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Abstract. We explore the number of different tilings of boards and bracelets with one color
of squares, two colors of dominos, three colors of trominos, and so on. We give a visual proof
of the surprising connections between these sequences and the Fibonacci and Lucas numbers,
which then allows us to establish new identities and new proofs.

1. Introduction

The Fibonacci numbers Fn begin with F1 = F2 = 1, and then each subsequent number is
the sum of the two previous numbers. We will also define fn = Fn+1 because, as Benjamin
and Quinn point out in [3], this fn counts the number of ways to tile a strip of length n with
squares and dominos. With this tiling interpretation for fn, it is easy to give visual proofs of
summation formulas such as f0 + f2 + f4 + · · ·+ f2n = f2n+1, which Benjamin and Quinn [3]
proved by looking at the location of the last square in the tilings of a strip of length 2n+ 1.

But what about weighted sums of Fibonacci numbers? Baxter and Pudwell [1] proved this
weighted-sum formula by induction:

1F2n−2 + 2F2n−4 + 3F2n−6 + 4F2n−8 + · · ·+ (n− 1)F2 = F2n − n. (1.1)

A number of other weighted sums like this can be found in Koshy’s book [5, chapter 25], where
they are proved using algebra and also by a method involving derivatives (from N. Gauthier
[4]). Benjamin, Crouch, and Sellers [2] proved (1.1) by a combinatorial argument, where they
looked at the location of the second square in the tilings of a strip of length 2n − 1. This
illustrates that it is possible to find visual proofs for weighted sums.

In this paper, we count tilings with multiple tiles of many different colors. We define the
new sequence an to be the number of different ways to tile a board of length n with one color of
squares, two colors of dominos, three colors of trominos, and so on. We give a visual proof that
an = F2n, and we then give combinatorial proofs for weighted sums involving these an’s, which
then become weighted sums involving F2n’s. We then define bn to be the number of bracelet
tilings using these same multicolored tiles, and we prove visually that bn = L2n−2, which then
leads to formulas for weighted sums of these Lucas numbers. We finish with combinatorial
proofs of new formulas for the following two expressions,

n∑
k=1

k(k − 1)F2n−2k and

n∑
k=1

k2F2n−2k. (1.2)

Although Koshy has formulas for
∑

kFk and
∑

k2Fk, we have not seen formulas for the
“reversed index” sums weighted by k2 in (1.2) before now.
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2. The Colorful Sequences an and bn.

We number the cells of an n-board from left to right as cell 1, cell 2, . . ., cell n. (See Figure
1). As mentioned above, we define an to be the number of ways to tile a board of length n

Figure 1. Numbering the cells of a 6-board.

with one color of squares, two colors of dominos, three colors of trominos, and so on. For
convenience, we define a0 = 0. We call a board with this kind of tiling an n-rainbow-board,
and to avoid confusion we also define an n-monoboard to be a board of length n that is tiled
with only one color of just squares and dominos. We easily calculate the first few values of an
starting at n = 1 to be 1, 3, 8, 21, 55, . . ., suggesting that an could equal F2n. We prove this
in Theorem 3.2.

Next, we define bn to be the number of different ways to tile a bracelet of length n with one
color of squares, two colors of dominos, three colors of trominos, and so on. For convenience
we define b0 = 0. We henceforth call this kind of bracelet an n-rainbow-bracelet, and just
as before we also use the term n-monobracelet to represent bracelets tiled with squares and
dominos of just one color. We number the cells and tiles clockwise starting from the top of
the bracelet, and we denote the tile covering cell 1 as the first tile. See Figure 2.

Figure 2. Numbering the cells and tiles of a 6-bracelet.

Starting at n = 1, we calculate the first few values for bn to be 1, 5, 16, 45, . . ., suggesting
that bn = L2n − 2. We prove this in Theorem 3.4.

To clarify discussions on coloring, we label the colors as c1, c2, c3, and so on. A square is
color c1, a domino can be color c1 or c2, and a k-mino can be color c1 through ck.

3. Connection to Fibonacci and Lucas Numbers

We begin by establishing a recurrence formula for our sequence an. We will then show the
connection between an and the Fibonacci numbers.

