INFINITE SUMS INVOLVING JACOBSTHAL POLYNOMIAL PRODUCTS
REVISITED

THOMAS KOSHY

ABSTRACT. Using graph-theoretic tools, we confirm five finite sums of Jacobsthal polynomial
products and a Jacobsthal-Lucas version.

1. INTRODUCTION

FEzxtended gibonacci polynomials z,(x) are defined by the recurrence z,12(x) = a(z)zp4+1(x)+
b(x)z,(x), where z is an arbitrary integer variable; a(x), b(x), zo(z), and z;(z) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = x and b(z) = 1. When zy(z) = 0 and z1(x) = 1, z,(z) = fu(x), the
nth Fibonacci polynomial; and when zo(x) = 2 and z1(z) = z, z,(x) = l,(x), the nth Lucas
polynomial. Clearly, f,(1) = F,, the nth Fibonacci number; and [,,(1) = L,,, the nth Lucas
number [1, 3].

Suppose a(x) = 1 and b(x) = x. When zp(z) = 0 and z1(z) = 1, z,(x) = Jp(z), the nth
Jacobsthal polynomial; and when zo(x) = 2 and z1(z) = 1, z,(z) = jn(z), the nth Jacobsthal-

Lucas polynomial. They can also be defined by the Binet-like formulas
u"(x) —v"(x)

Jofa) = O g @) = () 07 ),
where D = 4z + 1, 2u(z) = 1+ D, and 2v(z) = 1 — D. It then follows that ILm J}“ = u(x)
w1 . . §
and ILm J— =5 Correspondingly, J, = J,,(2) and j, = j,(2) are the nth Jacobsthal and
=00 j,

Jacobsthal-Lucas numbers, respectively. Clearly, J,(1) = F,, and j,(1) = L, [2, 3].

Gibonacci and Jacobsthal polynomials are linked by the relationships .J,, (x) = (/2 f, (1/\/x)
and Jn(x) = xn/2ln(1/\/§) [37 6]

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(z). In addition, we let A = V22 + 4,
200 = 14 +/5, and 26 = 1 — /5, and omit a lot of basic algebra.

Table 1 showcases some fundamental Jacobsthal Identities [3]; we will use them in our
discourse.

Jn—i—l + xjn—l = ]n JQn = Jn]n
J2+1 + CEJT% = Jont1 Jnto + .’E2Jn_2 = (2z+1)J,
jn+2 + 332jn—2 = (2‘T + 1)]71 (_x)nJm—n = JmJn—i-l - Jm—l—lJn
Ik — Jp = —(-x)" R Jntkin—k = Jn = (-x)"*D*J}

Table 1: Some Fundamental Jacobsthal Identities
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1.1. Finite Sums of Jacobsthal Polynomial Products. In [6], we established the follow-
ing sums of Jacobsthal polynomial products:

m $2n71 _ J2m+2. (1 1)
n=0 J22n + z2nl Jom41 ’
" (2z + 1)x2"’1 _ Jam+4 . (1.2)
n—=0 T3y +anl Jomt3Jomi1’ '
2z +1 1 7’
4 272 _ 2n—3 + ; (1.3)
Jn + (w - 1)(_x)n Jn —xn Jnf2Jn71Jan+l JanJan+lJn+2
i g2l _ Jam+2 ' (1.4)
n=0 ]%n + x2n—l (4I+ 1)J2m—&-17 .
- (2z + 1)x2”_1 _ Jam+4 (1.5)
yr j%n—&-l + (22 + 1)21'2”_1 (4z + 1) Jomt3Jam+1 ’ '

1.2. A Jacobsthal-Lucas Version. In the proof of Theorem 4.1 in [5], we established that
z? + 2 1 1

l% + (_1)71(12 - 1)A2l721 - A4x2 B ln—QZn—llnln—H * ln—llnln+1ln+2 ’

This, coupled with the relationship j,(z) = 2™/21,(1/\/z) [3, 6], can be used to find the
Jacobsthal-Lucas version of equation (1.3).

To this end, we let A = LHS and B = RHS. Replacing x with 1/4/z, and then multiplying
the numerator and denominator of the resulting expression with #2723, we get

(2 + 1)2?

