INFINITE SUMS INVOLVING GIBONACCI POLYNOMIALS REVISITED

THOMAS KOSHY

ABSTRACT. We explore four sums involving gibonacci polynomials and extract their Pell
versions.

1. INTRODUCTION

Extended gibonacci polynomials z,(x) are defined by the recurrence z,12(z) = a(z)zp4+1(x)+
b(x)zn (), where x is an arbitrary integer variable; a(z), b(x), zo(x), and z1(x) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = x and b(zr) = 1. When zp(x) = 0 and z1(z) =
nth Fibonacci polynomial; and when zp(x) = 2 and z1(z) = z, z,(x)
polynomial. They can also be defined by the Binet-like formulas

o (LU) — ﬂn(x) n n
fu(z) = BRI and I, (z) = o (z) + " (x),
where 2a(z) = z + A, 268(z) = ¢ — A, and A = Va2 +4. Clearly, f,(1) = F,, the nth
Fibonacci number; and 1,,(1) = Ly, the nth Lucas number [1, 2].

Pell polynomials py,(x) and Pell-Lucas polynomials g, (x) are defined by p,(z) = f,(2z) and
qn(z) = 1,(2x), respectively. In particular, the Pell numbers P, and Pell-Lucas numbers Q,
are given by P, = p,(1) = fn(2) and 2Q,, = ¢,(1) = [,,(2), respectively [2].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(z). In addition, we let g, = f, or

ln, by = pp OT @y

1, zp(z) = fo(z), the
= lp(z), the nth Lucas

1.1. Some Fundamental Identities. Gibonacci polynomials g, satisfy the following funda-
mental properties [2]:

a) fot1 + fa—1 = ln (page 8); b) lyt1 + lp—1 = A%f,, (page 57);
¢) fon = fuln (page 56); d) l?LH — 12 | = A%z fy, (page 57);
) 12,5, — 12 5= (24 2x)A? fo, (page 57); £) 12 — A% f2 = 4(-1)" (page 36);

8) lntkln—k — 15 = (-1)"TFA2 f2 (page 58).
Property (g) is the Cassini-like (or Catalan-like) identity for Lucas polynomials.

Property (d) implies that l%n+2 —12, = Azxf2(2n+1) and property (e) implies that l%n+4 —
12, = (23 + 22) A2 f, 1. In addition, it follows by the Cassini-like identity (g) that

lonyslon—1 = l§n+1 - Az$2; lonyolan = l%”“ + Az; )
lontslont1 = 15,10 — A% lopyalon = 13,9+ A%2%,

These identities play a major role in our discourse.
With this background, we begin our explorations of gibonacci sums, where the numerators
and denominators involve Fibonacci and Lucas polynomials, respectively.
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2. GIBONACCI POLYNOMIAL SUMS

The first sum involves a special class of even-numbered Fibonacci polynomials and odd-
numbered Lucas polynomials.

Theorem 2.1.

> A295fz(2n+1) 1

Z ; T = o (2.1)
(l2n+l +A ) (1: T )

Proof. Using recursion [2], we W111 first confirm that

= A290f2(2n+1) 1 1
> 3= g T (22)
n=1 (l2n+1 + A2) (.T,' + ) l2m+2
To this end, we let A,,, = LHS and B,, = RHS. Then,
1 1
Bm - Bm—l = l2 l2
2m+-2
_ l%m+2 l2
l%m+2l%m
A%z foomy)
T 9 A2
(l%m—‘,—l + AQ)
= Ay —An-1.
Alfs 13
Consequently, A, — By = Am-1—Bnm_1=--=4A1 — B = (l% AR — lzl% = 0. So,
A, = By, as desired.
Because lim — =0, equation (2.2) yields the given result. O
m—o0 [,
It follows from equation (2.2) that
in: 2(2n+1) 1 I
= ——
n:l 2n+1 + 5) 45 L2m+2
= 2(2n+1) 1
(2n+
Z = = (2.3)
n=1 L2n+l + 5)
The following result involves even-numbered gibonacci polynomials.
Theorem 2.2.
i (2% + 22) A% foonia) 1 N 1 (2.4)
S (1B, + A22)? (22 42)2 (2 + 422 + 2)2
Proof. Using recursion [2], we will first establish that
i CC +2£C A f2(2n+2 . 1 i 1 1 1 (2 5)
(1B, +A%2)7 @222 @4 +2? B, B '
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Letting A,,, = LHS and B,, = RHS, we then get

1 1
Bm - Bm,1 = Rl e
l2m l2m+4
M
l%m+4l%m
(@4 20) A% foam g
N 2
(l§m+2 + A2$2)
= Am - Amfl-
3 1L 91)A2
Consequently, Ay, — By = A1 —Bp1 == A1 —B) = (z° 4+ 22)A%fs

(12 + A222)2
0. Thus, A,, = B,,, as desired.
Letting m — oo, equation (2.5) yields the given result.

