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Abstract. A palindromic composition of n is a composition of n that reads the same way
forwards and backwards. In this paper, we define an anti-palindromic composition of n
to be a composition of n that has no mirror symmetry among its parts. We then give a
surprising connection between the number of anti-palindromic compositions of n and the
so-called tribonacci sequence, a generalization of the Fibonacci sequence. We conclude by
defining a new q-analogue of the Fibonacci sequence, which is related to certain equivalence
classes of anti-palindromic compositions.

1. Introduction

Let σ = (σ1, σ2, . . . , σs) be a sequence of positive integers such that
∑

σi = n. The sequence
σ is called a composition of n of length s. The numbers σi are called the parts of the compo-
sition. The number of compositions of n equals 2n−1, whereas the number of compositions of
n into s parts equals

(
n−1
s−1

)
. The empty composition is often considered the only composition

of 0, having length equal to 0.

1.1. Palindromic and Anti-palindromic Compositions. If σi = σs−i+1 for all i, then
σ is called a palindromic composition. It is well known [11] that if pc(n) is the number

of palindromic compositions, then pc(n) = 2⌊
n
2
⌋. For instance, the pc(5) = 4 palindromic

compositions of 5 are

(5), (1, 3, 1), (2, 1, 2), and (1, 1, 1, 1, 1).

Recent work of the authors [3, 12] generalize this result to compositions that are palindromic
modulo m, where the condition σi = σs−i+1 is replaced with the weaker condition σi ≡ σs−i+1

(mod m).
If σi ̸= σs−i+1 for all i ̸= s+1

2 , then we say σ is an anti-palindromic composition. Let ac(n)
be the number of anti-palindromic compositions of n. Then, the ac(4) = 5 anti-palindromic
compositions of 4 are

(4), (1, 3), (3, 1), (1, 1, 2), and (2, 1, 1).

Furthermore, let ac(n, s) be the number of anti-palindromic compositions of n of length s,
ac0(n) be the number of anti-palindromic compositions of n of even length, and ac1(n) be the
number of anti-palindromic compositions of odd length (thus ac(n) = ac0(n) + ac1(n)).

Notice that for each anti-palindromic composition of n of length s, we can form 2⌊
s
2
⌋ flip-

equivalent anti-palindromic compositions of n of length s by switching any number of the pairs
σi and σs−i+1 (i ̸= s+1

2 ). For instance, the anti-palindromic compositions

(1, 3, 3, 2, 4), (1, 2, 3, 3, 4), (4, 3, 3, 2, 1), and (4, 2, 3, 3, 1)
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are all flip-equivalent compositions of 13 of length 5. The sets of flip-equivalent anti-palindromic
compositions of n form a partition of the set of all anti-palindromic compositions of n, and we
refer to each equivalence class as a reduced anti-palindromic composition of n of length s. Let
rac(n) equal the total number of reduced anti-palindromic compositions of n, and rac(n, s)
equal the number of reduced anti-palindromic compositions of n of length s. Furthermore,
let rac0(n) and rac1(n) equal the total number of even and odd reduced anti-palindromic
compositions of n, respectively. Clearly we have rac(n) = rac0(n) + rac1(n). Because each

equivalence class contains 2⌊
s
2
⌋ anti-palindromic compositions, it follows that

rac(n, s) =
ac(n, s)

2⌊
s
2
⌋ .

