INFINITE SUMS INVOLVING EXTENDED GIBONACCI POLYNOMIALS

THOMAS KOSHY

ABSTRACT. We explore four infinite sums involving gibonacci polynomials and their numeric cases, and then extract their Pell and Jacobsthal versions.

1. Introduction

Extended gibonacci polynomials $z_n(x)$ are defined by the recurrence $z_{n+2}(x) = a(x)z_{n+1}(x) +$ $b(x)z_n(x)$, where x is a positive integer variable; a(x), b(x), $z_0(x)$, and $z_1(x)$ are arbitrary integer polynomials; and n > 0.

Suppose a(x) = x and b(x) = 1. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = f_n(x)$, the nth Fibonacci polynomial; and when $z_0(x) = 2$ and $z_1(x) = x$, $z_n(x) = l_n(x)$, the nth Lucas polynomial. They can also be defined by Binet-like formulas. Clearly, $f_n(1) = F_n$, the nth Fibonacci number; and $l_n(1) = L_n$, the nth Lucas number [1, 5, 7].

Pell polynomials $p_n(x)$ and Pell-Lucas polynomials $q_n(x)$ are defined by $p_n(x) = f_n(2x)$ and $q_n(x) = l_n(2x)$, respectively. In particular, the Pell numbers P_n and Pell-Lucas numbers Q_n are given by $P_n = p_n(1) = f_n(2)$ and $2Q_n = q_n(1) = l_n(2)$, respectively [7].

Suppose a(x) = 1 and b(x) = x. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = J_n(x)$, the nth Jacobsthal polynomial; and when $z_0(x) = 2$ and $z_1(x) = 1$, $z_n(x) = j_n(x)$, the nth Jacobsthal-Lucas polynomial [4, 7]. Correspondingly, $J_n = J_n(2)$ and $j_n = j_n(2)$ are the nth Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, $J_n(1) = F_n$ and $j_n(1) = L_n$.

Gibonacci and Jacobsthal polynomials are linked by the relationships $J_n(x)$

$$=x^{(n-1)/2}f_n(1/\sqrt{x})$$
 and $j_n(x)=x^{n/2}l_n(1/\sqrt{x})$ [7].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is no ambiguity; so z_n will mean $z_n(x)$. In addition, we let $g_n = f_n$ or l_n , $b_n = p_n$ or q_n , $c_n = J_n(x)$ or $j_n(x)$, $\Delta = \sqrt{x^2 + 4}$, $D = \sqrt{4x + 1}$, $E = \sqrt{x^2 + 1}$, $2\alpha(x) = x + \Delta$, $2\beta(x) = x - \Delta$, $\alpha = \alpha(1)$, $\beta(1) = \beta$, $\gamma(x) = x + E$, $\delta(x) = x - E$, and $\delta = \delta(1)$.

It follows by the Binet-like formulas [7] that $\lim_{m\to\infty} \frac{g_{m+k}}{g_m} = \alpha^k(x)$, $\lim_{m\to\infty} \frac{f_{m+k}}{l_m} = \frac{\alpha^k(x)}{\Delta}$, and

$$\lim_{m \to \infty} \frac{l_{m+k}}{f_m} = \alpha^k(x)\Delta.$$

- 1.1. Fundamental Identities. Gibonacci polynomials satisfy the following fundamental properties [7]:
- a) $f_{2n} = f_n l_n;$ b) $l_{2n} = l_n^2 2(-1)^n;$ c) $l_{2n} = \Delta^2 f_n^2 + 2(-1)^n;$ d) $f_{n+k} + f_{n-k} = f_k l_n,$ where k is odd.

Properties (b) and (c) imply that $l_{2^n} = l_{2^{n-1}}^2 - 2$ and $l_{2^n} = \Delta^2 f_{2^{n-1}}^2 + 2$, respectively, where $n \geq 2$.

2. Infinite Gibonacci Sums

With this background, we begin our explorations with a sum involving the reciprocals of a special class of Fibonacci polynomials.

