps 5 and 6 are 2 + 2 = 1 + 3, then look at Steps 1, 2, 3, 4, 5, and 6.
This contradicts Property 2, so team m has no winning strategy.
Similarly, if Step 11 and 12 are both 2 + 2 = 1 + 3, then look at Steps 7, 8, 9, 10,

11, and 12.
This contradicts Property 2, so team m has no winning strategy.

Case 2. Otherwise, if one of Steps 5 or 6 is not 2 + 2 = 1 + 3, and one of Steps 11 and 12 is
not 2+ 2 = 1+ 3, then let us do the following after player 2m’s first move (continuing
after the first 12 steps with four more steps; if m = 3, the same process can start from
the first step of player 1):

Player 2m+ 1: 1 + 1 = 2 (Step 1).
Player 2m+ 2: 1 + 1 = 2 (Step 2).
Player 2m+ 3: 1 + 1 = 2 (Step 3).
Player 2m+ 4: 1 + 1 = 2 (Step 4).
Player 2m− 1: Any valid move (Step 5).
Player 2m: Any valid move (Step 6).
Player 2m+ 1: 1 + 1 = 2 (Step 7).
Player 2m+ 2: 1 + 1 = 2 (Step 8).
Player 2m+ 3: 1 + 1 = 2 (Step 9).
Player 2m+ 4: 1 + 1 = 2 (Step 10).
Player 2m− 1: Any valid move (Step 11).
Player 2m: Any valid move (Step 12).
Player 2m+ 1: 1 + 1 = 2 (Step 13).
Player 2m+ 2: 1 + 1 = 2 (Step 14).
Player 2m+ 3: 2 + 2 = 1 + 3 (Step 15).
Player 2m+ 4: 2 + 2 = 1 + 3 (Step 16).
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Note that one of Steps 5 and 6 is not 2 + 2 = 1 + 3, and one of Steps 11 and 12 is
not 2+2 = 1+3, so Steps 5 and 6 will take away at most three 2’s in total, and Steps
11 and 12 will take away at most three 2’s in total. Also note that Steps 1, 2, . . ., 10
generate eight 2’s in total. So after Step 12, there will be at least two 2’s remaining.

Therefore, for players 2m + 1 and 2m + 2, instead of doing 1 + 1 = 2, they can do
1 + 2 = 3.

Because team m has a winning strategy, player 2m− 1 or player 2m takes the last
step.

If player 2m − 1 originally takes the last step, by using the stealing strategy men-
tioned above, player 2m − 1 − 2 = 2m − 3 now takes the last step, which means
that player 2m + 3 takes the last step, so team m − 1 has a winning strategy, which
contradicts our assumption.

If player 2m originally takes the last step, by using the stealing strategy mentioned
above, player 2m − 2 now takes the last step, which means that player 2m + 4 takes
the last step, so team m−1 has a winning strategy, which contradicts our assumption.

In both cases, we can find a contradiction by using the stealing strategy, so Lemma 2.4 is
proved. □

Therefore, by Lemmas 2.3 and 2.4, Theorem 1.5 is proved.

2.3. Proof of Theorem 1.6.
Note: In the following proof, because player 6’s next player is player 1, player 6 and player 1
are considered to be consecutive players.

The 4-player alliance has three possible cases.

Case 1. If the 4-player alliance consists of four consecutive players, then the 2-player alliance
will also have two consecutive players.

To show that the 2-player alliance does not actually have a winning strategy, the
four consecutive players in the big alliance can be regarded as two teams, where each
team has two consecutive players.

Therefore, according to Lemma 2.4, the 2-player alliance does not have a winning
strategy.

Therefore, the 4-player alliance always has a winning strategy in this case.

Case 2. Assume the 4-player alliance is separated into two parts, and each part has two con-
secutive players.

Note that this situation is equivalent to the 3-player game situation, where two of
them are on the same team.

According to Lemma 2.2, the single player in the 3-player game does not have a
winning strategy.

Equivalently, the 2-player alliance does not have a winning strategy.
Therefore, the 4-player alliance always has a winning strategy.

Case 3. Assume the 4-player alliance is separated into two parts, where one part has three
consecutive players and the other part only has one player.

