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Abstract. Lucas noted in the 19th century that the Fibonacci sequence appears on the
diagonals of Pascal’s triangle. On the other hand, Binet’s formula provides a closed form
expression for the Fibonacci sequence using a linear combination of two geometric sequences.
Both representations inspire one to produce an analytic function on the complex domain
with the Fibonacci recurrence. As the main result, this article proves the equality of the
two formulas for the same analytic function obtained by extending those representations.
The proof utilizes polynomial sequences of binomial type, which are studied in the umbral
calculus.

1. Introduction

Lucas wrote in [8, pp. 5–15] that the Fibonacci sequence [10], defined by F1 = F2 = 1 and
Fk+2 = Fk+1 + Fk, appears on the diagonals of Pascal’s triangle. If we lay out the binomial

coefficients
(
x
y

)
= x(x−1)···(x−y+1)

y(y−1)···1 (x ∈ C, y ∈ N) of integral coordinates (x, y ∈ N) on the

xy-plane, adding the diagonals of slope 2 yields the desired sequence: 1, 1, 2, 3, 5, 8, . . .. In
other words, the Fibonacci sequence can be alternatively written as

Fk+1 =
k∑

n=0

(n+k
2

n

)
N
, (1)

defining
(
x
y

)
N
to be

(
x
y

)
on x, y ∈ N and 0 everywhere else. On the other hand, Binet’s formula

[6] describes the Fibonacci sequence in closed form in terms of the golden ratio φ = 1+
√
5

2 =

1.61803 . . . and its negative reciprocal ψ = − 1
φ , both of which are solutions to the characteristic

equation x2 = x+ 1. That is,

Fk =
φk − ψk√

5
. (2)

Hence, we have an immediate consequence of equations (1) and (2) that
∑k

n=0

(n+k
2
n

)
N =

φk+1−ψk+1
√
5

. Furthermore, a generalization of Binet’s formula can describe any sequence U of

the recurrence property Uk+2 = Uk+1+Uk by adjusting the coefficients α and β [3, pp. 51–53]:

Uk = αφk + βψk.

This formula allows us to extend the discrete sequences to analytic functions by replacing the
integral argument k with a complex argument z:

U(z) = αφz + βψz. (3)

Observing that equations (1) and (2) tie together and that equation (2) can be extended to
take complex arguments in (3), one may ask the question: does adding up diagonals of the
same slope in the complex domain reveal a connection between equations (1) and (3)? Indeed,
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we will discover that with the complex-valued binomial coefficients, the following identity holds
(Theorem 5.4):

∞∑
n=0

(n+z
2

n

)
=

(
1 +

1√
5

)
φz. (4)

This notable consequence comes from a further generalization that takes place on the diagonals
of any rational slope greater than 1 (Theorem 5.2). Using the generalized result, we will
determine in reverse that the unique positive solution to equation xp = xq + 1 (gcd(p, q) = 1,
p > q) can be obtained by the formula (Theorem 5.3)

x = q

√√√√ ∞∑
n=0

(n+z+1
p/q

n

)/ ∞∑
n=0

(n+z
p/q

n

)
, (5)

with any choice of z ∈ C.

2. Elementary Symmetric Polynomials

The key to proving the introduced equations (4) and (5) is that the diagonal sums of

binomial coefficients f(z) =
∑∞

n=0

(n+z
σ
n

)
(σ ∈ Q, σ > 1) form an exponential function. To

show this, we will express the power series of f(z) with a geometric sequence Gn (Theorem
4.3)

∞∑
n=0

(n+z
σ

n

)
=

∞∑
n=0

Gn(
z
σ )
n

n!
.

To expand the left side into the form on the right side, it is convenient to use the elementary
symmetric polynomials. We clarify some of the notations involving them.

Definition 2.1 (elementary symmetric polynomials). The elementary symmetric polynomials
(ESPs) are defined below.

E0(x1, x2, . . . , xn) = 1,

E1(x1, x2, . . . , xn) =
n∑
i=1

xi,

E2(x1, x2, . . . , xn) =
∑

1≤i<j≤n
xixj ,

...

En(x1, x2, . . . , xn) = x1x2 · · ·xn.