Our primary results regarding the formulae for these functions come from observations made
in Table 1, Table 2, and Table 3.

n ac0(n) ac1(n) ac(n) rac0(n) rac1(n) rac(n)
0 1 0 1 1 0 1
1 0 1 1 0 1 1
2 0 1 1 0 1 1
3 2 1 3 1 1 2
4 2 3 5 1 2 3
5 4 5 9 2 3 5
6 8 9 17 3 5 8
7 14 17 31 5 8 13
8 26 31 57 8 13 21
9 48 57 105 13 21 34
10 88 105 193 21 34 55

Table 1. Values of ac0(n), ac1(n), ac(n), rac0(n), rac1(n), and rac(n) for n ≤ 10.

n ac(n, 0) ac(n, 1) ac(n, 2) ac(n, 3) ac(n, 4) ac(n, 5)
0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 1 0 0 0 0
3 0 1 2 0 0 0
4 0 1 2 2 0 0
5 0 1 4 4 0 0
6 0 1 4 8 4 0
7 0 1 6 12 8 4
8 0 1 6 18 20 12

Table 2. Values of ac(n, s) for n ≤ 8.
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n rac(n, 0) rac(n, 1) rac(n, 2) rac(n, 3) rac(n, 4) rac(n, 5)
0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 1 0 0 0 0
3 0 1 1 0 0 0
4 0 1 1 1 0 0
5 0 1 2 2 0 0
6 0 1 2 4 1 0
7 0 1 3 6 2 1
8 0 1 3 9 5 3

Table 3. Values of rac(n, s) for n ≤ 8.

1.2. The k-bonacci Numbers. Recall the nth Fibonacci number is given by f2(n) = 0 for
n < 1, f2(1) = 1, and f2(n) = f2(n− 1)+ f2(n− 2) for all n ≥ 2.1 The nth tribonacci number
is given by f3(n) = 0 for n < 1, f3(1) = 1, and f3(n) = f3(n− 1) + f3(n− 2) + f3(n− 3) for
n ≥ 2. The sequence begins

0, 1, 1, 2, 4, 7, 13, 24, . . . ,

see OEIS [16, A000073]. It has been suggested that tribonacci numbers appear in Darwin’s
Origins of Species in a similar relation to elephant population growth as Fibonacci numbers
bear to rabbit populations [13]. In general, we can define the nth k-bonacci number by
fk(n) = 0 for n < 1, fk(1) = 1, and

fk(n) =

k∑
i=1

fk(n− i)

for n > 1. Connections between k-bonacci numbers for various k have been studied by Bravo
and Luca [5]. In a paper by Benjamin, Chinn, Scott, and Simay [4], formulae for the k-bonacci
are developed. For instance, we have

f3(n+ 1) =

⌊n/4⌋∑
j=0

(−1)j
(
n− 3j

j

)
n− 2j

n− 3j
2n−4j−1.

The k-bonacci numbers also play a role in computing the probability of flipping exactly k
consecutive heads in n flips of a fair coin [15].

1.3. Formulae for Anti-palindromic Compositions. Our first result gives a surprising
connection between the tribonacci numbers and anti-palindromic compositions of even length.

Theorem 1. For all n ≥ 1, we have ac0(n) = 2 · f3(n− 2).

This theorem can be deduced by a careful inspection of the identity(
q

1−q

)2
− q2

1−q2

1−
[(

q
1−q

)2
− q2

1−q2

] =
2q3

1− (q + q2 + q3)
.

Indeed, the left side is ∑
n≥1

ac0(n)q
n

1In some applications, the offset f2(0) = f2(1) = 1 is used.
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because every even-length anti-palindromic composition is a sequence of pairs of distinct pos-
itive integers, and the right side is ∑

n≥1

2 · f3(n)qn+2.

We will give an algebraic (Section 2.1) and combinatorial (Section 2.2) proof of this result.
Note that ac(0) = ac0(0) = 1, as the empty composition is vacuously anti-palindromic. Our
next result gives the number of anti-palindromic compositions of n.

Theorem 2. For all n ≥ 1,

ac(n) = f3(n) + f3(n− 2).

We will prove Theorem 2 in Section 2.3, and also observe that (for n ≥ 2)

ac1(n) = f3(n− 1) + f3(n− 3).

In Section 2.4, we prove the following results, which give the formulae for ac(n, s).

Theorem 3. Let s ≥ 0 be a fixed integer and

G(q, s) =
∑
n≥0

ac(n, s)qn.

