PRODUCTS INVOLVING RECIPROCALS OF GIBONACCI
POLYNOMIALS

THOMAS KOSHY

ABSTRACT. We explore finite and infinite products involving reciprocals of gibonacci polyno-
mials, and their Pell counterparts.

1. INTRODUCTION

Eztended gibonacci polynomials z,(x) are defined by the recurrence z,12(x) = a(x)zp4+1(x)+
b(x)zp (), where x is an arbitrary complex variable; a(x), b(x), zo(x), and z1(x) are arbitrary
complex polynomials; and n > 0.

Suppose a(z) = x and b(z) = 1. When zy(z) = 0 and z;(x) = 1
nth Fibonacci polynomial; and when zp(x) = 2 and z1(z) = z, z,(x) =
polynomial. Clearly, f,(1) = F,, the nth Fibonacci number; and [,,(1)
number [1, 4, 6].

Pell polynomials py,(x) and Pell-Lucas polynomials q,(x) are defined by p,(z) = f(2z) and
qn(z) = 1,(2x), respectively. In particular, the Pell numbers P, and Pell-Lucas numbers Q,
are given by P, = pp(1) = fn(2) and 2Q,, = ¢n(1) = 1,(2), respectively [4, 5].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(x). In addition, we let g, = f,, or I,

by = pn O ¢, A = V2?2 +4, 2a(x) =+ A, y(z) = a(22), a = (1), and v = y(1), and omit
Im+k k
—— =a"(z),

, zn(x) = fo(x), the
ln(x), the nth Lucas
= Ly, the nth Lucas

a lot of basic algebra. It follows from the Binet-like formulas in [4] that li_r>n
m—00

b
and lim —tF = vk ().
m—0o0

It follows from the Cassini-like identities [4]
e T G Vi
Inteln—k — l?@ = (_1)nikA2fI?

that Fy,_oF, 1Fy1Fnio = F* —1 and L, oL, 1Lpi1Ln2 = Lt — 25 [4]. They play an
important role in our investigations.

2. ProbpucTs INVOLVING RECIPROCALS OF FIBONACCI POLYNOMIALS

We begin our explorations with products containing reciprocals of squares of odd-numbered
Fibonacci polynomials.

Theorem 2.1.

. 2\ 1 Jom+1
H <1+f22n—1> _$2+1.f2m—1‘ (21)

n=2
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Proof. We will establish the formula using recursion [4]. Let A,, denote the left side of (2.1)
and By, denote the right side of (2.1). Then,

Bm _ f2m+1f2m—3
Bm_l f22m—1
f22m71 + x2
f22m—1
Amfl ’
A A A 241
This implies, B7m = Bm L= B—Q = a:2 i 7= 1. Consequently, A,, = B;,, as desired.
—1 2 X
m m E’
It then follows that
m
1 Fomi
H(1+F2 ) = Sh (2.2)
n—2 2n—1 2m—1
ﬁ 14 x? B a?(z) .
2 a2+ 1
n=2 2n—1
ie5t) - 5
n=2 F227L—1 2

Formula (2.1) can be rewritten as

Im—1 N x? +1 f2m—1 '

ﬁ fongrfon—3 1 fomqa
2
n=2

Next, we explore products involving reciprocals of squares of even-numbered Fibonacci
polynomials.

Theorem 2.2.

- 2\ 1 Jom+2
g(l_ﬁ)_ﬂw' fom 23)

Proof. We will confirm the validity of this formula using recursion [4]. Let A,, denote the left
side of (2.3) and B,, denote the right side of (2.3). Then,

B fom+2Sfom—2
Bi-1 B f22m
f22m — xZ
fom
— Am
= i
This yields g: = ?)’:j == gz = ;i = 1. So, A,, = By, as desired. O
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This theorem implies

m
1 Fomqo
[H1-=) = 525 (2.4)
U\ 7 3Fom,
> z? o?(z)
H 1- 2 = 2 + 2’
n=2 2n
F3, 3

3
||
N

We can rewrite formula (2.3) as

ﬁ fon—2fony2 _ L fom+2

Next, we investigate products involving reciprocals of odd and even-numbered Fibonacci
polynomial squares.

Theorem 2.3.

a“ 1 LY _ = fomp
() e

n=2
Proof. Again, we will invoke recursion [4] to establish this formula. Let A,, denote the left

side of (2.5) and By, denote the right side of (2.5). Then,

Am_l f22m71f22m
_ fomfom—2 - fom+1fom—1
f22m—1f22m
fom+1fom—2
f2mf2m—1
B
Bm—l .
.. . Am Am—]_ A2 .
Th 1 — = =...=—2=1.S0,A4,,=B d d. O
is implies, B. ~ B, B, o, Am, m, as desire
Consequently,
m
1 1 Fopmia
1— 14— | = =22zt 2.6
};‘[2< F22n—1) ( F22n) 2Fom ( )
o0
1 ) ( 1 ) T
1-— 1+ —| = a(r);
g < 22n71 f2n a? +1
oo
1 1
11 <1—2) <1+2> = <
n=2 F2n71 F2n 2
as in [2].