A =
2314 — (-1)"x(x — 1)D212 — D*
B (2z + 1)zt ‘
o (xn/an)él _ (_1)n(x _ 1)xn—2D2(xn/2ln)2 — DAp2n=3’
2n—1
LHS — 2z +1)x

Ji = (o= D(a) 2D — Dl

where 1, = 1,,(1/y/z) and j,, = j,(2).
Now, replace x with 1/{/x in B, and then multiply each numerator and denominator with
22"+l This yields
2n—1 2n+1
RHS = —— -

. . . . + . . . . 9
In—2In—1JnJn+1  In—1InIn+1Jn+2
where j, = jn(z).

Equating the two sides, we get the Jacobsthal-Lucas version:

2z +1 _ 1 n x2
];% - (x - 1)(_x)n_2D2jT2L — DAg?n=3 jn—an—ljnjn+1 jn—ljnjn+1jn+2.

Our objective is to confirm the six formulas using graph-theoretic techniques. To this end,

we first summarize the needed tools.

(1.6)
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2. GRAPH-THEORETIC TOOLS

Consider the Jacobthal digraph D in Figure 1 with vertices v; and wve, where a weight is
assigned to each edge [3, 4].

FI1GURE 1. Weighted Fibonacci Digraph D

It follows by induction from its weighted adjacency matriz M = F a:

10
n __ Jn+1 iL'Jn
= 5

} that

where J,, = Jp(x) and n > 1 [3, 4].

The sum of the weights of closed walks of length n originating at v; in the digraph is Jy,1
and that of those originating at vy is xJ,—1 [3, 4]. Consequently, the sum of the weights of all
closed walks of length n in the digraph is J,4+1 +2Jp—1 = jn. These facts play a major role in
the graph-theoretic proofs.

Let A and B denote sets of walks of varying lengths originating at a vertex v. Then, the
sum of the weights of the elements (a,b) in the product set A x B is defined as the product
of the sums of weights from each component. This definition can be extended to any finite
number of components [4].

With these tools at our disposal, we are ready for the graph-theoretic proofs. They hinge
on the identities in Table 1.

3. GRAPH-THEORETIC CONFIRMATIONS

3.1. Confirmation of Identity (1.1).
Proof. First, we will establish that

m _
Z xQn 1 ZCJQm
n=1 J22n + z2n—l Jom+1

Let A,, denote the sum of the weights of elements in the set A of closed walks of length 2n — 1
in the digraph originating at vy, where 1 < n < m. Then, the sum of the weights of the
elements in the product set A x A is given by A2. Let S} = A2 + w?"~!, where w = weight

of edge vivs. Let
m 2n— m 2n—1
w T
szz S :ZA2 T p2n-1
n=1 n n=1"""

We will now compute S, in a different way. Let w be an arbitrary walk in A. It can land
at vy or vg at the (n — 1)st step: w=v3 — -+ —w v— .-+ —v1 , where v = vy or vs.
—_———

1

—_———
subwalk of length n—1 subwalk of length n
Table 2 shows the possible cases and the corresponding sums of the weights, where J,, =

In(x).
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w lands at v at

w lands at v at

sum of the weights

the (n — 1)st step? | the (2n — 1)st step? of walks w
yes yes In - Int1
no yes xdp—1-Jn

Table 2: Sums of the Weights of Closed Walks Originating at v;
It follows from the table that the sum A, of the weights of walks in A is given by A, =
Jn(Jni1 + 1) = Jnjn = Jon. So, S = J2 + 2?1 and hence,

m 2n—1

x
Sm = —_.
m nZ::l J22n + g2n—1
Using the initial values
z+1 J3
z(2z +1) xJy
So = —/———— = —; and
2 2 +3r+1 Js a
g — r(3° +4x+1)  ads
ST g6l +br+1 Jp )

we conjecture that

m _
Z 1.271, 1 1'J2m
= J3, 4+ 2?21 Jamp

We will now confirm this using recursion [3, 5]. Let C,,, = LHS and D,,, = RHS. Then,

Dy, — D, = rJom  xJ2m—2

Jomy1 Jom—1
2(JomJ2m—1 — J2m+1J2m—2)
Jomt1J2m—1
(=) 2 o (2m-2)
Ty =P

mefl

J22m _|_:L'2m71
= Cp—Ch-1.