Then for |q| < 1,

G(q, s) =
2⌊s/2⌋q⌊3s/2⌋

(1− q)s(1 + q)⌊s/2⌋
.

For instance, G(q, 0) = 1,

G(q, 1) =
q

1− q
= q + q2 + q3 + · · · ,

and

G(q, 2) =
2q3

1− q − q2 + q3
= 2q3 + 2q4 + 4q5 + · · · ,

which give the (verifiable) formulae ac(0, 0) = 1, ac(n, 0) = 0 for n > 0, ac(n, 1) = 1 for n > 0,
and ac(n, 2) = 2 · ⌊n−1

2 ⌋ for n > 1. For s ≥ 2, we have the following corollary.

Corollary 1. Let a be a positive integer. If s = 2a, then

ac(n, s) =
∑

r+2t=n−3a

2a
(
a+ r − 1

r

)(
a+ t− 1

t

)
,

and if s = 2a+ 1, then

ac(n, s) =
∑

r+2t=n−3a

2a
(
a+ r

r

)(
a+ t− 1

t

)
.

By the observation in Section 1.1 regarding rac(n, s) and ac(n, s), we also have a formula
for rac(n, s) by dividing by the appropriate power of 2.
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1.4. An Observation Regarding the Fibonacci Numbers. Recall the following two q-
analogues of the Fibonacci numbers,

Fn(q) =


0, n = 0;

1, n = 1;

Fn−1(q) + qn−2Fn−2(q), n > 1;

and

F̂n(q) =


0, n = 0;

1, n = 1;

F̂n−1(q) + qn−1F̂n−2(q), n > 1.

These are referred to as q-analogues due to the property that Fn(q) → f2(n) and F̂n(q) → f2(n)
as q → 1−. Properties of these two sequences of polynomials have been studied extensively,
see for instance [2, 6, 7, 14].

We define a new q-analogue of the Fibonacci numbers, which will have a connection to the
anti-palindromic compositions. Define

ϕn(q) =


q, n = 1;

q, n = 2;

q + q2, n = 3;

ϕn−1(q) + ϕn−2(q) + (q2 − 1)ϕn−3(q), n > 3.

Clearly, ϕn(q) → f2(n) as q → 1− for all n ≥ 1, and our final result gives a combinatorial
description of the coefficients of these polynomials. For convenience, we set ϕ0(q) = 1.

Theorem 4. The coefficient of qs in the polynomial ϕn(q) equals rac(n, s).

We will give a proof of Theorem 4 in Section 2.5. The first few polynomials ϕn(q) are given
below, where the coefficients can be compared with Table 2.

ϕ0(q) = 1, ϕ5(q) = q + 2q2 + 2q3,

ϕ1(q) = q, ϕ6(q) = q + 2q2 + 4q3 + q4,

ϕ2(q) = q, ϕ7(q) = q + 3q2 + 6q3 + 2q4 + q5,

ϕ3(q) = q + q2, ϕ8(q) = q + 3q2 + 9q3 + 5q4 + 3q5,

ϕ4(q) = q + q2 + q3, ϕ9(q) = q + 4q2 + 12q3 + 8q4 + 8q5 + q6.

Also in Section 2.5, we deduce the following corollary.

Corollary 2. For n ≥ 1, we have rac0(n) = f2(n−2), rac1(n) = f2(n−1), and rac(n) = f2(n).