Theorem 3.1. For n ≥ 2, we have an = 3an−1 − an−2.

Proof. We will give a tiling proof for the related formula 3an = an+1 + an−1 for n ≥ 2, which
will then give us our theorem. We do so by creating a one-to-three correspondence between
the an tilings of an n-rainbow-board, and the an+1 + an−1 tilings of an (n+1)-rainbow-board
or an (n− 1)-rainbow-board.
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Given a tiling of an n-rainbow-board, we make three copies. For the first copy, we add a
square at the end to create an (n+1)-board ending in a square. For the second copy, we extend
the last tile from length k to length k + 1 to create an (n + 1)-board. This last tile could be
color c1 through ck, but not color ck+1. Finally, we take the third copy and we condition on
the color of the last tile (of length k). If this last tile has color cm with m < k (which implies
k > 1), we shorten its length by 1 but keep the color cm to give us all possible (n− 1)-boards.
If instead it has color ck, we extend its length by 1 and change its color to ck+1. This gives us
an (n+ 1)-board whose last tile has length k + 1 and color ck+1.

Because we have covered all possible boards of length n − 1 or n + 1, we have established
the correspondence. Figure 3 gives an example of how three copies of an n-board are turned
into boards of length n+ 1 or n− 1. □

Figure 3. Demonstrating that 3an = an+1 + an−1.

Now that we have proved (in Theorem 3.1) that an = 3an−1 − an−2, we note that the
sequence F2, F4, F6, F8, . . . satisfies exactly the same recurrence formula, and because both
an and F2n have the same initial values of 1 and 3, we can conclude that an = F2n. However, it
is enjoyable (and instructive) to prove this connection directly, by comparing different tilings.

Theorem 3.2. For n ≥ 0, we have an = F2n.

Proof. We give a tiling proof for the formula an = f2n−1 for n ≥ 1 by creating a one-to-one
mapping from all tilings of an n-rainbow-board to all tilings of a (2n− 1)-monoboard.

Given one of the an tilings of an n-rainbow-board, we first turn each k-mino of color cm into
a 2k-monoboard composed of two squares and k − 1 dominos; this 2k-monoboard will start
with a square (covering cell 1), and then the second square will cover cell 2m. See Figure 4 for
an example. Then, we link all these 2k-monoboards to form a 2n-monoboard, and finally we
remove the first square of the 2n-monoboard to create a (2n− 1)-monoboard. Figure 5 shows
how a 6-rainbow-board is turned into an 11-monoboard.

To show that we have successfully created all f2n−1 tilings of an (2n−1)-monoboard exactly
once, we will take all f2n−1 such tilings and turn them back into all an tilings of an n-rainbow-
board. We proceed as follows. First, we add a square at the start of the (2n− 1)-monoboard
to create a 2n-monoboard starting with a square. Then, starting at the third square (if it
exists) from the left, break the monoboard immediately before alternate squares. This gives
us shorter monoboards, each of which starts with a square, has exactly one other square (at
some even-numbered cell from the left, call it cell 2m), and has even length (call it 2k). Next,
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Figure 4. Trominos are turned into 6-monoboards.

Figure 5. A 6-rainbow-board is turned into an 11-monoboard.

we take each short monoboard of length 2k with its second square at cell 2m and turn it into
a k-mino of color cm. Finally, we link all those k-minos to create a rainbow-board of length n.

Having established our one-to-one correspondence, we conclude that an = f2n−1 = F2n, as
desired. □

Next, we establish a connection between the Lucas numbers and our colorful bracelet se-
quence bn. We start by proving the following recurrence formula.

Theorem 3.3. For n ≥ 2, we have bn = 3bn−1 − bn−2 + 2.

Proof. We note that the “first tile” (the tile that overlays cell 1) of a bracelet tiling can have
many different orientations. With this in mind, we will say that a bracelet has phase p to
mean that cell p of the first tile is overlaid on cell 1 of the bracelet. (Remember that the cells
and tiles are numbered clockwise.) Hence, if the first tile of a bracelet is a k-mino, it can be
in k different phases p from p = 1 to p = k. Two examples of phases are given in Figure 6.