It follows from equation (2.5) that

S~ Powy % 11
= (13,,,+5)> 6615 1513, 1513, .,
3 ooy 58

= (13,0 +5) 6615

A Gibonacci Delight: Equation (2.3), coupled with (2.6), yields

i Fon _ i Fyeoni1 n Fa@ni2)
n=3 (L% + 5)2 (L%nJrl + 5)2 (L%n+2 + 5)2
— 41 .
= T35
i Fop, 2
(12 +5)7% 2T

(L o1y
BoZ)

(2.6)

(2.7)

Using the identity L2 — 5F2 = 4(-1)" from property (f), we can rewrite equation (2.7) in

terms of Fibonacci numbers alone:

2
Z F2+1)+4( 1?27

The next result involves odd-numbered Lucas polynomials.

Theorem 2.3.

i (2% + 22) A fop41) 1 1
n=1 (l§n+1 - A2x2)2 z? (x3 + 33:)2
Proof. Employing recursion [2], we will first prove that

Z:E+2$Af22n+1_1 1 1 1

(13,41 — A222)° w2 (@2 +32) By B

(2.8)

(2.9)
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Again, we let A,, = LHS and B,, = RHS. Then,

1 1
Bm - Bm—l Fi - l27
2m—1 2m+3
12 — 12
2m+43 2m—1
12 .12
2m+3"2m—1

(2% + 22)A? Jo@m+1)
(l%m-‘rl - A2332)2
= A, — A,

o 23 4 22)A? 1 1
As before, this implies that A,, — B,, = A1 — B1 = M - <l% - l%) = 0. So,
A, = By, confirming the validity of formula (2.9).
Letting m — oo in equation (2.9) yields the given result, as desired. (]

Equation (2.9) yields

in: 2(2n+1) T 1 B 1
n:l 2n+1 5) 240 15L%m+1 15L%m+3
o0
17
Z Foonsn ST (2.10)
n:l 2n+l 5)
Theorem 2.4.
O AZg 1
Z f2(2n+2) _ . (2.11)

L (B — A7) (@04 30)?
Proof. Using recursion [2], we Wlll first establish that

m

Z A’z foonia) 1 1

n=1 (l%n-‘rQ - A2)2 - (x3 T 33:)2 l%m—f—i’».

(2.12)

Letting A,, = LHS and B,, = RHS yields

1 1
Bm - Bm—l = 12 127
2m+1 2m+43

l%m+3 l§m+1
lgm+3l%m+1

A? $f2(2m+2)

(l2m+2 - AQ)
= An—An_1.
Alzfy <1 1

= W = — > = 0. Consequently, A,, = B,

This yields A,, — B, = A1 — By 22

as expected.
Clearly, the given result now follows from equation (2.12), as desired. O
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It follows from equation (2.12) that

i 2(2n+2) _ 1 1
=1 (L34 5) 80 5L3n1s
i 2(2n+2) _ 1 (2.13)
n=1 L%n+2 5) 80
Another Gibonacci Delight: Equation (2.10), coupled with (2.13), yields
Z Fop i Fyeoni1 Fant2)
2 = 2 2
s (Ln —5) nmt L3, —5)" (L300 —5)
— 1 .
1Y
o
b 1
> g = 3 (2.14)
1 (L2 —5)

Using the identity L2 — 5F2 =

4(-1)", we can rewrite equation (2.14) also in terms of

Fibonacci numbers alone:
o

n:l

2.1. Fibonacci Consequences. Using property (f), we can rewrite equations (2.1), (2.4),
(2.8), and (2.11), in terms of Fibonacci polynomials alone:

A296‘f2(2n+1)

2

n=1

2
(f22n+1 + 1) - 4]
(2% + 22) A? fo2n42)

[A2(f22n+2 + %) + 4] ’
(2% + 22) A foian41)

[AQ(fgnH — %) — 4)]2

n=1
i A2=7Cf2(2n+2)
2
n=1 [Az(fgnJrZ - 1) + 4]
respectively.
They yield

i Fy@n+1) 1

2 T e

n=1 (5F22n+1 + 1) 45

Foon41) 17

ANgE

L (5F -9 A0

n=1

respectively.

1 .
(@ +2)

1 1
@122 @ 4212

1
27 (23 + 3x)2’

1
(23 + 3x)?’

i 2(2n+2) 88
O:O 2n+2 + 9) 6615
Z F2 2n42) 1

2 -  on’
n=1 5F22n+2 1) 80

Finally, we explore the Pell implications of the infinite sums in Theorems 2.1 through 2.4.
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3. PELL VERSIONS

Using the relationship b,(x) = gn(2z), equations (2.1), (2.4), (2.8), and (2.11) yield the
following sums:

i (2% + 1)paians1) _ 1 _
S + A2+ )] 32(222 + 1)’
i (% +1)(22° + T)Pa(2n+2) _ 1 N 1 .
n=1 [q%nJrQ + 1622 (22 4+ 1)]2 64(222 +1)2  64(8z4 + 822 +1)2’
=l [q%nﬂ — 1622(22 + 1)) 6422 " 64(4z° 1 320)%
Z (2% + 1)Pa(ant2) _ 1
= [@Bnge — 42+ 1)) 32(4a3 + 3z)2’
respectively.
It then follows that
iM I i Pyant2) 149
~ 367 2 Lo? 31912
nt (@3 + 2)? 36 (@t ) 31212
Z P2 2n+1 . 25 . Z P2(2TL+2) B 1
= = _c2emyd L
(@B -8) 588 =(Q%,.,-2) 196
respectively.
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