We summarize our results regarding ac(n) and rac(n) for sufficiently large n below, illus-
trating the elegance of the formulae.

ac0(n) = 2 · f3(n− 2), rac0(n) = f2(n− 2),

ac1(n) = f3(n− 1) + f3(n− 3), rac1(n) = f2(n− 1),

ac(n) = f3(n) + f3(n− 2), rac(n) = f2(n).
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2. Proofs of Theorems

2.1. Algebraic Proof of Theorem 1. Because ac0(1) = ac0(2) = 0, ac0(3) = ac0(4) = 2,
and ac0(5) = 4, we see that the theorem is true for n < 6. Assume now that n ≥ 6. Clearly, we
can construct an anti-palindromic composition of n from one of two fewer parts by inserting
j at the beginning and k at the end (making sure j ̸= k), where if the inner composition is a
composition of m, then j + k must equal m− n. Hence,

ac0(n) =

n−3∑
m=0

(n−m− 1− χ(n−m)) ac0(m),

where χ(j) = 1 if j is even and 0 if j is odd. The term (n−m− 1− χ(n−m)) accounts for
the number of j and k. Hence,

ac0(n)− ac0(n− 1) =
n−3∑
m=0

(n−m− 1− χ(n−m)) ac0(m)

−
n−4∑
m=0

(n− 1−m− 1− χ(n− 1−m)) ac0(m)

= (2− χ(3)) ac0(n− 3) +

n−4∑
m=0

(n−m− 1− χ(n−m)) ac0(m)

−
n−4∑
m=0

(n− 1−m− 1− χ(n− 1−m)) ac0(m)

= 2ac0(n− 3) + 2
n−4∑
m=0

χ(n−m− 1)ac0(m).

Thus,

ac0(n)− ac0(n− 1)− 2ac0(n− 3) = 2

n−4∑
m=0

χ(n−m− 1)ac0(m).

Let r(n) = ac0(n)− ac0(n− 1)− 2ac0(n− 3). Then,

r(n) + r(n− 1) = 2

n−4∑
m=0

χ(n−m− 1)ac0(m)

+ 2

n−5∑
m=0

χ(n−m− 2)ac0(m)

= 2

n−5∑
m=0

ac0(m)

because χ(n) + χ(n− 1) = 1 and χ(3) = 0. Therefore,

r(n) + r(n− 1)− (r(n− 1) + r(n− 2)) = 2ac0(n− 5),

and simplifying, we obtain

ac0(n)−m1(n− 1)− ac0(n− 2)− ac0(n− 3) = 0.

This is the defining recurrence for f3(n), and because 2 · f3(n− 2) = ac0(n) for n > 6, we see
that by induction, ac0(n) = 2 · f3(n− 2) for all n ≥ 1.
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2.2. Combinatorial Proof of Theorem 1. We begin with a lemma regarding the tribonacci
numbers.

Lemma 1. For n ≥ 2, the tribonacci number f3(n) equals the number of compositions of n−1
with parts equal to 1, 2, or 3.

Proof. First note that f3(2) = 1, f3(3) = 2, and f3(4) = 4. Because the compositions of 1, 2,
and 3 only consist of parts equal to 1, 2, or 3, and the number of compositions of n is equal to
2n−1, the lemma holds for n ≤ 4. Now for n > 4, each composition of n − 1 into parts equal
to 1, 2, or 3 is formed by taking a composition of n− 4, n− 3, or n− 2 and adjoining a 3, 2,
or 1, respectively. Thus, the number of compositions of n− 1 into parts equal to 1, 2, or 3 is
equal to f3(n− 3) + f3(n− 2) + f3(n− 1) = f3(n). □

We will now show that for n ≥ 3, the number of compositions of n−3 into parts equal to 1, 2,
or 3 equals the number of anti-palindromic compositions of n. Because ac0(1) = 0 = 2 ·f3(−1)
and ac0(2) = 0 = 2 · f3(0), this will establish the theorem.

Proof of Theorem 1. For n = 2, we see that ac(2) = 2 · f3(0) = 0, so for any n ≥ 3, start with
a composition σ of n− 3 into parts equal to 1, 2, or 3. The key will be to use σ to construct
a sequence of pairs of distinct positive integers with sum equal to n.

