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Abstract. Using graph-theoretic tools, we confirm five finite sums of Jacobsthal polynomial
products and a Jacobsthal-Lucas version.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 3].

Suppose a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) = Jn(x), the nth
Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the nth Jacobsthal-
Lucas polynomial. They can also be defined by the Binet-like formulas

Jn(x) =
un(x)− vn(x)

D
and jn(x) = un(x) + vn(x),

where D =
√
4x+ 1, 2u(x) = 1+D, and 2v(x) = 1−D. It then follows that lim

n→∞

Jn+1

Jn
= u(x)

and lim
n→∞

Jn
jn

=
1

D
. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth Jacobsthal and

Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn and jn(1) = Ln [2, 3].

Gibonacci and Jacobsthal polynomials are linked by the relationships Jn(x) = x(n−1)/2fn(1/
√
x)

and jn(x) = xn/2ln(1/
√
x) [3, 6].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let ∆ =

√
x2 + 4,

2α = 1 +
√
5, and 2β = 1−

√
5, and omit a lot of basic algebra.

Table 1 showcases some fundamental Jacobsthal Identities [3]; we will use them in our
discourse.

Jn+1 + xJn−1 = jn J2n = Jnjn
J2
n+1 + xJ2

n = J2n+1 Jn+2 + x2Jn−2 = (2x+ 1)Jn
jn+2 + x2jn−2 = (2x+ 1)jn (−x)nJm−n = JmJn+1 − Jm+1Jn
Jn+kJn−k − J2

n = −(−x)n−kJ2
k jn+kjn−k − j2n = (−x)n−kD2J2

k

Table 1: Some Fundamental Jacobsthal Identities
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1.1. Finite Sums of Jacobsthal Polynomial Products. In [6], we established the follow-
ing sums of Jacobsthal polynomial products:

m∑
n=0

x2n−1

J2
2n + x2n−1

=
J2m+2

J2m+1
; (1.1)

m∑
n=0

(2x+ 1)x2n−1

J2
2n+1 + x2n−1

=
J4m+4

J2m+3J2m+1
; (1.2)

2x+ 1

J4
n + (x− 1)(−x)n−2J2

n − x2n−3
=

1

Jn−2Jn−1JnJn+1
+

x2

Jn−1JnJn+1Jn+2
; (1.3)

m∑
n=0

x2n−1

j22n + x2n−1
=

J2m+2

(4x+ 1)J2m+1
; (1.4)

m∑
n=0

(2x+ 1)x2n−1

j22n+1 + (2x+ 1)2x2n−1
=

J4m+4

(4x+ 1)J2m+3J2m+1
. (1.5)

1.2. A Jacobsthal-Lucas Version. In the proof of Theorem 4.1 in [5], we established that

x2 + 2

l4n + (−1)n(x2 − 1)∆2l2n −∆4x2
=

1

ln−2ln−1lnln+1
+

1

ln−1lnln+1ln+2
.

This, coupled with the relationship jn(x) = xn/2ln(1/
√
x) [3, 6], can be used to find the

Jacobsthal-Lucas version of equation (1.3).
To this end, we let A = LHS and B = RHS. Replacing x with 1/

√
x, and then multiplying

the numerator and denominator of the resulting expression with x2n−3, we get

A =
(2x+ 1)x2

x3l4n − (−1)nx(x− 1)D2l2n −D4

=
(2x+ 1)x2n−1

(xn/2ln)4 − (−1)n(x− 1)xn−2D2(xn/2ln)2 −D4x2n−3
;

LHS =
(2x+ 1)x2n−1

j4n − (x− 1)(−x)n−2D2j2n −D4x2n−3
,

where ln = ln(1/
√
x) and jn = jn(x).