Lemma 2.1. Let k be an odd positive integer. Then,

$$\sum_{n=0}^{\infty} \frac{1}{f_{k \cdot 2^n}} = \frac{1}{f_k} + \frac{1}{f_{2k}} + \frac{1}{f_{4k}} + \frac{f_{4k-1}}{f_{4k}} + \beta(x). \tag{2.1}$$

Proof. With $m \geq 2$, it follows by property (d) that

$$\begin{array}{rcl} f_{k \cdot 2^m - 1} + 1 & = & f_{k \cdot 2^m - 1} + f_1 \\ & = & f_{k \cdot 2^{m - 1} + (k \cdot 2^{m - 1} - 1)} + f_{k \cdot 2^{m - 1} - (k \cdot 2^{m - 1} - 1)} \\ & = & f_{k \cdot 2^{m - 1} - 1} l_{k \cdot 2^{m - 1}}. \end{array}$$

Using recursion [7], we will now establish that

$$\sum_{n=0}^{m} \frac{1}{f_{k \cdot 2^n}} = \frac{1}{f_k} + \frac{1}{f_{2k}} + \frac{1}{f_{4k}} + \frac{f_{4k-1}}{f_{4k}} - \frac{f_{k \cdot 2^m - 1}}{f_{k \cdot 2^m}}.$$
 (2.2)

To this end, let A_m denote the LHS of this equation and B_m its RHS. Using property (d), we then have

$$B_{m} - B_{m-1} = \frac{f_{k \cdot 2^{m-1}}}{f_{k \cdot 2^{m-1}}} - \frac{f_{k \cdot 2^{m}-1}}{f_{k \cdot 2^{m}}}$$

$$= \frac{f_{k \cdot 2^{m-1}-1}l_{k \cdot 2^{m-1}}}{f_{k \cdot 2^{m}}} - \frac{f_{k \cdot 2^{m}-1}}{f_{k \cdot 2^{m}}}$$

$$= \frac{f_{k \cdot 2^{m}-1}+1}{f_{k \cdot 2^{m}}} - \frac{f_{k \cdot 2^{m}-1}}{f_{k \cdot 2^{m}}}$$

$$= \frac{1}{f_{k \cdot 2^{m}}}$$

$$= A_{m} - A_{m-1}.$$

Recursively, this yields

$$A_m - B_m = A_{m-1} - B_{m-1} = \dots = A_2 - B_2$$

$$= \left(\frac{1}{f_k} + \frac{1}{f_{2k}} + \frac{1}{f_{4k}}\right) - \left[\left(\frac{1}{f_k} + \frac{1}{f_{2k}} + \frac{1}{f_{4k}} + \frac{f_{4k-1}}{f_{4k}}\right) - \frac{f_{4k-1}}{f_{4k}}\right]$$

$$= 0.$$

Thus, $A_m = B_m$, validating formula (2.2).

Because
$$\lim_{n\to\infty} \frac{f_{n+k}}{f_n} = \alpha^k(x)$$
, equation (2.2) yields the given result, as desired.

It follows from equation (2.1) that

$$\sum_{n=0}^{\infty} \frac{1}{f_{2^n}} = 1 + \frac{1}{f_2} + \frac{1}{f_4} + \frac{f_3}{f_4} + \beta(x); \qquad \sum_{n=0}^{\infty} \frac{1}{f_{3 \cdot 2^n}} = \frac{1}{f_3} + \frac{1}{f_6} + \frac{1}{f_{12}} + \frac{f_{11}}{f_{12}} + \beta(x).$$

They yield [2, 6, 9]

$$\sum_{n=0}^{\infty} \frac{1}{F_{2^n}} = \frac{7}{2} - \frac{\sqrt{5}}{2}; \qquad \sum_{n=0}^{\infty} \frac{1}{F_{3 \cdot 2^n}} = \frac{7}{4} - \frac{\sqrt{5}}{2}.$$

Next, we present an alternate version of Lemma 2.1.

