
TETRANACCI IDENTITIES VIA HEXAGONAL TILINGS

ZIQIAN (ALEXA) JIN AND GREG DRESDEN

Abstract. We give combinatorial proofs of tetranacci and tetranacci-Fibonacci identities
using only squares and dominos on a hexagonal double strip. Some of these are new proofs
of old identities, but others we believe have never been seen before.

1. Introduction

As is well known, the Fibonacci numbers count the number of tilings of a rectangular 1× n
strip with squares and dominoes. The book Proofs That Really Count by Benjamin and Quinn
[2] applies this fact to provide numerous combinatorial proofs of Fibonacci identities. Likewise,
tetranacci identities can be found by using tiles of lengths 1, 2, 3, and 4, as proved by Benjamin
and Heberle [1]. In this paper, we look instead at tiling a hexagonal double-strip using only
squares and dominos.

First, we state some definitions. We define an n-strip to be a strip with two rows of a total
of n adjacent hexagons, as seen in Figure 1.

Figure 1.

We number the cells starting from the bottom left corner. In this figure, the six numbered
hexagons on the left make up a 6-strip within an n-strip. Note that when tiling this n-strip
with squares and dominos, a domino can be horizontal (covering cells k and k+2) or inclined
(covering cells k and k + 1).

Next, for n > 0 let us define Tn to be the number of different ways to tile an n-strip with
squares and dominos. Because there is exactly one way to tile a strip of length 0, we define
T0 to equal 1, and for convenience we define Tn = 0 for all n < 0.

Theorem 1.1. The sequence Tn is the tetranacci sequence.

Proof. We can calculate by hand that the first few nonzero values of Tn are 1, 1, 2, 4, 8, 15, 29,
. . .. We now show that this sequence has the appropriate recurrence relation by conditioning
on the last tile of an n-strip (which, by definition, has Tn possible tilings). If this last tile
is a square, we remove it to obtain an (n − 1)-strip, which has Tn−1 tilings. If the last tile
is an inclined domino, we again remove it and find Tn−2 such tilings. If the last tile is a
horizontal domino (covering cells n and n− 2), we condition on the tile covering cell n− 1; if
that tile is a square, there are Tn−3 ways to tile the remaining (n−3)-strip, but if it is another
horizontal domino we have Tn−4 tilings of the remaining strip of length n− 4. Adding up all
such possibilities, we have Tn = Tn−1 + Tn−2 + Tn−3 + Tn−4 and hence, Tn is the tetranacci
sequence. □
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2. New Proofs of Old Identities

This first identity was proved algebraically by Howard and Cooper in [3], and combinatori-
ally using tiles of lengths 1, 2, . . ., r on a rectangular board by Benjamin and Heberle in [1].
We use our hexagonal n-strips to provide a third proof,

Identity 2.1. For n ̸= 0, 1, we have 2Tn−1 = Tn + Tn−5.

Proof. Because Tn = 0 for n < 0, the identity is easy to check by hand up to n = 5. We now
assume n ≥ 6, and (using a technique similar to [2, Identity 7]) we will match all possible
tilings of an n-strip and (n − 5)-strip, with two copies of all tilings of an (n − 1)-strip, as
follows.

For an n-strip ending in a square, we match it with our first copy of an (n − 1)-strip by
simply removing that square. For n-strips ending in an inclined domino, we replace the domino
with a square to get an (n − 1)-strip ending in a square. For n-strips ending in a horizontal
domino covering cells n and n−2, we need to look at the tile covering cell n−1; if that tile is a
square, we replace that square on cell n− 1 and horizontal domino on cells n and n− 2 with a
single inclined domino on cells n−2 and n−1, giving us an (n−1)-strip ending in an inclined
domino; but if that tile is another horizontal domino, we replace the first horizontal domino
covering cells n and n − 2 with a square covering just cell n − 2, giving us an (n − 1)-strip
ending in a horizontal domino and a square.

We have considered all possible n-strips, but there is one (n−1)-strip that has not yet been
used, and that is the one ending in two stacked horizontal dominos. For this, we simply match
it to our (n− 5)-strip by removing both dominos. □

The formulas in these next two identities were proved algebraically by Waddill in [5], but
here we give combinatorial proofs.

Identity 2.2. For all n, we have T2n = T 2
n + T 2

n−1 + T 2
n−2 + 2Tn−1(Tn−2 + Tn−3).