An interesting byproduct: Formulas (2.2), (2.4), and (2.6) can be employed to extract a product
containing reciprocals of the fourth powers of Fibonacci numbers. Multiplying these formulas,
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we get
ﬁ (1 b <1 _ 1> _ P Fomgz Fomin
n=2 F24n—1 F24n 2Fom—1  3Fom 2Fo, 7
10 (1-4) = Dol
n=3 F# 12F22mF2m71 ,
o0
1 ad
l-=) = = 2.
11 ( F;%) 12’ (2.7)
n=3
as in [3, 7].

Using the Gelin-Cesdro identity Fy,_oF,_1F,+1Fpt2 = Fﬁ — 1 [4], we can rewrite formula
(2.7) as

ﬁ Fn72Fn71Fn+1Fn+2 _ 0475
F! 12
n=3

as in [3].

2.1. Alternate Versions. Using the identity 12 — A% f2 = 4(~1)" [4], we can express the left
sides in formulas (2.1), (2.3), and (2.5) in terms of Lucas polynomials.

They yield
m AQ 2 1 m
H (1 o il > = f2 .
n=2 l2n—1+4 e+ 1 f2m—1
o0 2,.2 2
H (1 + 2A i ) = O;(x)3
ol 3,1 +4 ¥+ 1
ad ) a?
1+ ) = = (2.8)
ﬁ (1 _ A?y? ) _ L famgo
n=2 l%n_4 $2+2 f2m ’
ﬁ (1 A2g? ) _ dX(w)
oot 2, —4 22+ 2’
it 5 ) a?
1- = = (2.9)
n:2< 2 —14 3
s 1 A? A T famn,
11 T2 +4 ) - B
n—9 2n—1 2n 2m
> A? A? ro(x)
{13 )\t Za) T et
n=2 2n—1 2n
o 5 5 oY
1-— = —. 2.10
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It then follows from equations (2.8), (2.9), and (2.10) that

ﬁ[*wﬁ#w} [1‘@%:34)2]:?;

n=2

3. PELL VERSIONS

Using the relationship p,(z) = f,(2x), we can find the Pell counterparts of formulas (2.1),
(2.3), and (2.5).
It follows from formula (2.1) that

m 2
H <1 n dx ) _ D2m+1 _
p%n—l (4.%’2 + 1)p2m—1

n=2
This implies,

o) - i
s P34 5Pom—1’
o

422 2(x
H <1+ 2 ) = 72( ) ;
i Dap_1 4=+ 1
o0

4 2
o) - ¥
n=2 P2n—1 5

Formula (2.3) yields

ﬁ(1_4x2>: 1 . P2m+2
P3, 2222 4+1)  pom

n=2
Consequently,
ﬁ <1 4 ) _ Poango
11 P2 6Pop
= 4a” 7*(x)
[I(1-=) = 552
1l P2 2(222 + 1)

—12
—_
|
o8| =
N————
|
o3, X

From formula (2.5), we get

m
1 1 2
H(l— > ><1+z>= s 2t
P5p_1 b3y d*+1  pom

n=2
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This implies,

ﬁ oL Ve L) o 2 D
P3 P:) 5 Py’
n=2 2n—1 2n 2m
(oo}
1 1 2z
) (162 = 2w
7n2( p%n_1>< 3, w2 1)@
o0
1 1 9
H(l— > )<1+2> = 2
n=2 Izn—l Izn 5

Using the formula ¢2 — 4(2% + 1)p2 = 4(-1)" [5], we can extract the Pell-Lucas versions of
formulas (2.1), (2.3), and (2.5). In the interest of brevity, we omit them.

4. PropucTs INVOLVING RECIPROCALS OF LUCAS POLYNOMIALS

We now explore the Lucas counterparts of formulas (2.1), (2.3), and (2.5). Again, we will
employ recursion [4] to establish them.

Theorem 4.1.

(4.1)

AQI'Z _ €T . l2m+1
."L‘3 + 3x l2m71 '

11(:

D)
l2n71

n=2
Proof. Let A,, denote the left side of (4.1) and B, denote the right side of (4.1). Then,
B, lam+1lom—3
Bm*1 l%mfl
B — A%
l%n—l
Am—l
This implies,
An _Anoy A b B
By Bmo1i By 12 aly
Thus A,, = B, as expected. O
Formula (4.1) yields
m
) L
H <1 _— _ 2mil (4.2)
n—>2 L3, 4 4Lom—1
oo
A22
M(1-5") = wiget@
n—2 131 e+ 3z
00 2
I1(1- —
L2n—l 4

Because lopt1lon—3 = 13, 1 — A?2?%, we can rewrite formula (4.1) as

m
lontilon—3 —~ x®  lomg
1’3 + 3z lgm_l '

l2
n=2 2n—1

Next, we investigate the Lucas version of Theorem 2.2.
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Theorem 4.2.

m

[I

A2q2

2 42 lom+2

(1+

2
n=2 l2n

(4.3)

)