Then, the players in the 2-player alliance are separated from each other (if they
are not separated, then the players of the 4-player alliance will be four consecutive
players).
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If the 2-player alliance has a winning strategy, then there always exists a player q
from the 2-player alliance who takes the last step.

Assume the three consecutive players in the 4-player alliance are player a, a + 1
(mod 6), a+ 2 (mod 6). Then, let us do the following from player a’s first move:

Player a: 1 + 1 = 2.
Player a+ 1: 1 + 1 = 2.
Player a+ 2: 2 + 2 = 1 + 3.
Note that if player a + 1 does 1 + 2 = 3 instead, then player q − 1 will now be

the player who takes the last step. Because two players of the 2-player alliance are
separated, player q−1 belongs to the 4-player alliance. Therefore, the 4-player alliance
now has a winning strategy, which contradicts our assumption.

Therefore, by using the stealing strategy, we prove that the 4-player alliance has a
winning strategy.

Thus, by Case 1, Case 2, and Case 3, Theorem 1.6 follows.

2.4. Proof of Theorem 1.7. We look at the case of 7-player game first.

Lemma 2.5. When n ≥ 32, if one alliance has five players and the other alliance has two
players, then the 5-player alliance always has a winning strategy.

Proof. We prove this lemma by considering two cases.

Case 1. If the players in the 2-player alliance are not consecutive players, then the 5-player al-
liance will be separated into two parts (considering player 7 and player 1 as consecutive
players).

According to the pigeonhole principle, one of these two parts will contain at least
three consecutive players (we call this part the “large part”).

If the 2-player alliance has a winning strategy, then there exists a player q from the
2-player alliance who takes the last step.

Suppose the first player in the large part is player a. Then, starting from player a’s
first move, let us do the following:

Player a: 1 + 1 = 2.
Player a+ 1: 1 + 1 = 2.
Player a+ 2: 2 + 2 = 1 + 3.
Note that instead of doing 1 + 1 = 2, player a + 1 can do 1 + 2 = 3. Then, player

q − 1 is the player who takes the last step of the winning path.
Because the two players in the 2-player alliance are not consecutive, player q − 1

belongs to the 5-player alliance.
As a result, the 5-player alliance now has a winning strategy, which contradicts our

assumption.
Therefore, by using the stealing strategy, we proved that the 5-player alliance has

the winning strategy.

Case 2. If the players in the 2-player alliance are consecutive, then the players in the 5-player
are also consecutive.

Suppose that the five consecutive players of the 5-player alliance starts with player
a.

Then, starting with player a’s first move, let us do the following:
Player a: 1 + 1 = 2 (Step 1).
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Player a+ 1: 1 + 1 = 2 (Step 2).
Player a+ 2: 1 + 1 = 2 (Step 3).
Player a+ 3: 1 + 1 = 2 (Step 4).
Player a+ 4: 1 + 1 = 2 (Step 5).
Player a+ 5: Any valid move (Step 6).
Player a+ 6: Any valid move (Step 7).
(Note that player a+ 5 and player a+ 6 are in the 2-player alliance.)
Player a: 1 + 1 = 2 (Step 8).
Player a+ 1: 1 + 1 = 2 (Step 9).
Player a+ 2: 1 + 1 = 2 (Step 10).
Player a+ 3: 2 + 2 = 1 + 3 (Step 11).
Player a+ 4: 2 + 2 = 1 + 3 (Step 12).
If the 2-player alliance has a winning strategy, then there always exists a player q

from the 2-player alliance who takes the last step.
Note that Step 6 and Step 7 can take away at most four 2’s in total, and Steps 1,

2, 3, 4, 5, and 8 have generated six 2’s in total.
As a result, after Step 8, there will be at least two 2’s remaining.
Therefore, player a+1 in Step 9 and player a+2 in Step 10 can do 1+2 = 3 instead.

Then, player q − 2 becomes the player who takes the last step.
Because two players of the 2-player alliance are consecutive, player q − 2 belongs

to the 5-player alliance. Therefore, the 5-player alliance now has a winning strategy,
which contradicts our assumption.

Therefore, by using the stealing strategy, Case 2 is proved.