Lemma 2.2. Let k be an odd positive integer. Then,

$$\sum_{n=0}^{\infty} \frac{f_k}{f_{k \cdot 2^n}} = 1 + \frac{f_k}{f_{2k}} + \frac{f_k}{f_{4k}} + \frac{f_{3k}}{f_{4k}} + \beta^k(x). \tag{2.3}$$

Proof. With $m \geq 2$ and k odd, it follows by property (d) that

$$\begin{array}{lcl} f_{k(2^m-1)} + f_k & = & f_{k \cdot 2^{m-1} + k(2^{m-1}-1)} + f_{k \cdot 2^{m-1} - k(2^{m-1}-1)} \\ & = & f_{k(2^{m-1}-1)} l_{k \cdot 2^{m-1}}. \end{array}$$

Using recursion [7], we will now establish that

$$\sum_{n=0}^{m} \frac{f_k}{f_{k \cdot 2^n}} = 1 + \frac{f_k}{f_{2k}} + \frac{f_k}{f_{4k}} + \frac{f_{3k}}{f_{4k}} - \frac{f_{k(2^m - 1)}}{f_{k \cdot 2^m}}.$$
 (2.4)

We let A_m denote the LHS of this equation and B_m its RHS. Using property (d), we then have

$$B_{m} - B_{m-1} = \frac{f_{k(2^{m-1}-1)}}{f_{k \cdot 2^{m-1}}} - \frac{f_{k(2^{m}-1)}}{f_{k \cdot 2^{m}}}$$

$$= \frac{f_{k(2^{m-1}-1)}l_{k \cdot 2^{m-1}}}{f_{k \cdot 2^{m}}} - \frac{f_{k(2^{m}-1)}}{f_{k \cdot 2^{m}}}$$

$$= \frac{f_{k(2^{m}-1)} + f_{k}}{f_{k \cdot 2^{m}}} - \frac{f_{k(2^{m}-1)}}{f_{k \cdot 2^{m}}}$$

$$= \frac{f_{k}}{f_{k \cdot 2^{m}}}$$

$$= A_{m} - A_{m-1}.$$

Recursively, this yields

$$A_m - B_m = A_{m-1} - B_{m-1} = \dots = A_2 - B_2$$

$$= \left(1 + \frac{f_k}{f_{2k}} + \frac{f_k}{f_{4k}}\right) - \left[\left(1 + \frac{f_k}{f_{2k}} + \frac{f_k}{f_{4k}} + \frac{f_{3k}}{f_{4k}}\right) - \frac{f_{3k}}{f_{4k}}\right]$$

$$= 0$$

Thus, $A_m = B_m$, validating formula (2.4).

Because $\lim_{n\to\infty} \frac{f_n}{f_{n+k}} = \frac{1}{\alpha^k(x)}$ and k is odd, the given result follows from equation (2.4), as desired.

In particular, we have

$$\sum_{n=0}^{\infty} \frac{1}{f_{2^n}} = 1 + \frac{1}{f_2} + \frac{1}{f_4} + \frac{f_3}{f_4} + \beta(x); \qquad \sum_{n=0}^{\infty} \frac{f_3}{f_{3 \cdot 2^n}} = 1 + \frac{f_3}{f_6} + \frac{f_3}{f_{12}} + \frac{f_9}{f_{12}} + \beta^3(x).$$

It then follows that [2, 6, 9]

$$\sum_{n=0}^{\infty} \frac{1}{F_{2^n}} = \frac{7}{2} - \frac{\sqrt{5}}{2}; \qquad \sum_{n=0}^{\infty} \frac{1}{F_{3 \cdot 2^n}} = \frac{7}{4} - \frac{\sqrt{5}}{2},$$

respectively, as found earlier.

294

With Lemma 2.1, we now establish the next result.

Theorem 2.3. Let k be an odd positive integer and $\Delta = \sqrt{x^2 + 4}$. Then,

$$\sum_{n=1}^{\infty} \frac{f_{k \cdot 2^{n-1}}}{l_{k \cdot 2^n} - 2} = \frac{f_k}{l_{2k} - 2} + \frac{1}{\Delta^2} \left[\frac{1}{f_{2k}} + \frac{1}{f_{4k}} + \frac{f_{4k-1}}{f_{4k}} + \beta(x) \right]. \tag{2.5}$$