Proof. Our technique is similar to [2, Identity 3]. We imagine trying to break a 2n-strip right
in the middle, using a diagonal line that separates cells n− 1 and n from cells n+1 and n+2.
If there is a clean break, we have two n-strips giving us T 2

n tilings. If there is not a clean
break, it is due to one of these four possible situations: an inclined domino that covers cells
n and n+ 1, two horizontal dominos, a horizontal domino covering cells n− 1 and n+ 1, or a
horizontal domino covering cells n and n+ 2.

For the first case (an inclined domino covering cells n and n + 1), we remove the domino
and are left with T 2

n−1 ways to tile the two remaining (n− 1)-strips. For the next case of two

horizontal dominos, we do the same and end up with T 2
n−2 ways to tile the two remaining

(n − 2)-strips. For the third case (a horizontal domino covering cells n − 1 and n + 1), we
condition on the tile covering cell n; if this is a square, we have Tn−2 ways to tile the rest of
the left strip and if this is a domino, we have Tn−3. We multiply this by the Tn−1 ways to
tile the rest of the right strip, and we have in total Tn−1(Tn−2 + Tn−3) tilings. The fourth
case gives the same number of tilings as the third, and summing the tilings from all the four
conditions gives us a total of T 2

n + T 2
n−1 + T 2

n−2 + 2Tn−1(Tn−2 + Tn−3). □

Identity 2.3. For n ≥ 0, we have Tn − 1 = Tn−2 + 2Tn−3 + 3(Tn−4 + Tn−5 + · · ·+ T1 + T0).

Proof. Just as in [2, Identity 1], we count how many tilings of an n-strip have at least one
domino. On the left side, there are Tn− 1, as we must subtract the one single all-square tiling
from the set of all tilings. On the right side, we condition on the location of the first domino
(counting from left to right). If this first domino covers cells k and k + 1, then to the left of
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this domino we have just squares, and to the right there are Tn−(k+1) tilings; this applies for k
ranging from 1 to n−1, giving us T0+T1+ · · ·+Tn−2 tilings so far. If instead this first domino
covers cells k and k + 2, we must look at the tile covering cell k + 1. This is either a square,
or another domino (covering cells k + 1 and k + 3). If it is a square, then we have Tn−(k+2)

tilings to the right (with k ranging from 1 to n− 2), and if it is a domino, there are Tn−(k+3)

tilings to the right (with k ranging from 1 to n− 3). These give us T0 + T1 + · · ·+ Tn−3 and
T0 + T1 + · · ·+ Tn−4 tilings respectively, and when we add everything up we have our desired
equation. □

3. New Identities

The following identities appear to be completely new, because we have not found anything
similar in the mathematical literature. In what follows, we define a right-inclined domino to
be a domino that covers cells 2k − 1 and 2k, and similarly a left-inclined domino covers cells
2k and 2k + 1.

Lemma 3.1. There are 2n ways to tile a 2n-strip with squares and right-inclined dominos.

Proof. We tile the 2n-strip with n right-inclined dominos, and then decide, for each one,
whether to keep it or to replace it with two squares. Thus, we have 2n such tilings. □

Identity 3.2. For n ≥ 0, we have T2n = 2n +
n−1∑
k=1

2n−k(T2k−1 + T2k−2 + T2k−3/2).

Proof. We condition on the location of the last horizontal or left-inclined domino for a strip
of length 2n. If there is no such domino, then by Lemma 3.1, there are 2n tilings.

If the last such domino is a left-inclined domino covering cells 2k and 2k+1, there are 2k−1
open cells to the left, which can be tiled T2k−1 ways. To the right of this left-inclined domino,
cell 2k + 2 must be covered by a square, and that leaves 2n − (2k + 2) additional open cells
to the right, which can only be tiled with squares and right-inclined dominos, and by Lemma
3.1, there are 2n−k−1 such tilings. Summing up, this give us

∑n−1
k=1 2

n−k−1T2k−1.
If the last such domino is a horizontal domino covering cells 2k and 2k + 2, then there are

T2k−1 or T2k−2 tilings to the left, depending on whether or not cell 2k + 1 is covered by a
square, or by a horizontal domino extending back to cell 2k − 1. To the right, we again have
2n−k−1 tilings, so summing up, we have

∑n−1
k=1 2

n−k−1(T2k−1 + T2k−2).
Finally, if the last such domino is a horizontal domino covering cells 2k−1 and 2k+1, then

there are T2k−2 or T2k−3 tilings to the left, depending on whether or not cell 2k is covered by
a square, or by a horizontal domino extending back to cell 2k− 2. To the right, we again have
2n−k−1 tilings, so summing up, we have

∑n−1
k=1 2

n−k−1(T2k−2 + T2k−3). When we combine all
the terms, we obtain our desired formula. □

We now define fn to be the Fibonacci numbers starting with f0 = f1 = 1; these count
the number of ways to tile a one-dimensional row of n cells with squares and dominos. For
convenience, we define f−1 = 0. To show how these Fibonacci numbers interact with our
tetranacci numbers, we begin with two simple identities.