To prove the theorem, we will establish the formula 3bn = bn+1 + bn−1 − 2 by creating an
almost one-to-three correspondence between the bn tilings of an n-rainbow-bracelet and the
bn+1+bn−1 tilings of an (n+1) or (n−1) rainbow-bracelet. As will become clear in a moment,
it is important to note that none of the following actions will change the phase of the bracelet.

Given a tiling of an n-rainbow-bracelet with two or more tiles, we make three copies. For
the first copy, we add a square after the last tile to create an (n + 1)-rainbow-bracelet that
ends in a square. For the second copy, we extend the length of the last tile by one to create an
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Figure 6. Three phases of 3-bracelets and four phases of 4-bracelets.

(n + 1)-rainbow-bracelet that does not end in a square. This last tile, of length k + 1, could
be color c1 through ck, but not color ck+1. Finally, we take the third copy and we condition
on the color of the last tile (of length k). If this last tile has color cm with m < k, we shorten
its length by 1 but keep the color cm to give us an (n − 1)-bracelet. If instead this last tile
has color ck, we extend its length by 1 (to length k + 1) and change its color to ck+1 to give
us an (n + 1)-bracelet whose last tile is length k + 1 and color ck+1. Figure 7 shows how an
n-rainbow-bracelet is turned into three rainbow-bracelets of length n+ 1 or n− 1.

Figure 7. Almost one-to-three correspondence between Set 1 and Set 2.

As mentioned above, this is an almost one-to-three correspondence. There are two cases
where the above correspondence fails. First, our correspondence is not completely valid if our
tiling of the n-rainbow-bracelet is made of just one tile of length n, color cm with m < n,
and phase n; we cannot shorten the length by one as directed by the instructions above
because that would produce an (n − 1)-bracelet of phase n. There are n − 1 such faulty
bracelets, one for each color cm with m < n. And second, our correspondence fails to map
onto the rainbow-bracelets comprised of a single tile of length n + 1 and phase n + 1; there
are n+ 1 such uncovered bracelets (with colors c1 through cn+1). Summing up, this gives us
3bn − (n− 1) = bn−1 + bn+1 − (n+ 1), which simplifies to our desired formula. □
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Now that we have proved in Theorem 3.3 that bn = 3bn−1 − bn−2 + 2, we note that the
sequence L2n − 2 satisfies exactly the same recurrence formula, and because bn and L2n − 2
have the same initial values of 1 and 5, we can conclude that bn = L2n − 2. However, it is
enjoyable (and instructive) to prove this connection directly, by comparing different tilings.

Theorem 3.4. For n ≥ 0, we have bn = L2n − 2.

Proof. Not surprisingly, this proof differs in only a few details from the proof of Theorem 3.2.
We provide an overview, and leave the details to the reader.

We wish to find a one-to-one correspondence between all bn tilings of an n-rainbow-bracelet
and all the L2n − 2 tilings of a 2n-monobracelet with at least one square; the two missing
tilings are the all-domino “in-phase” and “out-of-phase” tilings.

Given one of the bn tilings of an n-rainbow-bracelet, we again convert each k-mino of color
cm in that tiling into a 2k-monoboard composed of 2 squares and k − 1 dominos, where the
first square will cover cell 1 and the second square will cover cell 2m. Then, we link these short
monoboards to form a bracelet of length 2n. Finally, we rotate this 2n-monobracelet so that
cell 2p−1 of the first short monoboard (converted from the first k-mino of the rainbow-bracelet)
covers cell 1 of the 2n-monobracelet, where p is the phase of that first k-mino from the old
rainbow-bracelet. Figure 8 shows how an n-rainbow-bracelet is turned into a 2n-monobracelet.

Figure 8. A 6-rainbow-bracelet is turned into a 12-monobracelet.

