FIBONACCI IN SOMOS-5 BY COMPLEXIFICATION

PAUL C. KAINEN

ABSTRACT. We use a complex seed for the Somos-5 sequence to get Gaussian integers with
real and imaginary parts related by the Fibonacci sequence. For example, if {s,} is Somos-5
with seed (1,1, 1,1, 1), then {s2, }n>1 is the sequence

1,1, 1+1i, 2—1i, 2+3i, 5—31i, 5+8i, 13— 81i, 13+ 211, 34 — 211i,...,

and the sequence of Li-norms is the Fibonacci sequence starting at 1.

The Somos-5 sequence begins with sy = --- = s5 = 1, that is, with the seed (1,1,1,1,1), and
evolves using Michael Somos’ five-term recursion. For n > 6,

Sn = S(Spn—1,8n-2,-+,Sn—5) := Sn—1 Sn—4 + Sn—2 n—3

Sn—5
Surprisingly, this sequence [4, A006721] has been proven to stay integer [5]. Somos sequences
[6] have been called nonlinear versions of Fibonacci [1].

Let {F,} denote the sequence F_1 =1, Fy =0, F} =1, F» =1, F3 = 2, etc. Two complex
numbers z and w are F-dependent if there is a nonnegative r such that Fs,._1z+F5.wi=10
or Forpiw—Fozi=0(i:= \/j) and F-independent otherwise. Note that F-independent
complex numbers are both nonzero. The following are proved below.

Theorem 1. With seed (1,2, i,w,1), z,w F-independent, we have for r > 0,
(1) S4r+1 = 17'
(2) saryo=For_12+ Fo, wi;
(3) S47’+3 = i;
(4) sarya = Forpaw — Fo zi.

Corollary 1. With seed (1,z,1i,w,1), z,w F-independent Gaussian integers, Somos-5 is a
sequence {sp}>° ; of nonzero Gaussian integers.
Let £, :=||sn||1 := |Re(sn)| 4+ Im(sy)|; put zy, := g + lp—o — £y, n > 6 even.

Theorem 2. Sequence {x2,} is (i) nonnegative, (ii) even, (iii) non-increasing, and (iv) if
Top = T2n+2, then Ton+4 = 0.

By Theorem 2, once {xay,} reaches zero, it stays there, and this means that the sequence
{l2y,} satisfies the Fibonacci recursion.

Corollary 2. With seed (1,2, i,w,1), z,w F-independent Gaussian integers, there is a unique
smallest N := N(z,w) > 3 such that xo, =0 for alln > N.

Although the sequence {/3,} eventually satisfies the recursion, it appears that delay can be
arbitrarily long for suitably chosen z, w. Indeed, if m > 1, and z := F, 1+ iand w := 14+ F), i,
then calculations shows N(z,w) =m + 3 for 1 < m < 30.

Proof of Theorem 1. We induct on r, as the result holds for » = 0 by definition. There is
an asymmetry because the behavior of s,, depends on n mod 4 whereas there are five elements
in the seed, so (1) holds for r = 0 and r = 1.
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Suppose the result holds for » > 0 fixed and also for s4r15. We successively calculate
S4r+46, - - - » Sar+9 to prove (2), (3), (4) for r + 1 and (1) for r + 2.
Using the induction hypotheses and the Fibonacci and Somos-5 recursions,

S4r+6 = (1 cFor_1z2+4 Fo,wi+ (Fopp1w — Fopzi) - i)/l =Forp1z2+ For o wi,

and
(F27~+1 Z + F27"+2Wi) i+ 1 F27»+1 w — Fgr z 1
Sdr+7 = A =1,
Fgr_l Z + FQr W1
so (2) and (3) hold for r + 1; (4) for » + 1 and (1) for  + 2 are similar. O

The proof of Theorem 1 shows the following, which implies Corollary 1.