T T
So, C,,, — D,,, = 1-Dp1=---=C1—D1 = -
0, Um m m—1 m—1 1 1 z 1 z 1

as expected. Thus, the conjecture is true for m > 1.
Letting n = 0, this yields

= 0, and hence, C,;, = Dy,

m _
x2n 1 .TJQm

Z 2 n—1
n:0J2”+wn

+1
Jom+1

Jom+2
Jom+1’
as desired. 0

It then follows that

=1 1++5
)

F2+1 2

n=0
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as in [6, 8]. It also yields
e 92n—1

) ]
7;) J3, 4 221

3.2. Confirmation of Identity (1.2).

Proof. Let B,, denote the sum of the weights of elements in the set B of closed walks of length
2n originating at vy, where n > 1. Then, the sum of the weights of the elements in the product
set B x B is given by B2. Let w = weight of the edge vivo, z = 2w+ 1, S¥ = B2 +w?"~!, and

n=1

2n—1 (2LE+ 1)x2n—1

m
g+ Zw
- 2 n—1 -
B+
n

n=1

We will now compute B,, and hence S}, in a different way. Let w be an arbitrary walk in B.
It can land at vy or v at the nth step: w= v — -+ —v v— .-+ —v1 , Where v = v;

subwalk of length n subwalk of length n
or va.

Table 3 implies that the sum B,, of the weights of walks w in B is given by B,, = J2 a1t ady 2 —
Jont1-

w lands at v; at | w lands at vy at || sum of the weights
the nth step? | the (2n)th step? of walks w
yes yes Int1 - Ing1
no yes zJy, - JIn

Table 3: Sums of the Weights of Closed Walks Originating at v;

So, Sf = J3,,1 + 2*"~1. Then,
m
. 21’+1 2n—1
S = Z 2n—1"
=t Yot T
Next, we let
2z +1
! _ *
Sy, = S, + 1
= (274 1)zt
n=0 J22n+1 + a2t
With the initial values
, 2z +1 Ju
z+1 J3Jp
g (22 +1)(22% + 4z + 1) _ B
! (22 +3z+1)(z+1) J5J3’
g (327 + 4z +1)(22° + 922 + 6z +1)  Jiz
2 (@462 4 5x+ 1) (@2 +3x+1) T 5

we conjecture that
o~ (20 + 1)2?t
5 — =
ot J2n+1 +ZC2n 1

Jam+ya

Jom+3Jomt1
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We will now establish this using recursion [3, 5]. Let K,,, = LHS and R,, = RHS. Then,

J4m+4 J4m
B = Hm = Jom3Soms1  Jemyr1Jom—1
_ Jomra(Pomas + 2 omt1)  Jom(Jamtr + 2 am—1)
B Jom+3Jom+1 Jomy1Jom—1
_ Jomas(Poma2dom—1 — Joma1dom) — Jom—1(Jomy3Jom — Jomi2Somy1)
B Jom+3JSom+1J2m—1
. 1‘2m71J2m+3J2 — x(—me)ng,1J2
B Jom+3Som+1J2m—1
2 (Jamgs + 2% Jom 1)
B Jom+3Jom+1J2m—1
(2w + 1)zt
 m+sdom—1
2z 4 1)a*mt
o JE .
= K,,— K,_1.
Consequently, K, — Ry, = K1 — Rppo1 = -+ = Kg— Ry = 2z+1 — 2z+1 = 0. So,
z+1 r+1
K, = Ry
Thus
Ui (2z + 1)$2n—1 _ Jam+4
o J3 41 +a?nt  JomgsJomit’
as expected. O
It then follows that -
1 5
n:0F22n+1+1 3

as in [6, 8]. Additionally, we have
N (27 4 1)x?n~!

A D;
n=0 J22n+l + xQnil
e 22n—1 3
72 | oon—1 _— =
= Tyt 22n—1 5

Next, we pursue the sum in equation (1.3).

3.3. Confirmation of Identity (1.3).
Proof. Let A, denote the sum of the weights of closed walks of length n originating at

1 2
v Let 81 = AvsAnoA14n S2 = AnaAu1AnAnir, and S = o+ 7;— where w =
1 2
weight of edge v1v2. Because A,, = J, 11, we then have
1 2
S = + °
An—3An—2An—1An An—ZAn—lAnAn—l—l
1 x?

+ .
Jn—ZJn—IJan—i-l Jn—IJan+1Jn+2
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Now, let T), = A, 34, 24, 1A, Any1. Using the identities J,10 + 22, 2 = (22 + 1)J,
and JpypJnkx — J2 = —(—:c)”_kJ,f, we then get

S =

An+1 $2An_3
Ao s A 2 Ay 1A A Ay s Ay Ay 1 An A
An+1 ZL’2 An_g
T, T,

Jn-‘r? + xQJn—Q

In—2dn-1InIni1Jnio
2z +1)J,

In—2dn-1InIni1Jnio
20+ 1

(Jn+2Jn—2)(Jn+1Jn—1)
2¢ + 1

[J3 = (o) 2] [ T3 — (=2)" 1]
20 4+ 1

T4 (x — 1)(—z)"2J2 — 203

Equating the two values of S yields the desired result.