Now, replace x with 1/
√
x in B, and then multiply each numerator and denominator with

x2n+1. This yields

RHS =
x2n−1

jn−2jn−1jnjn+1
+

x2n+1

jn−1jnjn+1jn+2
,

where jn = jn(x).
Equating the two sides, we get the Jacobsthal-Lucas version:

2x+ 1

j4n − (x− 1)(−x)n−2D2j2n −D4x2n−3
=

1

jn−2jn−1jnjn+1
+

x2

jn−1jnjn+1jn+2
. (1.6)

Our objective is to confirm the six formulas using graph-theoretic techniques. To this end,
we first summarize the needed tools.
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2. Graph-theoretic Tools

Consider the Jacobthal digraph D in Figure 1 with vertices v1 and v2, where a weight is
assigned to each edge [3, 4].

Figure 1. Weighted Fibonacci Digraph D

It follows by induction from its weighted adjacency matrix M =

[
1 x
1 0

]
that

Mn =

[
Jn+1 xJn
Jn xJn−1

]
,

where Jn = Jn(x) and n ≥ 1 [3, 4].
The sum of the weights of closed walks of length n originating at v1 in the digraph is Jn+1

and that of those originating at v2 is xJn−1 [3, 4]. Consequently, the sum of the weights of all
closed walks of length n in the digraph is Jn+1 + xJn−1 = jn. These facts play a major role in
the graph-theoretic proofs.

Let A and B denote sets of walks of varying lengths originating at a vertex v. Then, the
sum of the weights of the elements (a, b) in the product set A × B is defined as the product
of the sums of weights from each component. This definition can be extended to any finite
number of components [4].

With these tools at our disposal, we are ready for the graph-theoretic proofs. They hinge
on the identities in Table 1.

3. Graph-theoretic Confirmations

3.1. Confirmation of Identity (1.1).
Proof. First, we will establish that

m∑
n=1

x2n−1

J2
2n + x2n−1

=
xJ2m
J2m+1

.

Let An denote the sum of the weights of elements in the set A of closed walks of length 2n− 1
in the digraph originating at v1, where 1 ≤ n ≤ m. Then, the sum of the weights of the
elements in the product set A × A is given by A2

n. Let S∗
n = A2

n + w2n−1, where w = weight
of edge v1v2. Let

Sm =

m∑
n=1

w2n−1

S∗
n

=
m∑

n=1

x2n−1

A2
n + x2n−1

.

We will now compute Sm in a different way. Let w be an arbitrary walk in A. It can land
at v1 or v2 at the (n− 1)st step: w = v1 − · · · − v︸ ︷︷ ︸

subwalk of length n−1

v − · · · − v1︸ ︷︷ ︸
subwalk of length n

, where v = v1 or v2.

Table 2 shows the possible cases and the corresponding sums of the weights, where Jn =
Jn(x).
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w lands at v1 at w lands at v1 at sum of the weights
the (n− 1)st step? the (2n− 1)st step? of walks w

yes yes Jn · Jn+1

no yes xJn−1 · Jn
Table 2: Sums of the Weights of Closed Walks Originating at v1

It follows from the table that the sum An of the weights of walks in A is given by An =
Jn(Jn+1 + xJn−1) = Jnjn = J2n. So, S

∗
n = J2

2n + x2n−1, and hence,

Sm =
m∑

n=1

x2n−1

J2
2n + x2n−1

.

Using the initial values

S1 =
x

x+ 1
=

xJ2
J3

;

S2 =
x(2x+ 1)

x2 + 3x+ 1
=

xJ4
J5

; and

S3 =
x(3x2 + 4x+ 1)

x3 + 6x2 + 5x+ 1
=

xJ6
J7

,

we conjecture that
m∑

n=1

x2n−1

J2
2n + x2n−1

=
xJ2m
J2m+1

.

We will now confirm this using recursion [3, 5]. Let Cm = LHS and Dm = RHS. Then,

Dm −Dm−1 =
xJ2m
J2m+1

− xJ2m−2

J2m−1

=
x(J2mJ2m−1 − J2m+1J2m−2)

J2m+1J2m−1

=
x(−x)2m−2J2m−(2m−2)

J2
2m − (−x)2m−1

=
x2m−1

J2
2m + x2m−1

= Cm − Cm−1.