Thus, by our analysis in Case 1 and Case 2, Lemma 2.5 is proved. □

Now, let us look at the game of eight or more players.

Lemma 2.6. In a p-player game with two alliances, when n is significantly large (n ≥ 22)
and p ≥ 8, if one alliance has p− 2 players (let us call this the big alliance, which has at least
six players), and the other alliance has two players, then the big alliance always has a winning
strategy.

Proof. We prove this lemma by considering two cases.

Case 1. If the players of the 2-player alliance are not consecutive, then the big alliance will be
separated into two parts.

Note that the big alliance has at least six players. By the pigeonhole principle, there
will be at least one part having at least three players (let us call this the big part).

Suppose 2-player alliance has a winning strategy. Then for any winning path, there
exists a player q in the 2-player alliance who takes the last step.

Suppose the first player in the big part is player a, and let us do the following
starting from player a’s first move:

Player a: 1 + 1 = 2 (Step 1).
Player a+ 1: 1 + 1 = 2 (Step 2).
Player a+ 2: 2 + 2 = 1 + 3 (Step 3).
Note that instead of doing 1 + 1 = 2, player a+ 1 can do 1 + 2 = 3 instead in Step

2. Now, player q − 1 becomes the player who takes the last step. Because the players
in the 2-player alliance are not consecutive, player q− 1 belongs to the big alliance, so
the big alliance now has a winning strategy, which contradicts our assumption.
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Therefore, we proved Case 1 by using the stealing strategy.

Case 2. If the players of the 2-player alliance are consecutive, then the p− 2 players of the big
alliance are consecutive.

If the 2-player alliance has a winning strategy, then for any winning path, there
exists a player q from the 2-player alliance who takes the last step.

Suppose the big alliance’s p− 2 consecutive players start with player a.
(Note the big alliance has at least six players, so players a, a+1, a+2, a+3, a+4,

and a+ 5 are all in the big alliance).
Let us do the following, starting from player a’s first move:
Player a: 1 + 1 = 2 (Step 1).
Player a+ 1: 1 + 1 = 2 (Step 2).
Player a+ 2: 1 + 1 = 2 (Step 3).
Player a+ 3: 1 + 1 = 2 (Step 4).
Player a+ 4: 2 + 2 = 1 + 3 (Step 5).
Player a+ 5: 2 + 2 = 1 + 3 (Step 6).
Note that player a+2 in Step 3 and player a+3 in Step 4 can do 1+2 = 3 instead.
If they do so, then player q− 2 becomes the player who takes the last step. Because

the players in the 2-player alliance are consecutive, player q − 2 belongs to the big
alliance. Therefore, the big alliance now has a winning strategy, which contradicts our
assumption.

By using the stealing strategy, we proved Case 2.

Thus, by our analysis in Case 1 and Case 2, Lemma 2.6 is proved. □

By Lemmas 2.5 and 2.6, Theorem 1.7 is proved.

2.5. Proof of Theorem 1.8. Assume we have an alliance a with more than two-thirds of
the players. For a sufficiently large n, alliance a can then force the creation of an arbitrary
number of 2’s eventually, as players in the alliance can each produce at least one 2 per round:
if each player plays 1 + 1 = 2, opposing players can each remove only two 2’s per round by
playing 2 + 2 = 1 + 3, meaning each round, alliance a can have a net increase in the number
of 2’s by at least one.

As such, at some point, alliance a can force the creation of at least b 2’s. By assumption,
alliance a has at least 2b subsequent players. Assume we have at least b 2’s and we are about
to begin the turns of those players.

The first b players could all play 1+1 = 2, and the next b players could all play 2+2 = 1+3,
as the first b players would create b 2’s and the next b players would use up those and the
preexisting b 2’s. Let us suppose the turn after this is turn 2b, changing what we call turn 0
to make this the case.

Now, assume the opposing players have a winning strategy. In that case, after this, there
would be a winning strategy from the resultant state for an alliance that begins when the
opposing players do. In particular, this alliance plays on turns 2b + p1, 2b + p2, 2b + p3, . . .,
2b+ pn, where p1, p2, . . . are some numbers selected to make this the case.