Most notably, they appear in the expansion of
∏n
i=1(X + xi). That is,

n∏
i=1

(X + xi) =

n∑
k=0

Ek(x1, x2, . . . , xn)X
n−k.

Notation 2.2. We adopt an indexing convention for the function arguments, i.e.,

f(xn, xn+1, . . . , xm) = f(xi)
m
i=n (n ≤ m).

As an example, we can express the ESPs more concisely:

Ek(x1, x2, . . . , xn) = Ek(xi)
n
i=1.
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Definition 2.3 (multinomial coefficient). We will also use multinomial (binomial if n = 1)
coefficients, (

x

k1, k2, . . . , kn

)
=
x(x− 1) · · · (x−

∑n
i=1 ki + 1)

k1! · · · kn!
,

where x ∈ C, k ∈ N, and k! = k(k − 1) · · · 1.

Definition 2.4 (falling factorial). Pochhammer notation [13] is used for the falling factorials
(x ∈ C, k ∈ N),

(x)k = x(x− 1) · · · (x− k + 1),

which means (k)k = k! and

(x)k = Ek(x− ν)k−1
ν=0.

Then, the binomial coefficients can be written using the ESPs, i.e.,(
x

k

)
=

(x)k
k!

=
Ek(x− ν)k−1

ν=0

k!
.

Apart from these, we will assume basic knowledge on combinatorics, infinite series, and
analysis, which can be found in [1, 7, 12].

3. Polynomial Sequences of Binomial Type

A sequence of polynomials whose entries have degrees equal to their indices is called a
polynomial sequence, and a polynomial sequence (Pk) that satisfies the binomial identity

Pk(x+ y) =
∑

k1+k2=k

(
k

k1

)
Pk1(x)Pk2(y)

is said to be of binomial type. Polynomial sequences of binomial type are often studied in
the umbral calculus [11]. The definition can be extended to the sequences of multivariate
polynomials.

Definition 3.1. A sequence of multivariate polynomials whose entries have degrees equal to
their indices is called a multivariate polynomial sequence, and a t-variate polynomial sequence
(Pk) is of binomial type if and only if it satisfies the following binomial identity:

Pk(xi + yi)
t
i=1 =

∑
k1+k2=k

(
k

k1

)
Pk1(xi)

t
i=1Pk2(yi)

t
i=1.

This section is devoted to building a useful example of a (multivariate) binomial type sequence
and recognizing important properties about such sequences.

Typical examples of binomial type sequences include the sequence of powers Pk(x) = xk

(binomial theorem) and the sequence of falling factorials Qk(x) = (x)k (Vandermonde’s iden-
tity1). Now, we introduce a bivariate extension of the falling factorial sequence.

Theorem 3.2. The sequence Θk(x, n) =
Ek(x−ν)n+k−1

ν=0

(n+k
k )

is of binomial type.

1See Theorem 5.1
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Proof. Consider the series f(ξ) = (1 + y)ξ+x ∈ C[[x, y]][[ξ]].

(1 + y)ξ+x =

∞∑
n=0

n∑
k=0

ynξn−kEk(x− ν)n−1
ν=0

n!

=
∑

0≤k≤n

ynξn−kEk(x− ν)n−1
ν=0

n!

=

∞∑
k=0

∞∑
n=k

ynξn−kEk(x− ν)n−1
ν=0

n!

=

∞∑
k=0

∞∑
n=0

yn+kξnEk(x− ν)n+k−1
ν=0

(n+ k)!

=

∞∑
n=0

( ∞∑
k=0

yn+kEk(x− ν)n+k−1
ν=0

(n+ k)k

)
ξn

n!
.

Its nth derivative is then computed below.

dn

dξn
f(ξ)

∣∣∣∣
ξ=0

= (ln(1 + y))n(1 + y)x =

∞∑
k=0

yn+kEk(x− ν)n+k−1
ν=0

(n+ k)k
.

This implies the equality of the two power series of y in different forms.

(ln(1 + y))n1+n2(1 + y)x1+x2 = (ln(1 + y))n1(1 + y)x1 · (ln(1 + y))n2(1 + y)x2 .

