UPPER BOUND RESIDUES OF THE FIBONACCI SEQUENCE MODULO
PRIMES

MOHAMMAD JAVAHERI

ABsTRACT. We show that |Q,| < 3(p+ 1)/4+ /p/2 for all primes p, where Q, is the set of
Fibonacci numbers modulo prime p. In the case of maximal Pisano periods, we determine
the exact value of |Qp].

Let {F;}i>0 be the Fibonacci sequence, where Fy = 0, F; = 1, and F;1; = F; + F;_; for
1 > 1. Given a prime number p, we let

Q, ={F;, (modp):i>0}.

Shah and Bruckner [1, 3] proved that |Q,| < p for all primes p > 7. In this paper, we
improve their result by proving the following theorem.

Theorem 1. For all primes p:

3 1

The Pisano period of the Fibonacci sequence modulo n, denoted by 7(n), is the least positive
integer k such that F; = F; (mod n) for all ¢ > 0. If p is a prime number such that p = 1,4
(mod 5), then m(p) | (p — 1), whereas if p = 2,3 (mod 5), then 7(p) | 2(p + 1) [4]. In the
maximal Pisano period case, i.e., when 7(p) = 2(p + 1), we compute the exact value of |Q,|
(see Theorem 8). It will follow that if there exists an infinite number of prime numbers p with
maximal Pisano periods 7(p) = 2(p + 1), then we will see that limsup,,_, [Q2,|/p = 3/4.

If p=1,4 (mod 5), let F, = Z,, and if p = 2,3 (mod 5), let F, = Z,[/5]. We also let «, 3
be the solutions of #2 —x — 1 = 0 in F,; in particular, « + 8 = 1 and a8 = -1. By Binet’s
formula: A ‘

7 7
f’i = u?
a—p
in F, for all i > 0, where {f;}i>0 is the Fibonacci sequence modulo p, i.e., fo =0, fi = 1, and
fix1 = fi + fi_1 for all i > 0. Then, 7(p) is the least positive integer k such that o = g% = 1.

Theorem 2. Ifp=1,4 (mod 5), then |Q,| < (3p —1)/4.

Proof. If p = 1,4 (mod 5), then 7(p) | (p — 1) [4]. If n(p) # p — 1, then |Q,| < 7(p) <
(p—1)/2 < (3p — 1)/4. Thus, suppose that 7(p) = p — 1, and so a?~! = P~! = 1. Because
af = -1, we have

ap—l—i _ /Bp—l—i a—i _ 5—1’

fp—1-i = P i
- Zﬁz o ai
— (_1)i+1fi~
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It follows that for11, 0 < k < (p — 1)/2, appear at least twice among the list of Fibonacci
numbers fo, ..., fp—1 modulo p. It follows that

p—1 p—1 3p—1
Q,] < <

and the claim follows. U

Lemma 3. Let p be an odd prime number such that p = 2,3 (mod 5). Then, |AT| =|A"| =
p+ 1, where

A;f ={z+yV5: 2,y €2, and 2% — 5y° = +1}.
Proof. The norm function N : F; — Z; defined by N (x+1yv/5) = 22 —5y? is a homomorphism,
where F* = F\{0} for the field F. Therefore, ker(N) = A} is a multiplicative subgroup of F;
of size at least |Fy|/|Z5| = p+ 1. For x + yv/5 € A}, one has

(z +yVB)PH = (z + yV5)(z + yV5)? = (z + yV5) (2’ + (yV5))
(z +yV5)(z + y(VB)P) = (z + yv5)(z — yV/5)
1, (1)

because (v5)? = v/55P~1/2 = _\/5 in F, (note that 5 is a quadratic nonresidue modulo p,
and so 5(P~1/2 = _1 by Euler’s criterion). Because the equation 2P*! = 1 has at most p + 1
solutions in 7, and every element of A™ is a solution by (1), the size of A} is at most p + 1.
It follows that [Af| = p + 1. Now, the map

x+yx/5~><x+5y>+(x+y>x/5

2 2 2 2

is a one-to-one correspondence between A and A, and so [A) | =[Af|=p+ 1. O
Definition 4. Given an odd prime p, we define V; and V, by letting

Vpi = {y € Zy, : there exists x € Z, such that 2 —by? = il} .
Lemma 5. Let p be an odd prime number such that p = 2,3 (mod 5). Then,

_ p+1, ifp=1 (mod4);
VI +|V, | =
Vel 1yl {p+2, ifp=3 (mod 4).

Proof. First, suppose that p = 3 (mod 4) and let ¢ satisfy ¢> = -5 (mod p). It follows directly
from Lemma 3 that [Vf| = (p+3)/2, because the map x 4+ v/5y  y is a two-to-one mapping
from Al onto V,f except for a = £1/t. It again follows from Lemma 3 that |V, | = (p +1)/2,
because the map x + v/5y — y is a two-to-one mapping from A, onto V), for all y.