Now recall a partition of n is a composition of n where the parts are written in nonincreasing
order. Let σ+τ denote sequence concatenation, as in (1, 2)+(4, 5) = (1, 2, 4, 5). For our choice
of σ, we can find partitions λ1, λ2, . . . , λr with parts equal to 1 or 2 (or the empty partition,
∅) such that

σ = λ1 + σ2 + λ2 + · · ·+ σr + λr,

where each σj is either equal to the composition (3) or equal to the composition (1, 2).
For example, take the composition

σ = (2, 3, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3)

of 20. Then we can decompose σ as

λ1 = (2),

σ2 = (3),

λ2 = (1),

σ3 = (1, 2),

λ3 = (2, 1, 1),

σ4 = (1, 2),

λ4 = (1),

σ5 = (3),

λ5 = ∅.

It is not difficult to see that this decomposition is unique; the only way a segment in the
composition that is a partition with parts equal to 1 or 2 terminates is with the segment (3)
or the segment (1, 2).

Now, given the decomposition σ = λ1 + σ2 + λ2 + · · · + σr + λr, form a sequence of pairs
(s1, λ1), (s2, λ2), . . ., (sr, λr), where s1 = +3, sj = +3 if σj = (3), and sj = −3 if σj = (1, 2).
For our example shown above, we have the pairs

(+3, (2)), (+3, (1)), (−3, (2, 1, 1)), (−3, (1)), (+3,∅).
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For each pair (sj , λj), we now form a new pair (bj , cj) in the following way. Start with
bj = 2 and cj = 1. For each 2 in the partition λj , increase both bj and cj by one. For each
1 in the partition λj , increase bj by one. We now have pairs (bj , cj) of positive integers such
that bj > cj . Now if sj = +3, we are done. If sj = −3, we switch the numerical values of bj
and cj so that bj < cj , and then we are done.

Finally, form the anti-palindromic composition τ = (τ1, τ2, . . . , τ2r) by setting τj = bj and
τ2r−j+1 = cj . Notice that although we started with a composition of n−3, this is a composition
of n; the addition of 3 came from inserting s1 = +3. In our toy example, we have

τ = (3, 3, 2, 1, 2, 1, 3, 5, 1, 2).

We have now embedded the compositions of n− 3 made up of parts equal to 1, 2, or 3 into
the anti-palindromic compositions of n. We still need to embed a second, disjoint copy. To
do this, we return to the pairs (sj , λj) and make a new collection of pairs (s′j , λj) by setting

s′j = −sj . Now, following the same procedure as before, we construct an anti-palindromic

word τ ′ that is the reverse of τ . Again looking at our example from before, we have

τ ′ = (2, 1, 5, 3, 1, 2, 1, 2, 3, 3).

To show that these two embedded sets are disjoint, notice that for a composition τ formed
by using s1 = +3, we have τ1 > τ2r, and that for a word τ ′ formed by using s1 = −3, we have
τ1 < τ2r.

Showing this process reverses and that we can send the pairs {τ, τ ′} of an anti-palindromic
composition of n and its reverse back to a composition of n− 3 with parts equal to 1, 2, or 3
is straightforward, which the reader can verify. □

2.3. Proof of Theorem 2. In this section, we develop the formula for ac(n). We start by
proving some initial observations regarding ac0(n), ac1(n), ac(n), and ac(n, s).

Proposition 1. For all n ≥ 3, we have

ac0(n) = f3(n− 1) + f3(n− 5).

Proof. This is just two applications of the defining recurrence for f3(n), recalling that f3(n) = 0
for n < 1.

f3(n− 1) + f3(n− 5) = f3(n− 2) + f3(n− 3) + f3(n− 4) + f3(n− 5)

= f3(n− 2) + f3(n− 2)

= 2 · f3(n− 2)

= ac0(n) □

Proposition 2. We have ac(0, 0) = 1, ac(0, 1) = 0, and for all n ≥ 0 and s ≥ 0,

ac(n, 2s) + ac(n, 2s+ 1) = ac(n+ 1, 2s+ 1).