Proof. Using property (c) and Lemma 2.1, and with $m \geq 3$, we have

$$\sum_{n=1}^{m} \frac{f_{k \cdot 2^{n-1}}}{l_{k \cdot 2^{n}} - 2} = \frac{f_{k}}{l_{2k} - 2} + \sum_{n=2}^{m} \frac{f_{k \cdot 2^{n-1}}}{l_{k \cdot 2^{n}} - 2}$$

$$= \frac{f_{k}}{l_{2k} - 2} + \sum_{n=2}^{m} \frac{f_{k \cdot 2^{n-1}}}{\Delta^{2} f_{k \cdot 2^{n-1}}^{2}}$$

$$= \frac{f_{k}}{l_{2k} - 2} + \frac{1}{\Delta^{2}} \sum_{n=2}^{m} \frac{1}{f_{k \cdot 2^{n-1}}}$$

$$= \frac{f_{k}}{l_{2k} - 2} + \frac{1}{\Delta^{2}} \sum_{n=1}^{m-1} \frac{1}{f_{k \cdot 2^{n}}};$$

$$\sum_{n=1}^{\infty} \frac{f_{k \cdot 2^{n-1}}}{l_{k \cdot 2^{n}} - 2} = \frac{f_{k}}{l_{2k} - 2} - \frac{1}{\Delta^{2} f_{k}} + \frac{1}{\Delta^{2}} \sum_{n=0}^{\infty} \frac{1}{f_{k \cdot 2^{n}}}$$

$$= \frac{f_{k}}{l_{2k} - 2} + \frac{1}{\Delta^{2}} \left[\frac{1}{f_{2k}} + \frac{1}{f_{4k}} + \frac{f_{4k-1}}{f_{4k}} + \beta(x) \right],$$

as desired.

It follows from equation (2.5) that

$$\sum_{n=1}^{\infty} \frac{f_{2^{n-1}}}{l_{2^n} - 2} = \frac{1}{x^2} + \frac{1}{\Delta^2} \left[\frac{1}{f_2} + \frac{1}{f_4} + \frac{f_3}{f_4} + \beta(x) \right];$$

$$\sum_{n=1}^{\infty} \frac{f_{3 \cdot 2^{n-1}}}{l_{3 \cdot 2^n} - 2} = \frac{f_3}{l_6 - 2} + \frac{1}{\Delta^2} \left[\frac{1}{f_6} + \frac{1}{f_{12}} + \frac{f_{11}}{f_{12}} + \beta(x) \right].$$

Consequently, we have [9, 10]

$$\sum_{n=1}^{\infty} \frac{F_{2^{n-1}}}{L_{2^n}-2} = \frac{3}{2} - \frac{\sqrt{5}}{10}; \qquad \sum_{n=1}^{\infty} \frac{F_{3 \cdot 2^{n-1}}}{L_{3 \cdot 2^n}-2} = \frac{3}{8} - \frac{\sqrt{5}}{10},$$

respectively.

An Interesting Observation: With Lemma 2.2, we can rewrite equation (2.5) in a different way:

$$\sum_{n=1}^{\infty} \frac{f_{k \cdot 2^{n-1}}}{l_{k \cdot 2^n} - 2} = \frac{f_k}{l_{2k} - 2} - \frac{1}{\Delta^2 f_k} + \frac{1}{\Delta^2} \sum_{n=0}^{\infty} \frac{1}{f_{k \cdot 2^n}}$$

$$= \frac{f_k}{l_{2k} - 2} + \frac{1}{\Delta^2 f_k} \left[\frac{f_k}{f_{2k}} + \frac{f_k}{f_{4k}} + \frac{f_{3k}}{f_{4k}} + \beta^k(x) \right]. \tag{2.6}$$

In particular, we then have

$$\sum_{n=1}^{\infty} \frac{F_{2^{n-1}}}{L_{2^n} - 2} = \frac{3}{2} - \frac{\sqrt{5}}{10}; \qquad \sum_{n=1}^{\infty} \frac{F_{3 \cdot 2^{n-1}}}{L_{3 \cdot 2^n} - 2} = \frac{3}{8} - \frac{\sqrt{5}}{10};$$

as we just found.

Next, we investigate another gibonacci sum.