It follows from this result that

5

3 1

! (3.1)

FT—1
1

+ ;
an2Fn71FnFn+l ananFn+1Fn+2

4

J;zl + (_Q)n—QJ% _ 22n—3

Jn73Jn72Jn71Jn * JanJnflJanJrl .

Equation (3.1) has an interesting byproduct. Using equations (2.7) and (2.8) in [5], we get

as in [5, 8].

o

2 7
> - o
n—3 Fn72Fn71FnFn+l 2
00
2 7 1
> - -k
n—=3 Fn—anFn+an+2 2 3
i 1 3 5V5
T S 15T A
L Fi-1 18 6

Next, we explore the Jacobsthal-Lucas sums in equations (1.4) through (1.6).

3.4. Confirmation of Identity (1.4).
Proof. Let A, denote the sum of the weights of the elements in the set A of all closed walks
of length 2n and w the weight of the edge v1vy, where n > 1. Then, the sum of the weights of
the elements in the product set A x A is A2. Let S, = A2 + w?*~! and

n—1

Sm=> w;
n=1

n

m _
x2n 1
- § : A2 4 g2n—1°
n=1 n T

We will now compute A, and hence Sy, in a different way. Let w be an arbitrary element

in A.

FEBRUARY 2022
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Case 1. Suppose w originates at v;. It can land at v; or vy at the nth step:
w= vy— -+ —v v— --- —v; , Where v = vy or vs.

-~

subwalk of length n subwalk of length n
It follows from Table 4 that the sum of the weights of such walks w is J,QL ot vJ2 = Joni1.

w lands at vy w lands at v1 sum of the weights
at the nth step? | at the (2n)th step? of walks w
yes yes Jn-i—l Jn—i—l
no yes xJy - Jp

Table 4: Sums of the Weights of Closed Walks Originating at vy
Case 2. Suppose w originates at vo. Then, also it can land at v or vy at the nth step:
W= Vy— -++ —V V— --- —vy , Where v = vj or vs.

~~

subwalk of length n subwalk of length n
Table 5 implies that the sum of the weights of such walks w is xJ,% + xQJg_l =xJop_1.

w lands at v;

w lands at vy

sum of the weights

at the nth step? | at the (2n)th step? of walks w
yes yes In - xdy
no yes xJp_1-xJp_1

Table 5: Sums of the Weights of Closed Walks Originating at v
Thus, the sum B,, of the weights of all closed walks w is given by A, = Jopt1 + xJon—1 = jon-

So,
2n—

m

Se=Y

m = -2 n—1"
n:1J2n+1’1

For convenience, we let

Then,

Jy
D2, ; an
- D2Jy’

d

D2(x +1)
32 44z +1
D2%(2% + 3z + 1)

Using these initial values of S}, we conjecture that

m 2n—1

Z x  Jomye

== _
= Jom+1

We will now establish its validity by recursion [3, 5]. Let K, and R,, denote the LHS and
RHS of this equation, respectively. Using the identities —(-2)" ' Jp—n = JmJn-1 — Jm_1Jn

) —
]2n+x2n 1
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and j2 — D?J2 = 4(-z)", we then have

Somi2  Jom
D2J2m+1 D2J2m_1
Jomi2J2m—1 — Jomi1Jom

D2 Jom41J2m—1

2’”_”( m+1)-Cm—1)

x2m—1

(j%m — 4:62’”) + (4x + 1)a2m—1
$2m71

Rm - Rm—l =

j%m+x2m—1
= K,,— K,_1.
1 1
Then, Km—Rm: m_l—Rm_l:"‘:K()—R():ﬁ—ﬁzo. SO, Km:Rm

Thus, the conjecture is true and hence, the desired result holds. O

It then follows that

[e.9]

Z 1 1+f

L3, +1 10

as in [5]. It also yields

i x2n—1 u(x)
) m—1 2
n=0 Jan + D

o0

22n71 92
v JQQn + 922n—1 9

We will now confirm equation (1.5).