Proof. When n = 0, there is only one composition (the empty composition) that has length 0.
Now, any anti-palindromic composition σ of n+1 of length 2s+1 has a central part σs+1. If

σs+1 = 1, this composition can be formed from an anti-palindromic composition of n of length
2s by adding a central part equal of 1. If σs+1 > 1, this composition can be formed from an
anti-palindromic composition of n of length 2s+1 by adding 1 to the central part. Therefore,
ac(n, 2s) + ac(n, 2s+ 1) = ac(n+ 1, 2s+ 1). □
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Proposition 3. For n ≥ 0 and s ≥ 0,

ac(n, 2s+ 1) =

n−1∑
j=0

ac(j, 2s),

where, in the case n = 0, we take the empty sum to be 0.

Proof. Let n > 0. Then by applying Proposition 2 n times, we have

ac(n, 2s+ 1) = ac(n− 1, 2s+ 1) + ac(n− 1, 2s)

= ac(n− 2, 2s+ 1) + ac(n− 2, 2s) + ac(n− 1, 2s)

...

= ac(0, 2s+ 1) +

n−1∑
j=0

ac(j, 2s).

Because ac(0, 2s+ 1) = 0 for all s ≥ 0, the result follows. □

Proposition 4. For all n ≥ 0,

ac(n) = ac1(n+ 1).

Proof. If n = 0, we see that ac(0) = ac1(1) = 1. If n > 0, by definition we have

ac(n) =
∑
s≥0

ac(n, s)

=
∑
j≥0

(ac(n, 2j) + ac(n, 2j + 1))

=
∑
j≥0

ac(n+ 1, 2j + 1)

by Proposition 2. But this last expression is equal to ac1(n+ 1). □

Proposition 5. For n ≥ 0,

ac1(n) =

n−1∑
j=0

ac0(j),

where, in the case n = 0, we take the empty sum to be 0.

Proof. For n > 0, we have by Proposition 4 that

ac1(n) = ac(n− 1)

= ac0(n− 1) + ac1(n− 1).

Now if n = 1, we are done because ac1(0) = 0. If n > 1, we can again apply Proposition 4 to
get

ac1(n) = ac0(n− 1) + ac(n− 2).

Repeating the same argument n− 2 more times gives the result. □

Proposition 6. For all n ≥ 0, we have
n∑

j=0

f3(j) =
f3(n) + f3(n+ 2)− 1

2
.
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Proof. We give a proof by mathematical induction. For n = 0,

f3(0) = 0 =
f3(0) + f3(2)− 1

2
.

Now for n > 0, suppose the proposition holds for all k < n. Then,

n∑
j=0

f3(j) =

n−1∑
j=0

f3(j) + f3(n)

=
f3(n− 1) + f3(n+ 1)− 1

2
+ f3(n)

=
f3(n+ 2)− f3(n)− 1

2
+ f3(n)

=
f3(n) + f3(n+ 2)− 1

2
. □

Proposition 7. For all n ≥ 2,

ac1(n) = f3(n− 3) + f3(n− 1).

Proof. By Proposition 5, Theorem 1, and Proposition 6, we have

ac1(n) =
n−1∑
j=0

ac0(j)

= 2

n−1∑
j=0

f3(j − 2) + ac0(0)

= 2
n−3∑
j=0

f3(j) + ac0(0)

= f3(n− 3) + f3(n− 1)− 1 + ac0(0).

Because ac0(0) = 1, the result follows. □

Proof of Theorem 2. Theorem 2 now immediately follows from Proposition 7, because ac(1) =
1 = f3(1) + f3(−1), and for n ≥ 2,

ac(n) = ac0(n) + ac1(n)

= 2 · f3(n− 2) + f3(n− 3) + f3(n− 1)

= f3(n) + f3(n− 2). □

2.4. Proof of Theorem 3 and Corollary 1. In this section, we develop the formulae for
ac(n, s) by deriving the ordinary generating function G(q, s) for a fixed s ≥ 0. We split the
proof into cases when s is even and odd.