∞∑
k=0

(
Ek(x1 + x2 − ν)n1+n2+k−1

ν=0

(n1 + n2 + k)k

)
yn1+n2+k

=
∞∑
k=0

yn1+kEk(x1 − ν)n1+k−1
ν=0

(n1 + k)k

∞∑
k=0

yn2+kEk(x2 − ν)n2+k−1
ν=0

(n2 + k)k

=

∞∑
k=0

∑
k1+k2=k

yn1+k1yn2+k2Ek1(x1 − ν)n1+k1−1
ν=0 Ek2(x2 − ν)n2+k2−1

ν=0

(n1 + k1)k1 (n2 + k2)k2

=

∞∑
k=0

 ∑
k1+k2=k

Ek1(x1 − ν)n1+k1−1
ν=0 Ek2(x2 − ν)n2+k2−1

ν=0

(n1 + k1)k1 (n2 + k2)k2

 yn1+n2+k.

Hence, the corresponding coefficients equal

Ek(x1 + x2 − ν)n1+n2+k−1
ν=0

(n1 + n2 + k)k

=
∑

k1+k2=k

Ek1(x1 − ν)n1+k1−1
ν=0 Ek2(x2 − ν)n2+k2−1

ν=0

(n1 + k1)k1 (n2 + k2)k2

352 VOLUME 59, NUMBER 4



THE FIBONACCI SEQUENCE AND DIAGONAL SUMS OF BINOMIAL COEFFICIENTS

and this gives us the equation we desired.

Θk(x1 + x2, n1 + n2)

k!
=

∑
k1+k2=k

Θk1(x1, n1)Θk2(x2, n2)

k1!k2!
,

Θk(x1 + x2, n1 + n2) =
∑

k1+k2=k

(
k

k1

)
Θk1(x1, n1)Θk2(x2, n2). □

Vertical sums of binomial type sequences form geometric sequences as we observe in the

familiar examples2
∑∞

k=0
nk

k! = en,
∑∞

k=0

(
n
k

)
= 2n. The motivation behind Lemma 3.4 is

to show in Theorem 3.5 that the diagonal sums of binomial type sequences make geometric
sequences as well. Lemma 3.4 and Theorem 3.5 are multivariate extensions of the original
results in [14].

Lemma 3.3. Given any binomial type sequence (Pk), we have P0 = 1.

Proof. Because P0 = (P0)
2 by the binomial identity, P0 = 0 or P0 = 1. Definition 3.1 requires

that P0 be a degree 0 polynomial, but the degree of the constant 0 is left unassigned (or a
value other than a nonnegative integer). Therefore, P0 = 1. □

Lemma 3.4 (Shifting). Let (Pk) be a t-variate binomial type sequence, and let (L
(1)
k ), (L

(2)
k ),

. . ., (L
(t)
k ) be arithmetic sequences. Suppose each sequence (L

(i)
k ) is assigned another arithmetic

sequence (L
(i)
k ) that shares the common difference (i.e., L

(i)
k+1 −L

(i)
k = L

(i)
k+1 −L

(i)
k ). Then, the

following identity holds for constants a1, a2, . . . , at.∑
k1+k2=k

(
k

k1

)
Pk1

(
L
(i)
k1

+ ai

)t
i=1
Pk2

(
L
(i)
k2

)t
i=1

=
∑

k1+k2=k

(
k

k1

)
Pk1

(
L
(i)
k1

)t
i=1
Pk2

(
L
(i)
k2 + ai

)t
i=1
.

Proof. By induction on k. For the case k = 0, both sides of the equation are 1 (Lemma 3.3).
Now, assume the equality holds up to k − 1. Then,∑

k1+k2=k

(
k

k1

)
Pk1

(
L
(i)
k1

+ ai

)t
i=1
Pk2

(
L
(i)
k2

)t
i=1

=
∑

k1+k2=k

(
k

k1

) ∑
k′1+j=k1

(
k1
k′1

)
Pk′1

(
L
(i)
k1

)t
i=1
Pj(ai)

t
i=1

Pk2

(
L
(i)
k2

)t
i=1

=
∑

k′1+j+k2=k

(
k

k′1, j

)
Pk′1

(
L
(i)
k′1+j

)t
i=1
Pj(ai)

t
i=1Pk2

(
L
(i)
k2

)t
i=1

=

k∑
j=0

(
k

j

)
Pj(ai)

t
i=1

 ∑
k′1+k2=k−j

(
k − j

k′1

)
Pk′1

(
L
(i)
k′1+j

)t
i=1
Pk2

(
L
(i)
k2

)t
i=1

 .