Theorem 2.4. Let k be an odd positive integer and $\Delta = \sqrt{x^2 + 4}$. Then,

$$\sum_{n=1}^{\infty} \frac{f_{k \cdot 2^{n-1}}}{l_{k \cdot 2^n} + 1} = \frac{f_k}{l_{2k} + 1} + \frac{f_{2k} - f_{4k}}{l_{4k} + 1} + \frac{1}{\Delta}.$$
 (2.7)

Proof. With $m \geq 2$ and recursion [7], we will first confirm that

$$\sum_{n=2}^{m} \frac{f_{k \cdot 2^{n-1}}}{l_{k \cdot 2^n} + 1} = \frac{f_{2k} - f_{4k}}{l_{4k} + 1} + \frac{f_{k \cdot 2^m}}{l_{k \cdot 2^m} + 1}.$$
 (2.8)

Let $A_m = \text{LHS}$ and $B_m = \text{RHS}$. Using properties (a) and (b), we have

$$B_{m} - B_{m-1} = \frac{f_{k \cdot 2^{m}}}{l_{k \cdot 2^{m}} + 1} - \frac{f_{k \cdot 2^{m-1}}}{l_{k \cdot 2^{m-1}} + 1}$$

$$= \frac{f_{k \cdot 2^{m}}}{l_{k \cdot 2^{m}} + 1} - \frac{f_{k \cdot 2^{m-1}} (l_{k \cdot 2^{m-1}} - 1)}{(l_{k \cdot 2^{m-1}} + 1) (l_{k \cdot 2^{m-1}} - 1)}$$

$$= \frac{f_{k \cdot 2^{m}}}{l_{k \cdot 2^{m}} + 1} - \frac{f_{k \cdot 2^{m}} - f_{k \cdot 2^{m-1}}}{l_{k \cdot 2^{m}} + 1}$$

$$= \frac{f_{k \cdot 2^{m}}}{l_{k \cdot 2^{m}} + 1}$$

$$= \frac{f_{k \cdot 2^{m-1}}}{l_{k \cdot 2^{m}} + 1}$$

$$= A_{m} - A_{m-1}.$$

Recursively, this implies

$$A_m - B_m = A_{m-1} - B_{m-1} = \dots = A_2 - B_2$$

$$= \frac{f_{2k}}{l_{4k} + 1} - \left(\frac{f_{4k}}{l_{4k} + 1} + \frac{f_{2k} - f_{4k}}{l_{4k} + 1}\right)$$

$$= 0$$

Thus, $A_m = B_m$, as expected.

Because $\lim_{n\to\infty} \frac{l_n}{f_n} = \Delta$, equation (2.8) yields

$$\sum_{n=2}^{\infty} \frac{f_{k \cdot 2^{n-1}}}{l_{k \cdot 2^n} + 1} = \frac{f_{2k} - f_{4k}}{l_{4k} + 1} + \frac{1}{\Delta}.$$

This yields the given result, as desired.

In particular, Theorem 2.4 implies

$$\sum_{n=1}^{\infty} \frac{f_{2^{n-1}}}{l_{2^n}+1} = \frac{1}{l_2+1} + \frac{f_2-f_4}{l_4+1} + \frac{1}{\Delta}; \qquad \sum_{n=1}^{\infty} \frac{f_{3\cdot 2^{n-1}}}{l_{3\cdot 2^n}+1} = \frac{f_3}{l_6+1} + \frac{f_6-f_{12}}{l_{12}+1} + \frac{1}{\Delta}.$$

It then follows that [3, 8]

$$\sum_{n=1}^{\infty} \frac{F_{2^{n-1}}}{L_{2^n} + 1} = \frac{\sqrt{5}}{5}; \qquad \sum_{n=1}^{\infty} \frac{F_{3 \cdot 2^{n-1}}}{L_{3 \cdot 2^n} + 1} = -\frac{6}{19} + \frac{\sqrt{5}}{5},$$

respectively.

Next, we explore the Pell implications of formulas (2.1), (2.3), (2.5), (2.6), and (2.7).