Suppose s = 2a, where a ≥ 0. An anti-palindromic composition of n of length 2a consists
of a sequence of a ordered pairs of distinct positive integers. If d(n) is the number of distinct
pairs of positive integers that sum to n, then

D(q) :=
∑
n≥0

d(n)qn =

(
q

1− q

)2

− q2

1− q2
=

2q3

(1− q2)(1− q)
.
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To see why this is the case, notice that(
q

1− q

)2

=
(
q1+1

)
+
(
q1+2 + q2+1

)
+
(
q1+3 + q2+2 + q3+1

)
+ · · ·

and
q2

1− q2
= q1+1 + q2+2 + q3+3 + · · · ,

so we are taking all pairs of positive integers and subtracting the repeated pairs.
To form a sequence of a such pairs, we multiple D(q) by itself a times, showing that

G(q, 2a) = [D(q)]a =
2aq3a

(1− q2)a(1− q)a
.

To prove the first half of Corollary 1, recall that for a > 0,

1

(1− q2)a
=

∑
n≥0

(
a− 1 + n

n

)
q2n

and
1

(1− q)a
=

∑
n≥0

(
a− 1 + n

n

)
qn.

Multiplying these two series and reindexing gives the result.
Now suppose s = 2a + 1, where a ≥ 0. An anti-palindromic composition of n of length

2a+ 1 still consists of a ordered pairs of distinct positive integers, with an additional central
part. Therefore,

G(q, 2a+ 1) = G(q, 2a) · q

1− q
=

2aq3a

(1− q2)a(1− q)a
.

The second half of Corollary 1 follows in the same manner as the first half, once we observe
that

1

(1− q)a+1
=

∑
n≥0

(
a+ n

n

)
qn.

2.5. Proof of Theorem 4 and Corollary 2. We begin with a lemma.

Lemma 2. For n ≥ 3 and s ≥ 2, we have

ac(n, s) = ac(n− 1, s) + ac(n− 2, s) + 2 · ac(n− 3, s− 2)− ac(n− 3, s).

Proof. If σ is an anti-palindromic composition of n ≥ 3 of length s ≥ 2, let mσ := σ1 + σs.
Observe that mσ ≥ 3 and

δ(mσ) ≤ |σ1 − σs| ≤ mσ − 2,

where δ(mσ) = 1 if mσ is odd and δ(mσ) = 2 if mσ is even.
Let us first count the number of anti-palindromic compositions of n of length s with mσ = 3.

Each one of these compositions can be formed by taking an anti-palindromic composition of
n − 3 of length s − 2 and adjoining a 1 at the beginning and a 2 at the end, or a 2 at the
beginning and a 1 at the end. Therefore, the number of anti-palindromic compositions of n of
length s with mσ = 3 equals 2 · ac(n− 3, s− 2).

Next, we count the number of anti-palindromic compositions of n of length s with mσ >
3. Now for any anti-palindromic composition τ of n − 1 of length s, we can form an anti-
palindromic composition of n of length s by adding 1 to τ1 if τ1 > τs, or adding 1 to τs if
τs > τ1. Now in this way, we have constructed all the anti-palindromic compositions of n of
length s with mσ > 3 and |σ1 − σs| > δ(mσ).
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For any composition γ of n − 2 of length s, form an anti-palindromic composition of n of
length s by adding 1 to γ1 and 1 to γs. In this way, we have constructed all the anti-palindromic
compositions of n of length s with mσ > 3 and |σ1 − σs| ≤ mσ − 4.

Therefore, the total number of anti-palindromic compositions of n of length s with mσ > 3
and δ(mσ) ≤ |σ1−σs| ≤ mσ−2 equals apc(n−1, s)+apc(n−2, s) minus the anti-palindromic
compositions of n of length s with mσ > 3 and δ(mσ) < |σ1−σs| ≤ mσ−4, as we have counted
these compositions exactly twice. To prove the lemma, we now must show that the number of
compositions that we counted twice equals apc(n− 3, s).