So, Cm −Dm = Cm−1 −Dm−1 = · · · = C1 −D1 =
x

x+ 1
− x

x+ 1
= 0, and hence, Cm = Dm,

as expected. Thus, the conjecture is true for m ≥ 1.
Letting n = 0, this yields

m∑
n=0

x2n−1

J2
2n + x2n−1

=
xJ2m
J2m+1

+ 1

=
J2m+2

J2m+1
,

as desired. □

It then follows that
∞∑
n=0

1

F 2
2n + 1

=
1 +

√
5

2
,
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as in [6, 8]. It also yields
∞∑
n=0

22n−1

J2
2n + 22n−1

= 2.

3.2. Confirmation of Identity (1.2).
Proof. Let Bn denote the sum of the weights of elements in the set B of closed walks of length
2n originating at v1, where n ≥ 1. Then, the sum of the weights of the elements in the product
set B×B is given by B2

n. Let w = weight of the edge v1v2, z = 2w+1, S∗
n = B2

n+w2n−1, and

S∗
m =

m∑
n=1

zw2n−1

S∗
n

=

m∑
n=1

(2x+ 1)x2n−1

B2
n + x2n−1

.

We will now compute Bn and hence S∗
m in a different way. Let w be an arbitrary walk in B.

It can land at v1 or v2 at the nth step: w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v1︸ ︷︷ ︸
subwalk of length n

, where v = v1

or v2.
Table 3 implies that the sum Bn of the weights of walks w in B is given by Bn = J2

n+1+xJ2
n =

J2n+1.

w lands at v1 at w lands at v1 at sum of the weights
the nth step? the (2n)th step? of walks w

yes yes Jn+1 · Jn+1

no yes xJn · Jn

Table 3: Sums of the Weights of Closed Walks Originating at v1
So, S∗

n = J2
2n+1 + x2n−1. Then,

S∗
m =

m∑
n=1

(2x+ 1)x2n−1

J2
2n+1 + x2n−1

.

Next, we let

S′
m = S∗

m +
2x+ 1

x+ 1

=
m∑

n=0

(2x+ 1)x2n−1

J2
2n+1 + x2n−1

.

With the initial values

S′
0 =

2x+ 1

x+ 1
=

J4
J3J1

;

S′
1 =

(2x+ 1)(2x2 + 4x+ 1)

(x2 + 3x+ 1)(x+ 1)
=

J8
J5J3

; and

S′
2 =

(3x2 + 4x+ 1)(2x3 + 9x2 + 6x+ 1)

(x3 + 6x2 + 5x+ 1)(x2 + 3x+ 1)
=

J12
J7J5

,

we conjecture that
m∑

n=0

(2x+ 1)x2k−1

J2
2n+1 + x2n−1

=
J4m+4

J2m+3J2m+1
.
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We will now establish this using recursion [3, 5]. Let Km = LHS and Rm = RHS. Then,

Rm −Rm−1 =
J4m+4

J2m+3J2m+1
− J4m

J2m+1J2m−1

=
J2m+2(J2m+3 + xJ2m+1)

J2m+3J2m+1
− J2m(J2m+1 + xJ2m−1)

J2m+1J2m−1

=
J2m+3(J2m+2J2m−1 − J2m+1J2m)− xJ2m−1(J2m+3J2m − J2m+2J2m+1)

J2m+3J2m+1J2m−1

=
x2m−1J2m+3J2 − x(−x2m)J2m−1J2

J2m+3J2m+1J2m−1

=
x2m−1(J2m+3 + x2J2m−1)

J2m+3J2m+1J2m−1

=
(2x+ 1)x2m−1

J2m+3J2m−1

=
(2x+ 1)x2m−1

J2
2m+1 + x2m−1

= Km −Km−1.

Consequently, Km − Rm = Km−1 − Rm−1 = · · · = K0 − R0 =
2x+ 1

x+ 1
− 2x+ 1

x+ 1
= 0. So,

Km = Rm.
Thus

m∑
n=0

(2x+ 1)x2n−1

J2
2n+1 + x2n−1

=
J4m+4

J2m+3J2m+1
,

as expected. □

It then follows that
∞∑
n=0

1

F 2
2n+1 + 1

=

√
5

3
,

as in [6, 8]. Additionally, we have
∞∑
n=0

(2x+ 1)x2n−1

J2
2n+1 + x2n−1

= D;

∞∑
n=0

22n−1

J2
2n+1 + 22n−1

=
3

5
.