Lemma 3.3. There are fn ways to tile an n-strip without horizontal dominos.

Proof. With no horizontal dominos, any tiling of an n-strip (two rows of adjacent hexagons
numbered 1, 2, . . ., n) with squares and inclined dominos can be “stretched out” into a one-
dimensional row (with cells still numbered 1, 2, . . ., n) of squares and dominos. □
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Lemma 3.4. There are fn ways to tile a 2n-strip with only dominos.

Proof. A tiling with only dominos cannot have any left-inclined dominos because there would
be an odd number of cells to the left of any left-inclined dominos. Hence, all the dominos in
any tiling are horizontal or right-inclined. Consider the bottom row of any such tiling of a
2n-strip. This bottom row, comprised of n cells labeled 1, 3, 5, . . ., 2n − 1, is covered with
horizontal dominos and the bottom part of right-inclined dominos; this is exactly the same as
tiling a one-dimensional row of n cells with dominos and squares. □

Now, we use the two lemmas to prove the following more complicated identities.

Identity 3.5. For n ≥ 0, we have T2n = fn +

n∑
k=1

T2n+1−2kfk.

Proof. We condition on the location of the first square in the tiling of a 2n-strip. If there is
no such square, then by Lemma 3.4, there are fn such tilings. If the first square is located at
the odd cell 2k− 1, then there are only dominos on cells 1 through 2k− 2, and by Lemma 3.4,
there are fk−1 such tilings; to the right of cell 2k − 1 there are T2n−(2k−1) tilings. Summing

up, this gives
∑n

k=1 T2n+1−2kfk−1.
If the first square is located at the even cell 2k for k < n, then there must be a horizontal

domino covering cells 2k− 1 and 2k+1. This gives fk−1 tilings on the left, and T2n−(2k+1) on

the right. Summing up, and replacing k with k − 1, we have
∑n

k=2 T2n+1−2kfk−2. When we
combine all the terms, we have our formula. □

Identity 3.6. For n ≥ 0, we have Tn = fn +
n−2∑
k=1

Tn−2−kfk.

Proof. We condition on the location of the first horizontal domino in the tiling of an n-strip.
If there is no such horizontal domino, then by Lemma 3.3, there are fn such tilings. If the
first horizontal domino covers cells k and k + 2, there are fk−1 tilings to the left (again by
Lemma 3.3) and Tn−(k+2) or Tn−(k+3) tilings to the right, depending on whether cell k + 1
is covered by a square or by a horizontal domino stretching to cell k + 3. Summing up, we
get

∑n−2
k=1 Tn−2−kfk−1 and

∑n−3
k=1 Tn−3−kfk−1, which we re-index to get

∑n−2
k=2 Tn−2−kfk−2. We

combine all the terms to obtain our formula. □

Identity 3.7. For n ≥ 0, we have T2n = f2
n +

n∑
k=1

fk−1 (fk−1T2n−2k + fk−2T2n+1−2k) .

Proof. We condition on the location of the first inclined domino in the tiling of a 2n-strip.
If there is no such inclined domino, the 2n-strip can be cut along a horizontal axis into two
rows (the bottom with cells 1, 3, 5, . . . and the top with cells 2, 4, 6, . . .) each with fn tilings,
giving f2

n in all.
If the first inclined domino is right-inclined (covering cells 2k − 1 and 2k), there are f2

k−1

tilings to the left and T2n−2k to the right. Summing up, we have
∑n

k=1 f
2
k−1T2n−2k.

Finally, if the first inclined domino is left-inclined (covering cells 2k and 2k + 1), there are
fkfk−1 tilings on the left, and T2n−(2k+1) on the right. Summing up and changing the index

gives us
∑n

k=2 fk−1fk−2T2n+1−2k. We combine all the terms to obtain our formula. □

Identity 3.8. For n ≥ 0, we have T2n+1 = fn+1fn +
n∑

k=1

fk−1 (fkT2n−2k + fk−1T2n+1−2k).
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Proof. The proof is the same as the previous identity, replacing the 2n-strip with a (2n+ 1)-
strip. □
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