Next, suppose p =1 (mod 4). It follows from Lemma 3 that [V;| = (p+1)/2, because the

maps = + V5y — y is a two-to-one mapping from A* onto V;E. This completes the proof of
Lemma 5. O

Let Q, = {z/2:2 € Q,}.

Lemma 6. Let p be an odd prime number such that p = 2,3 (mod 5). Then, Q, C Viuy,.
Ifw(p) = 2(p+1), then O, = V,F UV, .
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Proof. Tt follows from f411 = fo1 + fo and fo_1far1 = f2+ (1) that (fo_1 + fn/2)% —
5(fn/2)? = £1, and so f,/2 € V,F UV, for all n > 0. Therefore, 2, CV,F UV, .

Next, suppose 7(p) = 2(p + 1), i.e., k = 2(p + 1) is the least positive integer k such that
of = 1. Therefore, the elements o?*, 1 < k < p + 1, are all distinct and have unit norms.
Recall from Lemma 3 that A}‘f is a multiplicative subgroup of size p 4+ 1. It follows that a? is
a generator of A;f . Suppose that y € V; UV, , and we show that y € Q.

Ify e V;, then:z:—Fy\@GA;,F for some z, and so z 4+ yv/5 = o2 for some 1 < k < p+ 1.
If y € V,, then (x + yv/5)a has unit norm for some x; hence, z + yv/5 = o?*~! for some
1 <k < p+ 1. In either case, x +yv/5 = o for some 1 <1 < 2(p+ 1) and 2% — 5% = (-1)".
Therefore, 2 — yv/5 = (-1/a)! = pL. It follows from Binet’s formula that

ol =p_(@ryVH) -~ @ —yVs)
a—p Vb ’

and so y € Qp. This completes the proof of Lemma 6. O

fi=

Let Q, = {2? : v € Z,} and
U, ={uecZy:utle Q,andu¢ Q,}.

Lemma 7. Let prime be an odd prime number such that p = 2,3 (mod 5). Then,

) < P — 2|U,, ifp=1 (mod 4);
PP p =2 +2, ifp=3 (mod 4).

If n(p) = 2(p+ 1), then the inequality in (2) is an equality.

Proof. If y € (V;r N V}j) \{0}, then there exist x1, x9 such that 23 —5y* = 1 and 23 —5y? = -1.
It follows that y € V,F NV, \{0} if and only if 5y? +1 € Q, if and only if 5y* € U,. Therefore,
the map y — 5y is a two-to-one mapping from (V,7 NV, ) \{0} onto U,,. If p = 3 (mod 4),
then 0 ¢ V,7 NV, and so in this case, |V,f NV, | = 2|Uy|. If p=1 (mod 4), then 0 € VS NV,
and so in this case, |V, NV, | = 2Uy| + 1.

By Lemma 6, Q, C V;r UV, , and equality occurs if 7(p) = 2(p + 1). It follows that
Q] = 1] < VUV < VFI+1V, | =|V,f NV, |, where the equality occurs if 7(p) = 2(p+1).
The claim then follows from Lemma 5. O

By a theorem of Monzingo [2], the number of elements 2 < v < p — 2 in U, is given by the
number s, (p) of singleton nonresidues:

%(p — 34+ 2a(—1)(“*1)/2), ifp=1 (mod 8);
Loy —1)@t)/2y  ifp = :
salp) = 4§ 32U, AP =5 mod B ®)
g(p+5)7 if p=3 (mod 8);
Lp+1), if p=7 (mod 8);

where in the first two lines, a is the unique positive odd integer such that p = a? + b* for some
integer b.
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Theorem 8. Let p be an odd prime number such that p = 2,3 (mod 5). Then,

3(p+1) — La(-1)@ V2 ifp=1 (mod 8);
3 @+)/2 if p=5 (mod 8);
0,0 < {10 D= ze) #p=5 (mod8) (@)
3(p+1), if p=3 (mod 8);
3(p+1)+1, if p=7 (mod 8);

where in the first two lines, a is the unique positive odd integer such that p = a®> +b> for some
integer b. If m(p) = 2(p+ 1), then the inequality in (4) is an equality.

Proof. Because |U,| = s,(p), the equality (4) follows from (2) and (3). O

Now, we are ready to prove Theorem 1.
Proof of Theorem 1. The claim follows from Theorem 2 if p = 1,4 (mod 5). Thus, suppose
that p=2,3 (mod 5). If p=1,5 (mod 8), then by Theorem 8, we have
3 1 3 1
Bl < o+ +5a< (+1)+ 5V
because a2 = p —b* < p. If p = 3, 7 (mod 8), then again by Lemma 8, |Q,| <3(p+1)/4+1,
and the claim follows in this case as well. U

Corollary 9. limsup, ., [,|/p < 3/4. If there are infinitely many primes p with 7(p) =
2(p + 1), then limsup,_,, [|/p = 3/4.
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