T rd4z?+ 2 lom

Proof. Letting A,, denote the left side of (4.3) and B,,, denote the right side of (4.3), we get

lom+2lom—2

Bm—l

Am—l

Bm—l B

A
This implies, =

m

It follows from formula (4.3) that

._B72_

l%m
12, + A2%x?
l%m
Am
Ap1 '
laly

L 1. Consequently, A,, = By,, as desired.
2l6
O

Il
E

Lom+1

| w

; 4.4
L2m—1 ( )
22 +2

2 .
x4+ 422 + 2 (@);

302

-

Using the identity lo,2lon—o = 13, + A%2?, we can rewrite formula (4.3) as

m

II

lont2lon—2

2t 42 lom+2

2
n=2 l2n

Next, we present the Lucas version of

(

Theorem 4.3.

m

[1

n=2

A2
1+ 5—
l2n—1

)(

T2t 42212 Iy,

Theorem 2.3.

)

A2
B,

2?42 oy

T 2343z oy

(4.5)

Proof. Again, letting A,, denote the left side of (4.5) and B, denote the right side of (4.5),

we have

(131 + A%)(13,, — A?)

Am—l

5 2
115,
lamlam—2 - lam+1lam—1

2 2
l2m71l2m

lom+1lom—2

lomlom—1
B,
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.. Am  Ape A Isls 4l I3l
This yields B, = Bm—i =...= B—z = % . % . ﬁ = 1. Consequently, A,, = By, as de-
sired. 0
Consequently,
i 5 ) 3 Lomy1
14 )(1_> = 3 L, (4.6)
,g ( L%nfl L%n 4 Lom
ad A? A? x? +2
1 -] = —/—— ;
L0rg)(og) - Saee

b 5 5 3a
1+ )(1_) _ B

Using the Cassini-like identity for Lucas polynomials, we can rewrite formula (4.5) as

ﬁ lon—2lan—1loplons1 _ ) lamyr
n=2 13103, 23+ 3z lom—1

Another interesting byproduct: Using equations (4.2), (4.4), and (4.6), we can extract a formula
for the product involving reciprocals of the fourth powers of Lucas numbers. Multiplying these
formulas, we get

ﬁ L% Lo 2\ _ Lomsi B3Lomis 3Lomy
L%n—l L%n 4L2m—1 7L2m 4L2m '

n=2
ﬁ (1 - 25> _ 9 Lemealhng,

U\ 112 12 Lom
o0
25 9 .
n=3 n

Using the Gelin-Cesaro-like identity Ly, oLp 1Lpy1Ln1o = LA — 25 [4], we can rewrite
formula (4.7) as

[e.9]

H Ln—QLn—an+1Ln+2 o 9 045

- _ 2
11 LA 112

4.1. Alternate Versions. Using the identity (2 — A% f2 = 4(~1)" [4], we can express formulas
(4.1), (4.3), and (4.5) and their implications in terms of Fibonacci polynomials:

ﬁ <1 B A2x2 ) _ T _ l2m+1.
9 A2f22n—1 —4 1'3 + 3x lgm_l ’
ﬁ ) A2g? _ za®(z)
i A2f22n_1 —4 - 234 3x)

22 VOLUME 60, NUMBER 1



RECIPROCALS OF GIBONACCI POLYNOMIALS

2
ﬁ( A2 A2
1t ) (1 -
n—2 A2f22n—1 —4 A2f22n +4
ﬁ( A2 A2
1t ) (1 -
n=2 A2f22n71 —4 A2f22n +4

a 5 5
H il ll =
5F3 | —4 5F3 +4

a?

=S (4.8)
2?42 lamya
2+ 422 +2 gy
2?2 +2 2
T Ararzyo” (z);
3a?
2 +2 1
_ C2mA1
$3 + 3x lQm ’
)
= Bra®
3
- ZO‘. (4.10)

It then follows from equations (4.8), (4.9), and (4.10) that

n=2

%19
_ 0w

I~ =] [

5F%, +4)7

12¢

Next, we find the Pell-Lucas consequences of formulas (4.1), (4.3), and (4.5).

4.2. Pell-Lucas Implications. Because ¢, (z)
equations (4.1), (4.3), and (4.5) that

ﬁ [1 B 16:):2(x2 +1)]

"o Byt

ﬁ[{ 1622 (x +1)]

[ 42

q2n 1

4(x2 +1)]

2
don

respectively.
It then follows that
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= [,(2z) and ()

= «a(2x), it follows from

L d2m+1 |

423 + 32 Qo1

222 + 1 G2m+2

8xd +822+1 qom |

222 + 1 2m+1
473 + 32 qom

)

—_

Qam+1

QQm—l 7

3 Qoamya,
17 QQm 7

-3

. Q2m+1

Q2m ’

| w
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respectively. In addition, we have

ﬁ {1 _ M _ L’)ﬂ(x)'
o @, 473 + 3x ’
ﬁ [1 + M = ﬂf@).
n=2 03, l 8xt + 822 + 1 ’
()| PR B T
ne2 9on—1 45, | 473 + 3x
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