We check that every 2n-monobracelet other than the two all-domino tilings is created exactly
once by converting each of them back to unique n-rainbow-bracelets, as follows. First, we need
to dissect our 2n-monobracelet into shorter monoboards. To do this, we look for the location
of the first square, counting clockwise from cell 1 at the top of our bracelet; we denote by a
the location of this first square, and if a is odd, we cut the monobracelet immediately before
alternate squares starting at this first square, but if a is even, we do the same but starting
at the second square. This gives us a number of short monoboards, each of which starts
with a square, has exactly one other square (at some position 2m relative to the beginning
of each monoboard), and has even length (call it 2k). Figure 9 gives an example. Each such
monoboard is now converted into a k-mino of color cm, and then all the k-minos are assembled
back into a rainbow-bracelet of length n. The first short monoboard (the one that covered cell
1 of our 2n-monoboard) becomes the first k-mino of our n-rainbow-bracelet.

Finally, we must select the phase of our new n-rainbow-bracelet. Recall that if a was odd,
we cut the 2n-monobracelet immediately before the first square. If a = 1, then the first short
monoboard (which by definition covers cell 1 of the 2n-monobracelet) from our dissection
actually began at cell 1, and so we naturally assign its associated k-mino to have phase 1.
Otherwise, for a > 1 odd, this first short monoboard (the one that covers cell 1) could only
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cover this first cell of the 2n-monobracelet at position 3, 5, 7, . . . relative to the beginning of
the short monoboard. We denote this position by 2p − 1 for p > 1. Likewise, if a was even,
we cut the monobracelet immediately before the next square, and so this first square (at an
even location) would be the second square of the short monoboard, and so again the short
monoboard would cover the first cell of the 2n-monobracelet at some position 2p−1 for p > 1.
In both cases, we assign our first k-mino in the n-rainbow bracelet to have phase p for p > 1.
(Because the color of this first k-mino is determined by the location of its second square, there
is no duplication in this mapping; we leave the details to the reader.) Figure 9 and Figure 10
show how 2n-monobracelets are turned into n-rainbow-bracelets.

Figure 9. A 26-monobracelet is turned into a 13-rainbow-bracelet.

Figure 10. A 16-monobracelet is turned into a 8-rainbow-bracelet.

We conclude that bn = L2n − 2, as desired. □

4. Colorful New Proofs and New Identities for Fibonacci and Lucas Numbers

Because an = F2n and bn = L2n − 2, we can establish new identities (or at the least, new
proofs of old identities) for the Fibonacci and Lucas numbers by way of identities for an and
bn.

The following theorem was first proved by induction in [1], and then by tiling with squares
and dominos in [2]. Here, we give a new proof.

Theorem 4.1. For Fn the Fibonacci numbers, we have
n∑

k=1

k · F2n−2k = F2n − n.

Proof. We will prove the colorful formula an = n +
∑n−1

k=1 k · an−k. Consider the number of
ways to tile an n-rainbow-board. On the one hand, this is an by definition. On the other
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hand, we consider the last tile in any such tiling: there are an−1 tilings that end in a square,
and 2an−2 tilings that end in a domino (because there are two possible colors for that last
domino), and 3an−3 tilings that end in a tromino, and so on, ending with (n − 1)a1 tilings
that end in an (n− 1)-mino, and n tilings that are made of a single n-mino. Figure 11 shows
the possible cases.

Figure 11. Condition on the last tile of an n-board.

Adding up all the terms gives us our desired formula. □

As an aside, we note that we can use Theorem 4.1 to prove its “companion identity” as seen
in [2],

n∑
k=1

k · F2n+1−2k = F2n+1 − 1.

We start with

F2n = n+
n∑

k=1

k · F2n−2k = n+
n−1∑
k=1

k · F2n−2k,

and if we replace n with n+ 1, we get

F2n+2 = n+ 1 +

n∑
k=1

k · F2n+2−2k.

If we subtract the two formulas above, we get

F2n+2 − F2n = 1 +
n∑

k=1

k · F2n+2−2k −
n∑

k=1

k · F2n−2k.

A bit of simplification turns this into our “companion identity”,

F2n+1 = 1 +
n∑

k=1

k · F2n+1−2k.