2The constant e = 2.71828 . . . in the example is Euler’s number. This will appear again in Theorem 4.3.
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For each j satisfying the condition 1 ≤ j ≤ k, we invoke the induction hypothesis. Recall that

L
(i)
n+1 − L

(i)
n = L

(i)
n+1 − L

(i)
n . Continuing our equalities, we have

=
k∑
j=0

(
k

j

)
Pj(ai)

t
i=1

 ∑
k′1+k2=k−j

(
k − j

k′1

)
Pk′1

(
L
(i)
k′1

)t
i=1
Pk2

(
L
(i)
k2+j

)t
i=1


=

∑
k′1+j+k2=k

(
k

k′1, j

)
Pk′1

(
L
(i)
k′1

)t
i=1
Pj(ai)

t
i=1Pk2

(
L
(i)
k2+j

)t
i=1

=
∑

k′1+k
′
2=k

(
k

k′1

)
Pk′1

(
L
(i)
k′1

)t
i=1

 ∑
j+k2=k′2

(
k′2
j

)
Pj(ai)

t
i=1Pk2

(
L
(i)
k′2

)t
i=1


=

∑
k′1+k

′
2=k

(
k

k′1

)
Pk′1

(
L
(i)
k′1

)t
i=1
Pk′2

(
L
(i)
k′2

+ a1

)t
i=1
. □

Theorem 3.5 (Diagonalization). Let (Pk) be a t-variate binomial type sequence, and let (A
(1)
n ),

. . ., (A
(t)
n ), (L

(1)
k ), . . ., (L

(t)
k ) be arithmetic sequences. Then, the sequence (Gn) defined by

Gn =
∞∑
k=0

Pk

(
A

(i)
n + L

(i)
k

)t
i=1

k!

is a geometric sequence, provided that the sum is absolutely convergent for all n.

Proof. We will prove this by verifying that Gn+dGm = GnGm+d. First,

Gn+dGm

=
∞∑
k=0

Pk

(
A

(i)
n+d + L

(i)
k

)t
i=1

k!

∞∑
k=0

Pk

(
A

(i)
m + L

(i)
k

)t
i=1

k!

=

∞∑
k=0

∑
k1+k2=k

Pk1

(
A

(i)
n+d + L

(i)
k1

)t
i=1
Pk2

(
A

(i)
m + L

(i)
k2

)t
i=1

k1!k2!

=
∞∑
k=0

1

k!

∑
k1+k2=k

(
k

k1

)
Pk1

(
A

(i)
n+d + L

(i)
k1

)t
i=1
Pk2

(
A(i)
m + L

(i)
k2

)t
i=1
.

To continue, we apply Lemma 3.4 to obtain

=

∞∑
k=0

1

k!

∑
k1+k2=k

(
k

k1

)
Pk1

(
A(i)
n + L

(i)
k1

)t
i=1
Pk2

(
A

(i)
m+d + L

(i)
k2

)t
i=1

=
∞∑
k=0

∑
k1+k2=k

Pk1

(
A

(i)
n + L

(i)
k1

)t
i=1
Pk2

(
A

(i)
m+d + L

(i)
k2

)t
i=1

k1!k2!

=

∞∑
k=0

Pk

(
A

(i)
n + L

(i)
k

)t
i=1

k!

∞∑
k=0

Pk

(
A

(i)
m+d + L

(i)
k

)t
i=1

k!

= GnGm+d. □
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4. Diagonal Sums of Binomial Coefficients

We will introduce functions βσ (σ ∈ Q, σ > 1) formed by summing the diagonals of binomial
coefficients and show three basic facts about them.

• They have infinite radii of convergence; hence, βσ : C → C.
• They are exponential. There exists γ, ρ ∈ C such that for all z ∈ C, βσ(z) = γeρz.
• They are positive on the real line. limx→∞ βσ(x) = ∞ for x ∈ R.