Next, we pursue the sum in equation (1.3).

3.3. Confirmation of Identity (1.3).
Proof. Let An denote the sum of the weights of closed walks of length n originating at

v1. Let S1 = An−3An−2An−1An, S2 = An−2An−1AnAn+1, and S =
1

S1
+

w2

S2
, where w =

weight of edge v1v2. Because An = Jn+1, we then have

S =
1

An−3An−2An−1An
+

x2

An−2An−1AnAn+1

=
1

Jn−2Jn−1JnJn+1
+

x2

Jn−1JnJn+1Jn+2
.
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Now, let Tn = An−3An−2An−1AnAn+1. Using the identities Jn+2 + x2Jn−2 = (2x + 1)Jn
and Jn+kJn−k − J2

n = −(−x)n−kJ2
k , we then get

S =
An+1

An−3An−2An−1AnAn+1
+

x2An−3

An−3An−2An−1AnAn+1

=
An+1

Tn
+

x2An−3

Tn

=
Jn+2 + x2Jn−2

Jn−2Jn−1JnJn+1Jn+2

=
(2x+ 1)Jn

Jn−2Jn−1JnJn+1Jn+2

=
2x+ 1

(Jn+2Jn−2)(Jn+1Jn−1)

=
2x+ 1

[J2
n − (−x)n−2][J2

n − (−x)n−1]

=
2x+ 1

J4
n + (x− 1)(−x)n−2J2

n − x2n−3
.

Equating the two values of S yields the desired result. □

It follows from this result that

3

F 4
n − 1

=
1

Fn−2Fn−1FnFn+1
+

1

Fn−1FnFn+1Fn+2
; (3.1)

5

J4
n + (−2)n−2J2

n − 22n−3
=

1

Jn−3Jn−2Jn−1Jn
+

4

Jn−2Jn−1JnJn+1
.

Equation (3.1) has an interesting byproduct. Using equations (2.7) and (2.8) in [5], we get

∞∑
n=3

2

Fn−2Fn−1FnFn+1
=

7

2
+ 5β;

∞∑
n=3

2

Fn−1FnFn+1Fn+2
=

7

2
+ 5β − 1

3
;

∞∑
n=3

1

F 4
n − 1

=
35

18
− 5

√
5

6
,

as in [5, 8].
Next, we explore the Jacobsthal-Lucas sums in equations (1.4) through (1.6).

3.4. Confirmation of Identity (1.4).
Proof. Let An denote the sum of the weights of the elements in the set A of all closed walks
of length 2n and w the weight of the edge v1v2, where n ≥ 1. Then, the sum of the weights of
the elements in the product set A×A is A2

n. Let Sn = A2
n + w2n−1, and

Sm =

m∑
n=1

w2n−1

Sn
=

m∑
n=1

x2n−1

A2
n + x2n−1

.

We will now compute An and hence Sm in a different way. Let w be an arbitrary element
in A.
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Case 1. Suppose w originates at v1. It can land at v1 or v2 at the nth step:
w = v1 − · · · − v︸ ︷︷ ︸

subwalk of length n

v − · · · − v1︸ ︷︷ ︸
subwalk of length n

, where v = v1 or v2.

It follows from Table 4 that the sum of the weights of such walks w is J2
n+1 + xJ2

n = J2n+1.

w lands at v1 w lands at v1 sum of the weights
at the nth step? at the (2n)th step? of walks w

yes yes Jn+1Jn+1

no yes xJn · Jn

Table 4: Sums of the Weights of Closed Walks Originating at v1
Case 2. Suppose w originates at v2. Then, also it can land at v1 or v2 at the nth step:

w = v2 − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v2︸ ︷︷ ︸
subwalk of length n

, where v = v1 or v2.