Sir46 = S4r42 + 1-S4p44 and Sgri8 = Sgr14 — 1-S4r46. (1)
Suppose ¢(z,w) := z + iw and ¢¥(z,w) := z — iw; now define A : C x C — C x C by
A(Za W) = (¢(Z7 W)v ¢(W, ¢(Z7 W))) We have A(S4r+27 S4r+4) — (S4r+67 S4T+8)-
Proof of Theorem 2. Let n > 2 be even and let s, = a + bi, s,+2 = ¢+ di, a,b,c,d real.
By equation (1), sp44 =sp £ isppo =aFd+ (bEtc)iif n =2 or 0 (mod 4). We consider the
first case, n = 2, and leave the other to the reader. Then, zp+4 = ||Sn]l + ||Snt2ll — [ISnt4al| =
la| + |b] + |c| + |d| — |a — d| — |b+ ¢

But, |a — d| = |a| + |d| unless a # 0 # d and a/|a| = d/|d|, in which case |a — d| =
la| + |d| — 2 min(|a|, |d|) and we say that a and d conflict. Similarly, |b + ¢| = |b| + |c| unless
b+ 0 # c and b/|b] = —¢/|c|, in which case |b + ¢| = |b| + |¢| — 2 min(|b], |¢|) and b and ¢ are
said to conflict. It follows that ,14 > 0 is even, so (i) and (ii) hold.

Also, x4 = 0 unless conflict occurs. By (1), Sp16 = Spy2+ iSppq = b+2c+ (2d—a)iso if
Tptqa = 0, then z,16 = 0 because v and v conflict if and only if u and xv conflict, kK > 0. The
effects of (a,d) and (b, c) conflicts are additive, so we consider only (a,d), setting b = 0 = c.
If 2,44 > 0, then x,,44 = 2min(|al, |d|). By a corresponding calculation, one has

Tn+6 = £n+2 + £n+4 - €n+6 = 2(mln(|2d|v ‘a|) - min(‘a|7 |d|))
If |a| < |d|, then z,46 = 0. If |[d| < |a| and |2d| < |al, then )16 = 2|d| = Tp14.
If |[d| < |a] and |a| < |2d|, then x,46 = 2(|a| — |d|) < 2]d| = p14, and equality holds if and
only if |a| = 2|d|. So (iii) holds.
From equation (1), zp+8 = |a — d| + |2d — a| — |2a — 3d|; after some canceling,
Znrs = 2( min(2lal, 3|d]) — min(la], |d]) ~ min(la], 2/a]) ).
If |2d| < |a|, then |d| < |a|, so [3d| < |2a|; hence, zp,48 = 0. If |d| < |a|] = |2d|, then
Tnt+s = 2(3|d| — |d| — 2|d|) = 0. Hence, (iv) also holds. O
Example. If z =60 — 40i and w = 24 + 371, then forn =1, ..., 14,
Son = 60 — 401, 24 + 371, 23 — 164, 8 + 141, 9 — 81, 5i, 4 — 81, -8 + i,
3 161,24 — 21,5 — 401,64 — 71,12 — 1041, -168 — 191
The corresponding sequence of L; norms fo, := ||Sop|l1, 1 <n < 14, is
100, 61, 39, 22, 17, 5, 12, 9, 19, 26, 45, 71, 116, 187.
Both types of conflict occur, and the values of z3,...,x14 are accordingly

122, 78, 44, 34, 10, 8, 2, 2,0, 0, 0, 0
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Remarks. There are three other Somos recursions (with seeds of length k = 4,6,7) that,
with all “1”s in their seed, give only integers [2, Chap. 1]. These real Somos sequences are
interesting because of their unexpected integrality. They produce integer sequences when
properly begun, but seeds that lead to such good properties are rare. For Somos-5, although
seed (1,2,1,1,1) gives only integers, the seed (1,3,1,1,1) does not produce an integral sequence.
However, o = (1,2, i,w, 1) gives rise to an infinite sequence of Gaussian integers if z and w
are F-independent Gaussian integers. Complexification improves integrality.

The real Somos sequence grows at a quadratically exponential rate (e.g., [3]), but the L;-
norm of the complexified version grows with the Fibonacci recursion, and so is exponential.
The complexified process has slower growth.

A possible reason for introducing complex numbers into real calculations is to improve
computational efficiency. Integrality would seem to avoid floating-point issues, whereas smaller
numbers require less storage and CPU-time. Is the instance given here a one-off or can it be
more generally applied?

Another way to understand the Somos-5 recursion is in terms of a kind of twisted dot-
product of triples. Let o := (a,b,c¢) and § := (d,e, f) be any two triples of real or complex
numbers. Define ax 3 := be + c¢d — af and call o and 8 x-orthogonal if ax3 = 0. Then s, is
a Somos sequence precisely when each triple (sy,, $p+1, Snt2) is *-orthogonal to the consecutive
triple (Spn+3, Sntd4, Snts5). In the real-integer case, only rapid growth can achieve such an
orthogonal-turn “spiral” in the geometry given by (R3, ), but a much more compact trajectory
is possible in (C3,x).
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