Definition 4.1. To each rational number σ > 1, define a complex-valued function βσ by the
infinite series:

βσ(z) =
∞∑
n=0

(n+z
σ

n

)
.

Theorem 4.2. Let σ > 1 be a rational number. The radius of convergence for βσ(z) =∑∞
n=0

(n+z
σ
n

)
is infinite.

Proof. First, we expand the series βσ(z) =
∑∞

n=0

(n+z
σ
n

)
.

∞∑
n=0

(n+z
σ

n

)
=

∞∑
n=0

En
(
n+z
σ − ν

)n−1

ν=0

n!

=
∞∑
n=0

n∑
k=0

( zσ )
n−kEk

(
n
σ − ν

)n−1

ν=0

n!
.

Now, we will show that the double sum
∑∞

n=0

∑n
k=0

( z
σ
)n−kEk(n

σ
−ν)

n−1

ν=0
n! is absolutely convergent,

which leads to its rearrangeability and hence, the convergence of βσ(z) =
∑∞

n=0

(n+z
σ
n

)
for all

z ∈ C. Let us obtain a bounding series above.

∞∑
n=0

n∑
k=0

∣∣∣∣∣( zσ )n−kEk
(
n
σ − ν

)n−1

ν=0

n!

∣∣∣∣∣ ≤
∞∑
n=0

n∑
k=0

| zσ |
n−kEk

(
|nσ − ν|

)n−1

ν=0

n!

=

∞∑
n=0

∏n−1
ν=0

(
| zσ |+ |nσ − ν|

)
n!

.

Because σ > 1 is rational, it can be expressed in a reduced fraction form σ = p
q , where

gcd(p, q) = 1 and p > q ≥ 1. We partition the terms in this bounding series by their indices n
modulo p.

∞∑
n=0

∏n−1
ν=0

(
| zσ |+ |nσ − ν|

)
n!

=

p−1∑
r=0

∞∑
m=0

∏pm+r−1
ν=0

(∣∣ z
σ

∣∣+ ∣∣∣ qp(pm+ r)− ν
∣∣∣)

(pm+ r)!

=

p−1∑
r=0

∞∑
m=0

∏pm+r−1
ν=0

(∣∣ z
σ

∣∣+ ∣∣∣qm− ν + qr
p

∣∣∣)
(pm+ r)!

.

Notice in the case z = 0, r = 0, the sum
∑∞

m=0

∏pm−1
ν=0 (|qm−ν|)

(pm)! has the only nonzero term at

m = 0 (which evaluates to 1), so it is absolutely convergent. Apart from the special case, we
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apply the ratio test on each subseries of residue r. Recall that σ > 1, so p > q.

lim
m→∞

(pm+ r)!
∏pm+p+r−1
ν=0

(∣∣ z
σ

∣∣+ ∣∣∣qm+ q − ν + qr
p

∣∣∣)
(pm+ p+ r)!

∏pm+r−1
ν=0

(∣∣ z
σ

∣∣+ ∣∣∣qm− ν + qr
p

∣∣∣)
= lim
m→∞

∏q
ν=1

(∣∣ z
σ

∣∣+ ∣∣∣qm+ ν + qr
p

∣∣∣)∏pm+p−q+r−1
ν=pm+r

(∣∣ z
σ

∣∣+ ∣∣∣qm− ν + qr
p

∣∣∣)
(pm+ p+ r)p

= lim
m→∞

∏q
ν=1

(∣∣ z
σ

∣∣+ ∣∣∣qm+ ν + qr
p

∣∣∣)∏p−q−1
ν=0

(∣∣ z
σ

∣∣+ ∣∣∣(q − p)m− ν + (q−p)r
p

∣∣∣)
(pm+ p+ r)p

=

∣∣∣∣qp
∣∣∣∣q ∣∣∣∣q − p

p

∣∣∣∣p−q = ( 1

σ

)q (
1− 1

σ

)p−q
< 1.

Therefore, each subseries converges absolutely. This implies that the double sum∑∞
n=0

∑n
k=0

( z
σ
)n−kEk(n

σ
−ν)

n−1

ν=0
n! is absolutely convergent as well. □

Theorem 4.3. Let σ > 1 be a rational number. The function βσ is exponential:

βσ(z) = γeρz (for all z ∈ C)

for some γ, ρ ∈ C.