Table 5 implies that the sum of the weights of such walks w is xJ2
n + x2J2

n−1 = xJ2n−1.

w lands at v1 w lands at v2 sum of the weights
at the nth step? at the (2n)th step? of walks w

yes yes Jn · xJn
no yes xJn−1 · xJn−1

Table 5: Sums of the Weights of Closed Walks Originating at v2
Thus, the sum Bn of the weights of all closed walks w is given by An = J2n+1 + xJ2n−1 = j2n.
So,

Sm =

m∑
n=1

x2n−1

j22n + x2n−1
.

For convenience, we let

S∗
m = Sm +

1

4x+ 1

=
m∑

n=0

x2n−1

j22n + x2n−1
.

Then,

S∗
0 =

1

D2
=

J2
D2J1

;

S∗
1 =

2x+ 1

D2(x+ 1)
=

J4
D2J3

; and

S∗
2 =

3x2 + 4x+ 1

D2(x2 + 3x+ 1)
=

J6
D2J5

.

Using these initial values of S∗
m, we conjecture that

m∑
n=0

x2n−1

j22n + x2n−1
=

J2m+2

D2J2m+1
.

We will now establish its validity by recursion [3, 5]. Let Km and Rm denote the LHS and
RHS of this equation, respectively. Using the identities −(−x)n−1Jm−n = JmJn−1 − Jm−1Jn
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and j2n −D2J2
n = 4(−x)n, we then have

Rm −Rm−1 =
J2m+2

D2J2m+1
− J2m

D2J2m−1

=
J2m+2J2m−1 − J2m+1J2m

D2J2m+1J2m−1

=
x2m−1J(2m+1)−(2m−1)

D2
(
J2
2m + x2m−1

)
=

x2m−1(
j22m − 4x2m

)
+ (4x+ 1)x2m−1

=
x2m−1

j22m + x2m−1

= Km −Km−1.

Then, Km −Rm = Km−1 −Rm−1 = · · · = K0 −R0 =
1

D2
− 1

D2
= 0. So, Km = Rm.

Thus, the conjecture is true and hence, the desired result holds. □

It then follows that
∞∑
n=0

1

L2
2n + 1

=
1 +

√
5

10
,

as in [5]. It also yields

∞∑
n=0

x2n−1

j22n + x2n−1
=

u(x)

D2
;

∞∑
n=0

22n−1

j22n + 22n−1
=

2

9
.

We will now confirm equation (1.5).

3.5. Confirmation of Identity (1.5).
Proof. Let Bn denote the sum of the weights of elements in the set B of all closed walks of
length 2n+ 1 in the digraph, where 0 ≤ n ≤ m. So, the sum of the weights of the elements in
the product set B × B is B2

n. Let w = weight of edge v1v2, z = 2w + 1, S∗
n = B2

n + z2w2n−1,
and

S∗
m =

m∑
n=0

zw2n−1

S∗
n

=
m∑

n=0

(2x+ 1)x2n−1

B2
n + (2x+ 1)2x2n−1

.

We will now compute S∗
m in a different way. To this end, we let w be an arbitrary walk in

B.

Case 1. Suppose w originates at v1. It can land at v1 or v2 at the nth step:
w = v1 − · · · − v︸ ︷︷ ︸

subwalk of length n

v − · · · − v1︸ ︷︷ ︸
subwalk of length n+1

, where v = v1 or v2.

Table 6 implies that the sum of the weights of such walks w is given by Jn+1(Jn+2+xJn) =
Jn+1jn+1 = J2n+2.
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w lands at v1 w lands at v1 at sum of the weights
at the nth step? the (2n+ 1)st step? of walks w

yes yes Jn+1Jn+2

no yes xJn · Jn+1

Table 6: Sums of the Weights of Closed Walks Originating at v1
Case 2. Suppose w originates at v2. Then, also w can land at v1 or v2 at the nth step:

w = v2 − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v2︸ ︷︷ ︸
subwalk of length n+1

, where v = v1 or v2.