SUMS INVOLVING GIBONACCI POLYNOMIALS

3. Pell Versions

Because $b_n(x) = g_n(2x)$, it follows from equations (2.1), (2.3), (2.5), (2.6), and (2.7) that

$$\sum_{n=0}^{\infty} \frac{1}{p_{k \cdot 2^n}} = \frac{1}{p_k} + \frac{1}{p_{2k}} + \frac{1}{p_{4k}} + \frac{p_{4k-1}}{p_{4k}} + \delta(x);$$

$$\sum_{n=0}^{\infty} \frac{p_k}{p_{k \cdot 2^n}} = 1 + \frac{p_k}{p_{2k}} + \frac{p_k}{p_{4k}} + \frac{p_{3k}}{p_{4k}} + \delta^k(x);$$

$$\sum_{n=1}^{\infty} \frac{p_{k \cdot 2^{n-1}}}{q_{k \cdot 2^n} - 2} = \frac{p_k}{q_{2k} - 2} + \frac{1}{4E^2} \left[\frac{1}{p_{2k}} + \frac{1}{p_{4k}} + \frac{p_{4k-1}}{p_{4k}} + \delta(x) \right];$$

$$\sum_{n=1}^{\infty} \frac{p_{k \cdot 2^{n-1}}}{q_{k \cdot 2^n} - 2} = \frac{p_k}{q_{2k} - 2} + \frac{1}{4E^2 p_k} \left[\frac{p_k}{p_{2k}} + \frac{p_k}{p_{4k}} + \frac{p_{3k}}{p_{4k}} + \delta^k(x) \right];$$

$$\sum_{n=1}^{\infty} \frac{p_{k \cdot 2^{n-1}}}{q_{k \cdot 2^n} + 1} = \frac{1}{2E} + \frac{p_k}{q_{2k} + 1} + \frac{p_{2k} - p_{4k}}{q_{4k} + 1},$$

respectively, where k is an odd positive integer. Consequently, we have

$$\sum_{n=0}^{\infty} \frac{1}{P_{k \cdot 2^n}} = \frac{1}{P_k} + \frac{1}{P_{2k}} + \frac{1}{P_{4k}} + \frac{P_{4k-1}}{P_{4k}} + \delta;$$

$$\sum_{n=0}^{\infty} \frac{P_k}{P_{k \cdot 2^n}} = 1 + \frac{P_k}{P_{2k}} + \frac{P_k}{P_{4k}} + \frac{P_{3k}}{P_{4k}} + \delta^k;$$

$$\sum_{n=1}^{\infty} \frac{P_{k \cdot 2^{n-1}}}{Q_{k \cdot 2^n} - 1} = \frac{P_k}{Q_{2k} - 1} + \frac{1}{4} \left(\frac{1}{P_{2k}} + \frac{1}{P_{4k}} + \frac{P_{4k-1}}{P_{4k}} + \delta \right);$$

$$\sum_{n=1}^{\infty} \frac{P_{k \cdot 2^{n-1}}}{Q_{k \cdot 2^n} - 1} = \frac{P_k}{Q_{2k} - 1} + \frac{1}{4P_k} \left(\frac{P_k}{P_{2k}} + \frac{P_k}{P_{4k}} + \frac{P_{3k}}{P_{4k}} + \delta^k \right);$$

$$\sum_{n=1}^{\infty} \frac{P_{k \cdot 2^{n-1}}}{2Q_{k \cdot 2^n} + 1} = \frac{\sqrt{2}}{4} + \frac{P_k}{2Q_{2k} + 1} + \frac{P_{2k} - P_{4k}}{2Q_{4k} + 1},$$

respectively.

4. Jacobsthal Consequences

Using the gibonacci-Jacobsthal relationships, we now explore the Jacobsthal implications of formulas (2.1), (2.5), and (2.7). In each case, for clarity and convenience, we let A denote the fractional expression on the left side and B the corresponding expression on the right side, and LHS and RHS those of the Jacobsthal formula to be found.

4.1. Jacobsthal Version of Formula (2.1).

Proof. We have
$$A = \frac{1}{f_{k \cdot 2^n}}$$
 and $B = \frac{1}{f_k} + \frac{1}{f_{2k}} + \frac{1}{f_{4k}} + \frac{f_{4k-1}}{f_{4k}} + \beta(x)$.

