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Abstract. We use a complex seed for the Somos-5 sequence to get Gaussian integers with
real and imaginary parts related by the Fibonacci sequence. For example, if {sn} is Somos-5
with seed (1, 1, i, 1, 1), then {s2n}n≥1 is the sequence

1, 1, 1 + i, 2− i, 2 + 3 i, 5− 3 i, 5 + 8 i, 13− 8 i, 13 + 21 i, 34− 21 i, . . . ,

and the sequence of L1-norms is the Fibonacci sequence starting at 1.

The Somos-5 sequence begins with s1 = · · · = s5 = 1, that is, with the seed (1, 1, 1, 1, 1), and
evolves using Michael Somos’ five-term recursion. For n ≥ 6,

sn := S(sn−1, sn−2, . . . , sn−5) :=
sn−1 sn−4 + sn−2 sn−3

sn−5
.

Surprisingly, this sequence [4, A006721] has been proven to stay integer [5]. Somos sequences
[6] have been called nonlinear versions of Fibonacci [1].

Let {Fn} denote the sequence F−1 = 1, F0 = 0, F1 = 1, F2 = 1, F3 = 2, etc. Two complex
numbers z and w are F-dependent if there is a nonnegative r such that F2r−1 z+F2r w i = 0
or F2r+1w−F2r z i = 0 ( i :=

√
−1) and F-independent otherwise. Note that F-independent

complex numbers are both nonzero. The following are proved below.

Theorem 1. With seed (1, z, i,w, 1), z,w F-independent, we have for r ≥ 0,

(1) s4r+1 = 1;
(2) s4r+2 = F2r−1 z+ F2r w i ;
(3) s4r+3 = i;
(4) s4r+4 = F2r+1w − F2r z i.

Corollary 1. With seed (1, z, i,w, 1), z,w F-independent Gaussian integers, Somos-5 is a
sequence {sn}∞n=1 of nonzero Gaussian integers.

Let ℓn := ∥sn∥1 := |Re(sn)|+ |Im(sn)|; put xn := ℓn−4 + ℓn−2 − ℓn, n ≥ 6 even.

Theorem 2. Sequence {x2n} is (i) nonnegative, (ii) even, (iii) non-increasing, and (iv) if
x2n = x2n+2, then x2n+4 = 0.

By Theorem 2, once {x2n} reaches zero, it stays there, and this means that the sequence
{ℓ2n} satisfies the Fibonacci recursion.

Corollary 2. With seed (1, z, i,w, 1), z,w F-independent Gaussian integers, there is a unique
smallest N := N(z,w) ≥ 3 such that x2n = 0 for all n ≥ N .

Although the sequence {ℓ2n} eventually satisfies the recursion, it appears that delay can be
arbitrarily long for suitably chosen z,w. Indeed, ifm ≥ 1, and z := Fm+1+ i andw := 1+Fm i,
then calculations shows N(z,w) = m+ 3 for 1 ≤ m ≤ 30.

Proof of Theorem 1. We induct on r, as the result holds for r = 0 by definition. There is
an asymmetry because the behavior of sn depends on n mod 4 whereas there are five elements
in the seed, so (1) holds for r = 0 and r = 1.
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Suppose the result holds for r ≥ 0 fixed and also for s4r+5. We successively calculate
s4r+6, . . . , s4r+9 to prove (2), (3), (4) for r + 1 and (1) for r + 2.

Using the induction hypotheses and the Fibonacci and Somos-5 recursions,

s4r+6 =
(
1 · F2r−1 z+ F2r w i+ (F2r+1w − F2r z i) · i

)
/1 = F2r+1 z+ F2r+2w i,

and

s4r+7 =
(F2r+1 z+ F2r+2w i) · i + 1 · F2r+1w − F2r z i

F2r−1 z+ F2r w i
= i,

so (2) and (3) hold for r + 1; (4) for r + 1 and (1) for r + 2 are similar. □

The proof of Theorem 1 shows the following, which implies Corollary 1.

s4r+6 = s4r+2 + i · s4r+4 and s4r+8 = s4r+4 − i · s4r+6. (1)

Suppose ϕ(z,w) := z + iw and ψ(z,w) := z − iw; now define Λ : C × C → C × C by
Λ(z,w) := (ϕ(z,w), ψ(w, ϕ(z,w))). We have Λ(s4r+2, s4r+4) = (s4r+6, s4r+8).

Proof of Theorem 2. Let n ≥ 2 be even and let sn = a + b i, sn+2 = c + d i, a, b, c, d real.
By equation (1), sn+4 = sn ± i sn+2 = a∓ d+ (b± c) i if n ≡ 2 or 0 (mod 4). We consider the
first case, n ≡ 2, and leave the other to the reader. Then, xn+4 = ∥sn∥+ ∥sn+2∥ − ∥sn+4∥ =
|a|+ |b|+ |c|+ |d| − |a− d| − |b+ c|.