In [2], Benjamin, Crouch, and Sellers suggested that a formula similar to Theorem 4.1 but
for Lucas numbers could be obtained by using squares and dominos on a bracelet of length n.
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In keeping with the theme of this section, we have found just such a formula by using colorful
tilings on a rainbow-bracelet of length 2n, as we show next.

Theorem 4.2. For Ln the Lucas numbers, we have

n∑
k=1

k · L2n−2k = L2n + (n− 2).

Proof. We will first prove the colorful formula bn = n2 +
∑n−1

k=1 kbn−k. Consider the number
of ways to tile an n-rainbow-bracelet. On the one hand, this is bn by definition. On the other
hand, we can condition on the last tile (the one immediately to the left of the first tile) in the
bracelet. There are bn−1 tilings whose last tile is a square, and 2bn−2 tilings whose last tile is a
domino (because there are two colors for that last domino), and 3bn−3 tilings of an n-bracelet
whose last tile is a tromino, and so on, ending with (n − 1)b1 tilings of an n-bracelet whose
last tile is an (n− 1)-mino, and n2 tilings of an n-bracelet tiled with a single n-mino, because

there are n colors and n phases for that n-mino. In total, this gives us n2 +
∑n−1

k=1 kbn−k such
tilings, giving us our colorful formula.

If we now replace each bi with L2i − 2, we have

L2n − 2 = n2 +

n−1∑
k=1

k (L2n−2k − 2) ,

and after simplifying we obtain our theorem. □

Just as we saw after the proof of Theorem 4.1, there is also a “companion identity” for the
weighted sums of Lucas numbers. The formula is

n∑
k=1

k · L2n+1−2k = L2n+1 − (2n+ 1),

and we leave the details to the reader.
We conclude with a colorful tiling proof that will give us the following weighted sum.

Theorem 4.3. For n ≥ 1, we have
n∑

k=1

k(k − 1)F2n−2k = 2F2n−1 − (n2 − n+ 2).

As seen with Theorems 4.1 and 4.2, there is also a “companion formula” for the sum in
Theorem 4.3, and after a bit of work we find that

n∑
k=1

k(k − 1)F2n+1−2k = 2(F2n − n).

Furthermore, we note that if we add together Theorems 4.1 and 4.3, then after a bit of
simplifying we obtain the following formula that, as far as we can tell, has not yet appeared
in the literature:

n∑
k=1

k2F2n−2k = L2n − (n2 + 2).

We suspect that there might also be a direct tiling proof for this, but we leave the details to
the reader.

Proof of Theorem 4.3. We will first prove the colorful formula

bn = an + n2 − n+

n−1∑
k=2

k(k − 1)an−k,
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and then we will convert the ans and bns into Fibonacci and Lucas numbers. To do this, we
consider the number of (colorful) ways to tile an n-rainbow-bracelet. On the one hand, this
is bn by definition. On the other hand, we can condition on the first tile of the bracelet (the
tile that covers cell 1). If the first tile is “in phase”, then we break the bracelet at the top and
unroll it to form a strip; there are an such tilings. If the first tile is an out-of-phase domino,
we can remove the domino to get an (n − 2)-board. There are two colors of dominos, and
so there are 2 · an−2 of these tilings. Likewise, if the first tile is an out-of-phase tromino, we
remove it to get an (n − 3)-board. There are three colors of trominos, and two out-of-phase
phases for those trominos, and so we have 3 · 2 · an−2 such tilings. We continue with this line
of reasoning until we reach the case where the first tile is an out-of-phase n-mino; there are n
colors and n− 1 out-of-phase phases, giving us n(n− 1) such tilings.

Summing up, we have that

bn = an + n(n− 1) +

n−1∑
k=2

k(k − 1)an−k,

and if we replace an and bn with F2n and L2n − 2 respectively, we find that

L2n = F2n + n(n− 1) + 2 +

n−1∑
k=2

k(k − 1)F2n−2k.

If we now use the identity L2n − F2n = 2F2n−1, we obtain our desired formula. □

5. Conclusion

We were delighted to discover that by counting colorful tilings we could produce new theo-
rems for weighted sums. We can only imagine that uncountably many more identities are out
there, waiting to be discovered.
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