It follows from Table 7 that the sum of the weights of such walks is xJn(Jn+1 + xJn−1) =
xJnjn = xJ2n.

w lands at v1 w lands at v2 at sum of the weights
at the nth step? the (2n+ 1)st step? of walks w

yes yes Jn · xJn+1

no yes xJn−1 · xJn
Table 7: Sums of the Weights of Closed Walks Originating at v1

Combining the two cases, we get Bn = J2n+2 + xJ2n = j2n+1. Consequently,

S∗
m =

m∑
n=0

(2x+ 1)x2n−1

j22n+1 + (2x+ 1)2x2n−1
.

This yields

S∗
0 =

2x+ 1

D2(x+ 1)
=

J4
D2J3J1

;

S∗
1 =

(2x+ 1)(2x2 + 4x+ 1)

D2(x2 + 3x+ 1)(x+ 1)
=

J8
D2J5J3

; and

S∗
2 =

(3x2 + 4x+ 1)(2x3 + 9x2 + 6x+ 1)

D2(x3 + 6x2 + 5x+ 1)(x2 + 3x+ 1)
=

J12
D2J7J5

.

Based on these initial values of S∗
m, we conjecture that

m∑
n=0

(2x+ 1)x2n−1

j22n+1 + (2x+ 1)2x2n−1
=

J4m+4

D2J2m+3J2m+1
.

We can confirm this using recursion, as in [5].
Equating now the two values of S∗

m yields the desired result. □

This result implies that
∞∑
n=0

1

L2
2n+1 + 9

=

√
5

15
,

as in [5]. In addition, we get
∞∑
n=0

(2x+ 1)x2n−1

j22n+1 + (2x+ 1)2x2n−1
=

1

D
;

∞∑
n=0

22n−1

j22n+1 + 25 · 22n−1
=

1

15
.

Finally, we confirm equation (1.6).
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3.6. Confirmation of Identity (1.6).
Proof. Let Cn denote the sum of the weights of all closed walks of length n in the digraph.

We also let S1 = Cn−2Cn−1CnCn+1, S2 = Cn−1CnCn+1Cn+2, and S =
1

S1
+

w2

S2
, where w =

weight of edge v1v2. Because Cn = Jn+1 + xJn−1 = jn, we get

S =
1

Cn−2Cn−1CnCn+1
+

x2

Cn−1CnCn+1Cn+2

=
1

jn−2jn−1jnjn+1
+

x2

jn−1jnjn+1jn+2
.

We will now compute S in a different way. Let Tn = Cn−2Cn−1CnCn+1Cn+2. Using the
identities jn+2 + x2jn−2 = (2x+ 1)jn and jn+kjn−k − j2n = (−x)n−kD2J2

k , we then have

S =
Cn+2

Cn−2Cn−1CnCn+1Cn+2
+

x2Cn−2

Cn−2Cn−1CnCn+1Cn+2

=
Cn+2 + x2Cn−2

Tn

=
jn+2 + x2jn−2

jn−2jn−1jnjn+1jn+2

=
(2x+ 1)jn

jn−2jn−1jnjn+1jn+2

=
2x+ 1

(jn+2jn−2)(jn+1jn−1)

=
2x+ 1

[j2n + (−x)n−2D2][j2n + (−x)n−1D2]

=
2x+ 1

j4n − (x− 1)(−x)n−2D2j2n −D4x2n−3
.

This value of S, coupled with the earlier one, gives the desired result. □

In particular, we then get

3

L4
n − 25

=
1

Ln−2Ln−1LnLn+1
+

1

Ln−1LnLn+1Ln+2
; (3.2)

5

j4n − 9(−2)n−2j2n − 81 · 22n−3
=

1

jn−2jn−1jnjn+1
+

4

jn−1jnjn+1jn+2
.

Using equation (4.6) in [5], equation (3.2) yields
∞∑
n=3

1

L4
n − 25

=
5

63
−

√
5

30
,

as in [6, 7, 9].
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[7] À. Plaza, Problem H-810, The Fibonacci Quarterly, 55.3 (2017), 282.
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