Proof. In the proof of Theorem 4.2, we showed the absolute convergence of the double sum∑∞
n=0

∑n
k=0

( z
σ
)n−kEk(n

σ
−ν)

n−1

ν=0
n! . This allows the rearrangement of the series below.

∞∑
n=0

(n+z
σ

n

)
=

∞∑
n=0

n∑
k=0

( zσ )
n−kEk

(
n
σ − ν

)n−1

ν=0

n!

=
∑

0≤k≤n

( zσ )
n−kEk

(
n
σ − ν

)n−1

ν=0

n!

=

∞∑
k=0

∞∑
n=k

( zσ )
n−kEk

(
n
σ − ν

)n−1

ν=0

n!

=

∞∑
k=0

∞∑
n=0

( zσ )
nEk

(
n+k
σ − ν

)n+k−1

ν=0

(n+ k)!

=

∞∑
n=0

( ∞∑
k=0

Θk(
n+k
σ , n)

k!

) (
z
σ

)n
n!

.

From Theorem 3.2 and Theorem 3.5, we conclude that

∞∑
n=0

(n+z
σ

n

)
=

∞∑
n=0

Gn(
z
σ )
n

n!
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for some geometric sequence (Gn). Hence, βσ satisfies the equation

d

dz
βσ(z) =

∞∑
n=0

Gn+1(
z
σ )
n

σ · n!

= ρ

∞∑
n=0

Gn(
z
σ )
n

n!

= ρβσ(z),

where ρ is the common ratio of the geometric sequence divided by σ. Solutions to the differ-
ential equation d

dzf(z) = ρf(z) have the form f(z) = γeρz for some complex constant γ. □

Theorem 4.4. Let σ > 1 be a rational number. Then,

lim
x→∞

βσ(x) = ∞

on the real line x ∈ R. Consequently, for all z ∈ C, βσ(z) = γeρz for some positive real
numbers γ, ρ, which means βσ(x) > 0 for all x ∈ R.

Proof. Recall that by Theorem 4.2, βσ converges everywhere on C. In particular, βσ(x) =∑∞
n=0

(n+x
σ
n

)
converges to some real value for all x ∈ R because all of the terms in the series

will be in R. Together with Theorem 4.3, we can further deduce that for all z ∈ C, βσ(z) = γeρz

for some γ, ρ ∈ R. Upon showing that limx→∞ βσ(x) = ∞, we obtain γ, ρ > 0.
Write in reduced fraction form σ = p

q (gcd(p, q) = 1, p > q ≥ 1) and assume x ≥ p− q > 0.

To construct a lower bound for βσ(x), which tends to infinity as x→ ∞, we observe two facts

about the sum
∑∞

n=0

(n+x
σ
n

)
.

(1) The first nontrivially indexed term (n = 1) is positive and increasing without bound.
(2) The sum of the first negative term (n = n0) and the terms after (n > n0) is bounded

by a constant.

The first claim is true:
( 1+x

σ
1

)
= 1+x

σ > 0 is increasing without bound. To prove the sec-

ond claim, we analyze the behavior of
(
n+x
σ

)
n
. Because x > 0, all factors in

(
n+x
σ

)
n

=(
n+x
σ

) (
n+x
σ − 1

)
· · ·
(
n+x
σ − n+ 1

)
remain positive for small n, but σ > 1 causes

(
n+x
σ

)
n
to

accumulate negative factors eventually: that is, n+x
σ − n + 1 < 0 for all sufficiently large n.

Let n0 be the least index for which n0+x
σ − n0 + 1 < 0.

Provided that n ≥ n0, we can build a permutation π on {1, 2, . . . , n} so that the factors
a1 =

n+x
σ , a2 =

n+x
σ − 1, . . ., an = n+x

σ − n+ 1 satisfy |aν | ≤ π(ν). Pick the least ν0 such that
aν0 is negative. The permutation π is defined as follows.

π(ν) =

{
ν0 − ν, 1 ≤ ν < ν0;
ν, ν0 ≤ ν ≤ n.