Let ρ be an anti-palindromic composition of n − 3 of length s. Form an anti-palindromic
composition of n of length s by adding 2 to ρ1 and 1 to ρs if ρ1 > ρs, or 1 to ρ1 and 2 to ρs
if ρs > ρ1. In this way, we have constructed all of the anti-palindromic compositions of n of
length s with δ(mσ) < |σ1 − σs| ≤ mσ − 4. □

Proof of Theorem 4. The theorem can be verified for all n and s with n+ s < 5:

ϕ0(q) = rac(0, 0) · q0 + rac(0, 1) · q1 + rac(0, 2) · q2 = 1 · q0 + 0 · q1 + 0 · q2,
ϕ1(q) = rac(1, 0) · q0 + rac(1, 1) · q1 + rac(1, 2) · q2 = 0 · q0 + 1 · q1 + 0 · q2,
ϕ2(q) = rac(2, 0) · q0 + rac(2, 1) · q1 + rac(2, 2) · q2 = 0 · q0 + 1 · q1 + 0 · q2,
ϕ3(q) = rac(3, 0) · q0 + rac(3, 1) · q1 + rac(3, 2) · q2 = 0 · q0 + 1 · q1 + 1 · q2.

Let [qs]ϕn(s) be the coefficient of qs in the polynomial ϕn(s). Now for n ≥ 3 and s ≥ 2,
using the defining recurrence for ϕn(q), we have

[qs]ϕn(q) = [qs]ϕn−1(q) + [qs]ϕn−2(q) + [qs−2]ϕn−3(q)− [qs]ϕn−3(q)

= rac(n− 1, s) + rac(n− 2, s) + rac(n− 3, s− 2)− rac(n− 3, s)

by induction. Using the relationship between rac(n, s) and ac(n, s),

[qs]ϕn(q) =
ac(n− 1, s)

2⌊
s
2
⌋ +

ac(n− 2, s)

2⌊
s
2
⌋ +

ac(n− 3, s− 2)

2⌊
s−2
2

⌋
− ac(n− 3, s)

2⌊
s
2
⌋

=
ac(n− 1, s)

2⌊
s
2
⌋ +

ac(n− 2, s)

2⌊
s
2
⌋ +

2 · ac(n− 3, s− 2)

2⌊
s
2
⌋ − ac(n− 3, s)

2⌊
s
2
⌋

=
ac(n, s)

2⌊
s
2
⌋

by Lemma 2. Therefore, [qs]ϕn(s) = rac(n, s). □

Proof of Corollary 2. Notice that by Theorem 4, we have

rac(n) =
∑
s≥0

rac(n, s) = ϕn(1) = f2(n).

As for rac0(n), we have rac0(1) = rac0(2) = 0, rac0(3) = 1, and for n ≥ 4,

rac0(n) =
∑
s≥0

rac(n, 2s) =
ϕn(1) + ϕn(−1)

2
,

again using Theorem 4. By the definition of ϕn(q), this equals

ϕn−1(1) + ϕn−1(−1)

2
+

ϕn−2(1) + ϕn−2(−1)

2
= rac0(n− 1) + rac0(n− 2).
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This is the defining recurrence relation for the Fibonacci numbers; thus, we conclude that
rac0(n) = f2(n− 2).

Similarly for rac1(n), we have rac1(0) = 1, rac1(2) = rac1(3) = 1, and for n ≥ 4,

rac1(n) =
∑
s≥0

rac(n, 2s+ 1) =
ϕn(1)− ϕn(−1)

2

by Theorem 4. By the definition of ϕn(q), this equals

ϕn−1(1)− ϕn−1(−1)

2
+

ϕn−2(1)− ϕn−2(−1)

2
= rac1(n− 1) + rac1(n− 2).

This is the defining recurrence relation for the Fibonacci numbers; thus, we conclude that
rac1(n) = f2(n− 1). □
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