But, |a − d| = |a| + |d| unless a ̸= 0 ̸= d and a/|a| = d/|d|, in which case |a − d| =
|a|+ |d| − 2 min(|a|, |d|) and we say that a and d conflict. Similarly, |b+ c| = |b|+ |c| unless
b ̸= 0 ̸= c and b/|b| = −c/|c|, in which case |b + c| = |b| + |c| − 2 min(|b|, |c|) and b and c are
said to conflict. It follows that xn+4 ≥ 0 is even, so (i) and (ii) hold.

Also, xn+4 = 0 unless conflict occurs. By (1), sn+6 = sn+2+ i sn+4 = b+2c+(2d−a) i so if
xn+4 = 0, then xn+6 = 0 because u and v conflict if and only if u and κv conflict, κ > 0. The
effects of (a, d) and (b, c) conflicts are additive, so we consider only (a, d), setting b = 0 = c.
If xn+4 > 0, then xn+4 = 2min(|a|, |d|). By a corresponding calculation, one has

xn+6 = ℓn+2 + ℓn+4 − ℓn+6 = 2
(
min(|2d|, |a|)−min(|a|, |d|)

)
.

If |a| ≤ |d|, then xn+6 = 0. If |d| < |a| and |2d| < |a|, then xn+6 = 2|d| = xn+4.
If |d| < |a| and |a| ≤ |2d|, then xn+6 = 2(|a| − |d|) ≤ 2|d| = xn+4, and equality holds if and
only if |a| = 2|d|. So (iii) holds.

From equation (1), xn+8 = |a− d|+ |2d− a| − |2a− 3d|; after some canceling,

xn+8 = 2
(
min(2|a|, 3|d|)−min(|a|, |d|)−min(|a|, 2|d|)

)
.

If |2d| < |a|, then |d| < |a|, so |3d| < |2a|; hence, xn+8 = 0. If |d| < |a| = |2d|, then
xn+8 = 2(3|d| − |d| − 2|d|) = 0. Hence, (iv) also holds. □

Example. If z = 60− 40 i and w = 24 + 37 i, then for n = 1, . . . , 14,

s2n = 60− 40 i, 24 + 37 i, 23− 16 i, 8 + 14 i, 9− 8 i, 5 i, 4− 8 i, −8 + i,

3− 16 i,−24− 2 i, 5− 40 i,−64− 7 i, 12− 104 i,−168− 19 i.

The corresponding sequence of L1 norms ℓ2n := ∥s2n∥1, 1 ≤ n ≤ 14, is

100, 61, 39, 22, 17, 5, 12, 9, 19, 26, 45, 71, 116, 187.

Both types of conflict occur, and the values of x3, . . . , x14 are accordingly

122, 78, 44, 34, 10, 8, 2, 2, 0, 0, 0, 0.
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Remarks. There are three other Somos recursions (with seeds of length k = 4, 6, 7) that,
with all “1”s in their seed, give only integers [2, Chap. 1]. These real Somos sequences are
interesting because of their unexpected integrality. They produce integer sequences when
properly begun, but seeds that lead to such good properties are rare. For Somos-5, although
seed (1,2,1,1,1) gives only integers, the seed (1,3,1,1,1) does not produce an integral sequence.
However, σ = (1, z, i,w, 1) gives rise to an infinite sequence of Gaussian integers if z and w
are F-independent Gaussian integers. Complexification improves integrality.

The real Somos sequence grows at a quadratically exponential rate (e.g., [3]), but the L1-
norm of the complexified version grows with the Fibonacci recursion, and so is exponential.
The complexified process has slower growth.

A possible reason for introducing complex numbers into real calculations is to improve
computational efficiency. Integrality would seem to avoid floating-point issues, whereas smaller
numbers require less storage and CPU-time. Is the instance given here a one-off or can it be
more generally applied?

Another way to understand the Somos-5 recursion is in terms of a kind of twisted dot-
product of triples. Let α := (a, b, c) and β := (d, e, f) be any two triples of real or complex
numbers. Define α⋆β := be+ cd− af and call α and β ⋆-orthogonal if α⋆β = 0. Then sn is
a Somos sequence precisely when each triple (sn, sn+1, sn+2) is ⋆-orthogonal to the consecutive
triple (sn+3, sn+4, sn+5). In the real-integer case, only rapid growth can achieve such an
orthogonal-turn “spiral” in the geometry given by (R3, ⋆), but a much more compact trajectory
is possible in (C3, ⋆).
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