Because the sequence (aν) is decreasing by 1, and aν0 is the first negative term, 0 ≤ aν0−1 < 1.
Inductively, it follows that 1 ≤ aν0−2 < 2 ≤ aν0−3 < 3 ≤ · · · < ν0 − 2 ≤ a1 < ν0 − 1.
Furthermore, |an| < n because the sequence (aν), although beginning with a positive number
and falling by 1, is not long enough to reach the magnitude n on the negative side. Again, we
observe inductively that |an−1| < n− 1, |an−2| < n− 2, . . ., |aν0 | < ν0. Therefore,

n∏
ν=1

|aν | < n! ⇒
∣∣(n+x

σ

)
n

∣∣
n!

< 1 ⇒
∣∣∣∣(n+x

σ

n

)∣∣∣∣ < 1,

where n ≥ n0.
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We have seen that the terms in
∑∞

n=n0

(n+x
σ
n

)
are absolutely bounded by 1. Let us enhance

this to obtain a bound on the series. Partition the terms in
∑∞

n=n0

(n+x
σ
n

)
by their indices

modulo p. That is,

∞∑
n=n0

(n+x
σ

n

)
=

p−1∑
r=0

∞∑
m=0

( q
p(pm+ r + n0 + x)

pm+ r + n0

)

=

p−1∑
r=0

∞∑
m=0

(
qm+ q(r+n0+x)

p

pm+ r + n0

)
.

Notice that if a zero-term ever occurs in this double sum, it occurs only in one class and for
all terms in that class. This allows a bound on the ratio between two consecutive terms in
each class without a zero-term.

Rm,r,x

=

∣∣∣∣∣∣∣
(q(m+1)+

q(r+n0+x)
p

p(m+1)+r+n0

)
(qm+

q(r+n0+x)
p

pm+r+n0

)
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
(pm+ r + n0)!

(
qm+ q + q(r+n0+x)

p

)
pm+p+r+n0

(pm+ p+ r + n0)!
(
qm+ q(r+n0+x)

p

)
pm+r+n0

∣∣∣∣∣∣∣
=

(
qm+ q + q(r+n0+x)

p

)
q

(
(pm+ p+ r + n0 − 1)− (qm+ q + q(r+n0+x)

p )
)
p−q

(pm+ p+ r + n0)p

=

(
qm+ q + q(r+n0+x)

p

)
q

(pm+ p+ r + n0)q
·

(
(p− q)m+ (p− q) + p−q

p (r + n0)− 1− qx
p

)
p−q

(pm+ (p− q) + r + n0)p−q
.

By our choice of n0, we have qm+ q + q(r+n0+x)
p < pm+ p+ r + n0.

Rm,r,x <

(
(p− q)m+ (p− q) + p−q

p (r + n0)− 1− qx
p

)
p−q

(pm+ (p− q) + r + n0)p−q

=

p−q−1∏
ν=0

(p− q)m+ (p− q) + p−q
p (r + n0)− 1− qx

p − ν

pm+ (p− q) + r + n0 − ν

=

p−q−1∏
ν=0

(
p− q

p
+

q
p(p− q)− 1− qx

p − q
pν

pm+ (p− q) + r + n0 − ν

)
.

Because x ≥ p− q, we further obtain q
p(p− q)− 1− qx

p − q
pν < 0. Hence,

Rm,r,x <

p−q−1∏
ν=0

p− q

p
= (1− 1

σ )
p−q ≤ (1− 1

σ ).

This gives us the desired upper bound:∣∣∣∣∣
∞∑

n=n0

(n+x
σ

n

)∣∣∣∣∣ <
p−1∑
r=0

∞∑
m=0

(Rm,r,x)
m <

p−1∑
r=0

∞∑
m=0

(1− 1
σ )
m = pσ.
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Now, a lower bound for βσ can be obtained. We should keep in mind that our choice of
n0 ≥ 2 depended on x (i.e., n0 = n0(x)). For x ≥ p− q > 0,

βσ(x) =

∞∑
n=0

(n+x
σ

n

)

= 1 +
1 + x

σ
+

n0(x)−1∑
n=2

(n+x
σ

n

)
+

∞∑
n=n0(x)

(n+x
σ

n

)

≥ 1 +
1 + x

σ
+

∞∑
n=n0(x)