3.5. Confirmation of Identity (1.5).

Proof. Let B, denote the sum of the weights of elements in the set B of all closed walks of
length 2n + 1 in the digraph, where 0 < n < m. So, the sum of the weights of the elements in
the product set B x B is B2. Let w = weight of edge vivy, z = 2w + 1, S} = B2 4 22w’ 1,
and

m
S = Z B2 (2x + 1)2172” 1
n=0

We will now compute S}, in a different way. To this end, we let w be an arbitrary walk in
B.

Case 1. Suppose w originates at v1. It can land at v1 or vy at the nth step:
w= vy — -+ —V v— -+ —v1 , where v =11 or vs.

subwalk of length n subwalk of length n+1
Table 6 implies that the sum of the weights of such walks w is given by Jy,+1(Jpp2 +xJ,) =

Int1dn+1 = Jont2.

FEBRUARY 2022 11
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w lands at vg

w lands at v at

sum of the weights

at the nth step? | the (2n 4 1)st step? of walks w
yes yes In+1Jn+2
no yes xdp - Jnt1

Table 6: Sums of the Weights of Closed Walks Originating at vy
Case 2. Suppose w originates at vo. Then, also w can land at vy or vs at the nth step:
w= vV — -+ —U — V2

v— .- , where v = vy or vs.

subwalk of length n subwalk of length n+1
It follows from Table 7 that the sum of the weights of such walks is zJp,(Jp+1 + zJp—1) =
rJpjn = xJon.

w lands at vg w lands at v at sum of the weights
at the nth step? | the (2n + 1)st step? of walks w
yes yes [
no yes rp_1-xdy

Table 7: Sums of the Weights of Closed Walks Originating at v;
Combining the two cases, we get B, = Jopt2 + J2n, = jJont1. Consequently,

m
9 1 2n—1
. 2o+ 1)z

e R O D
This yields
g — 20+ 1 _ Jy )
O 7 D2x+1) D2J3Jy’
s = (2z +1)(22% + 4z + 1) __Js . and
D2($2 + 3x + 1)(:6 + 1) D2 Js5J3
g _ (Bz? + 4z +1)(22° + 922 + 6z +1)  Jio
27 D2a3462245bx+1)(224+3x+1)  D2J.J5
Based on these initial values of S}, we conjecture that
- (2z + 1)zt B Jam+4
e j22n+1 + (2z + 1)2332"_1 N D2Jomi3Joma1

We can confirm this using recursion, as in [5].
Equating now the two values of S}, yields the desired result.

This result implies that

o0

1 Vs
Z L5, +9 157

as in [5]. In addition, we get

> (22 + 1)z?n1 1

3 + (22 + 1)222n—d D’
0 22n71 B 1

n=0 j%n—‘rl +25- 22n—1 15

Finally, we confirm equation (1.6).
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3.6. Confirmation of Identity (1.6).
Proof. Let C,, denote the sum of the weights of all closed walks of length n in the digraph.
2

1
We also let S1 = Cp_2C,—1CCriq, So = C1ChCri1Chio, and S = 5 + %’ where w =
1 2
weight of edge vive. Because C), = Jp41 + xJn—1 = jn, We get
1 2
S = + Z
CanCanCnCnJrl CnflchnJrlCnJrQ
1 z2
= +

jn—2jn—ljnjn+l jn—ljnjn+1jn+2 ‘
We will now compute S in a different way. Let T, = C,—2C,_1ChCpy1Ch42. Using the
identities jnio + 2%jp_o = (22 + 1)j, and jpirjn_t — j2 = (—x)”_kD2J,§, we then have

Chyo 22Ch_2

S = +
Cn—QCn—ICnCn-I—lCTH—Q Cn—QCn—ICnCn—i-l Cn+2
. Cn+2 + xQCn—2
= T
_ Jnt2 + w2jn—2
jn—2jn—1jnjn+1jn+2
_ (22 + 1)jn
Jn—2Jn—1JnJn+1Jn+2
B 20 +1
(Jn+2Jn—2) (Jn+1n-1)
_ 20+ 1
2+ ()2 D252 + (~x)n D2
_ 2z +1
= @ () D - DR
This value of .S, coupled with the earlier one, gives the desired result. O
In particular, we then get
3 1 1
1 = + ; (3.2)
Ln —25 Ln72Ln71LnLn+1 LnfanLn+1Ln+2
5 B 1 n 4
]é - 9(_2)n72j7% —81- 22n73 jnf2jn71jnjn+1 jnfljnjn+1jn+2 ’

Using equation (4.6) in [5], equation (3.2) yields

i1 5 V5

4 _ = ea T an
o L} —25 63 30
as in [6, 7, 9].
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