Now, note that the 2b players can instead play as follows: the first b can all play 1 + 2 = 3,
resulting in the same state as the one we reached after all 2b players played last time. As such,
the same strategy as the one used previously results in a win for the alliance that plays on
turns b+ p1, b+ p2, b+ p3, . . . , b+ pn.
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By assumption, alliance a has b players play before a player from the opposition plays. We
know the players with turns 2b+ p1, 2b+ p2, 2b+ p3, . . ., 2b+ pn are opposed to alliance a, so
the players with turns b+ p1, b+ p2, b+ p3, . . ., b+ pn must be in alliance a.

As such, this would be a winning strategy for alliance a, contradicting the assumption that
the opposing players have a winning strategy. As such, alliance amust have a winning strategy.

2.6. Proof of Theorem 1.9. Assume we have an alliance a with 3b consecutive players at
some point, and n ≥ 2p+ 4b.

First, let us examine the first turn of the 3b players. As n is at least 2p+ 4b, regardless of
when they start, there will be enough 1’s in the game for the first 2b of them to play 1+1 = 2.
If they do so, the next b could all play 2+ 2 = 1+ 3. Let us assume the turn after this is turn
3b, changing what we call turn 0 to make this the case.

Now, assume the opposing players have a winning strategy. In that case, after this, there
would be a winning strategy from the resultant state for an alliance that begins when the
opposed players do. In particular, this alliance plays on turns 3b + p1, 3b + p2, 3b + p3, . . .,
3b+ pn, where p1, p2, . . . are some numbers selected to make this the case.

Now, note that the 3b players can instead play as follows: the first b players can all play
1 + 1 = 2 and the next b players can all play 1 + 2 = 3, resulting in the same state as the one
we produced after all 3b players played last time.

As such, the same strategy as the one used previously gives the win to the alliance that plays
on turns 2b+p1, 2b+p2, 2b+p3, . . . , 2b+pn. By assumption, alliance a has b players play before
a player from the opposition. We know the players with turns 3b + p1, 3b + p2, 3b + p3, . . .,
3b+pn are opposed to alliance a, so the players with turns 2b+ p1, 2b+ p2, 2b+ p3, . . . , 2b+ pn
must be in alliance a.

As such, this would be a winning strategy for alliance a, contradicting the assumption that
the opposing players have a winning strategy. As such, alliance amust have a winning strategy.

2.7. Proof of Theorem 1.10. Let the 2d players in the big alliance all do 1 + 1 = 2 for
the first d rounds (one round means every player takes a move, and we define the first round
starting from the big alliance’s first move).

If in any of the first d round, the d consecutive players in the small alliance all do 2+2 = 1+3,
then we can directly let the second half of the 2d players in the big alliance (which is d
consecutive players) all do 1 + 2 = 3 instead in the next round.

In this case, suppose that the small alliance has a winning strategy. Then for any winning
path, there exists a player q from the small alliance who takes the last step.

Note that player q belongs to the small alliance, so player q− d belongs to the big alliance.
Because player q’s last winning step becomes player q− d’s last step, the big alliance now has
a winning strategy, which contradicts our assumption.

Otherwise, if in each of the first d rounds, there is at least one player from the small alliance
who does not play 2+2 = 1+3, that means that this step will take away at most one 2. Then,
there will be at least one 2 generated in each round.

As a result, after d rounds, there are at least d 2’s generated from the stealing. After that,
in the (d + 1)th round, we can let the first half of the players in the big alliance (which are
the first d consecutive players) all do 1 + 1 = 2, and the second half of the big alliance (which
are last d consecutive players) all do 2 + 2 = 1 + 3.

In this case, suppose that the small alliance has a winning strategy. Then for any winning
path, there exists a player q from the small alliance who takes the last step.

Note that player q belongs to the small alliance, so player q− d belongs to the big alliance.
In this round, the first half of the big alliance (which are the first d consecutive players) can
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all do 1 + 2 = 3 instead, so player q’s last winning step becomes player q − d’s last step. As a
result, the big alliance now has a winning strategy, which contradicts our assumption.

Therefore, the big alliance always has a winning strategy, so we have proved this theorem.
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