(n+x
σ

n

)
= b(x),

where
∣∣∣∑∞

n=n0(x)

(n+x
σ
n

)∣∣∣ < pσ. That is,

lim
x→∞

βσ(x) ≥ lim
x→∞

b(x) ≥ 1− pσ + lim
x→∞

1 + x

σ
= ∞. □

5. Recurrence Properties of βσ

The main results, Theorem 5.3 and Theorem 5.4, justify equations (4) and (5) in the in-
troduction. These theorems exploit the recurrence properties of the binomial coefficients. In
particular, Vandermonde’s identity is used to establish Theorem 5.2 and Theorem 5.3. The
derivation of a closed form formula in Theorem 5.4 is assisted by Theorem 5.3.

Theorem 5.1 (Vandermonde’s identity [4]).(
x+ y

n

)
=

n∑
k=0

(
x

k

)(
y

n− k

)
.

Theorem 5.2. Let σ > 1 be a rational number. Then, βσ satisfies the recurrence equation

βσ(z + σ) = βσ(z + 1) + βσ(z)

for all z ∈ C.

Proof. We use Vandermonde’s identity (Theorem 5.1).

βσ(z + σ) =

∞∑
n=0

(n+z+σ
σ

n

)

=
∞∑
n=0

(n+z
σ + 1

n

)

=
∞∑
n=0

n∑
k=0

(n+z
σ

k

)(
1

n− k

)

=
∞∑
n=0

(n+1+z
σ

n

)
+

∞∑
n=0

(n+z
σ

n

)
= βσ(z + 1) + βσ(z). □

Theorem 5.3. Let gcd(p, q) = 1 and p > q ≥ 1. For all z ∈ C,

q

√
βp/q(z + 1)

βp/q(z)
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is equal to the unique positive root of the polynomial xp − xq − 1.

Proof. Descartes’ Rule of Signs states that the number of positive roots of a polynomial is at
most the number of sign changes in its coefficients [2, 5]. Therefore, xp − xq − 1 has at most
one positive root.

Fix an arbitrary z ∈ C, and let α =
βp/q(z+1)

βp/q(z)
. By Theorem 5.2 and Theorem 4.3,

βp/q(z +
p
q ) = βp/q(z + 1) + βp/q(z),

βp/q(z) · α
p
q = βp/q(z) · α+ βp/q(z),

α
p
q = α+ 1.

Hence, ( q
√
α)p = ( q

√
α)q + 1. □

Theorem 5.4. For all z ∈ C,
∞∑
n=0

(n+z
2

n

)
=

(
1 +

1√
5

)
φz.

Proof. By Theorem 4.3, for all z ∈ C, β2(z) = γeρz for some γ, ρ ∈ C. With p = 2 and q = 1,
Theorem 5.3 shows that eρ is the positive root of x2 − x− 1:

eρ =
1 +

√
5

2
= φ.

Furthermore, γ = β2(0) can be evaluated.
∞∑
n=0

(n
2

n

)
= 1 +

∞∑
n=0

( 2n+1
2

2n+ 1

)

= 1 +

∞∑
n=0

(
2n+1

2

)
n
(12)
(
−1

2

)
n

(2n+ 1)!

= 1 +
1

2

∞∑
n=0

(2n+ 1) · (2n− 1) · · · 5 · 3
(
−1

2

)
n

(2n+ 1)!

(
1

2

)n
= 1 +

1

2

∞∑
n=0

(
−1

2

)
n

2n · (2n− 2) · · · 4 · 2

(
1

2

)n
= 1 +

1

2

∞∑
n=0

(
−1

2

n

)(
1

4

)n
= 1 +

1

2

(
1 +

1

4

)− 1
2

= 1 +
1√
5
. □

Remark 5.5. The Lucas sequence3 (Lk) appears in harmony with the Fibonacci sequence (Fk)
in β2.

∞∑
n=0

(n+k
2

n

)
= Fk+1 +

Lk+1√
5
.

3It appears in the Online Encyclopedia of Integer Sequences (OEIS) [9]
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6. Future Work

It remains an open problem to provide nice identities for other values of σ and z in βσ(z)
(other than the ones in Theorem 5.4 and Remark 5.5).
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