Replacing x with $1/\sqrt{x}$ in A, and then multiplying the numerator and denominator with $x^{(k\cdot 2^n-1)/2}$, we get

$$A = \frac{x^{(k \cdot 2^{n} - 1)/2}}{x^{(k \cdot 2^{n} - 1)/2} f_{k \cdot 2^{n}}}$$

$$= \frac{x^{(k \cdot 2^{n} - 1)/2}}{J_{k \cdot 2^{n}}};$$

$$LHS = \sum_{n=0}^{\infty} \frac{x^{(k \cdot 2^{n} - 1)/2}}{J_{k \cdot 2^{n}}},$$

where $g_n = g_n(1/\sqrt{x})$ and $c_n = c_n(x)$.

Next, replace x with $1/\sqrt{x}$ in B, and then multiply the numerator and denominator with $x^{(4k-1)/2}$. This yields

$$\begin{split} B &= \frac{1}{f_k} + \frac{1}{f_{2k}} + \frac{1}{f_{4k}} + \frac{f_{4k-1}}{f_{4k}} + \frac{1-D}{2\sqrt{x}} \\ &= \frac{x^{3k/2}}{x^{(k-1)/2}f_k} + \frac{x^k}{x^{(2k-1)/2}f_{2k}} + \frac{x^{(4k-1)/2}}{x^{(4k-1)/2}f_{4k}} + \frac{\sqrt{x}\left[x^{(4k-2)/2}f_{4k-1}\right]}{x^{(4k-1)/2}f_{4k}} + \frac{1-D}{2\sqrt{x}}; \\ \mathrm{RHS} &= \frac{x^{3k/2}}{J_k} + \frac{x^k}{J_{2k}} + \frac{x^{(4k-1)/2}}{J_{4k}} + \frac{\sqrt{x}J_{4k-1}}{J_{4k}} + \frac{1-D}{2\sqrt{x}}, \end{split}$$

where $g_n = g_n(1/\sqrt{x})$ and $c_n = c_n(x)$.

Equating the two sides gives the desired Jacobsthal version:

$$\sum_{n=0}^{\infty} \frac{x^{k \cdot 2^{n-1}}}{J_{k \cdot 2^n}} = \frac{x^{(3k+1)/2}}{J_k} + \frac{x^{(2k+1)/2}}{J_{2k}} + \frac{x^{2k}}{J_{4k}} + \frac{xJ_{4k-1}}{J_{4k}} + \frac{1-D}{2}. \tag{4.1}$$

In particular, we have

$$\sum_{n=0}^{\infty} \frac{1}{F_{k \cdot 2^n}} = \frac{1}{F_k} + \frac{1}{F_{2k}} + \frac{1}{F_{4k}} + \frac{F_{4k-1}}{F_{4k}} + \beta.$$

This yields [2, 6]

$$\sum_{n=0}^{\infty} \frac{1}{F_{2^n}} = \frac{7}{2} - \frac{\sqrt{5}}{2}; \qquad \sum_{n=0}^{\infty} \frac{1}{F_{3 \cdot 2^n}} = \frac{7}{4} - \frac{\sqrt{5}}{2},$$

as found earlier.

298

4.2. Jacobsthal Version of Formula (2.5).

Proof. We have
$$A = \frac{f_{k \cdot 2^{n-1}}}{l_{k \cdot 2^n} - 2}$$
 and $B = \frac{f_k}{l_{2k} - 2} + \frac{1}{\Delta^2} \left[\frac{1}{f_{2k}} + \frac{1}{f_{4k}} + \frac{f_{4k-1}}{f_{4k}} + \beta(x) \right]$.

VOLUME 60, NUMBER 4

SUMS INVOLVING GIBONACCI POLYNOMIALS

Now, replace x with $1/\sqrt{x}$ in A, and then multiply the numerator and denominator with $x^{(k\cdot 2^n)/2}$. We then get

$$A = \frac{x^{(k \cdot 2^{n-1}+1)/2} \left[x^{(k \cdot 2^{n-1}-1)/2} f_{k \cdot 2^{n-1}} \right]}{x^{(k \cdot 2^n)/2} l_{k \cdot 2^n} - 2x^{k \cdot 2^{n-1}}}$$

$$= \frac{x^{(k \cdot 2^{n-1}+1)/2} J_{k \cdot 2^{n-1}}}{j_{k \cdot 2^n} - 2x^{k \cdot 2^{n-1}}};$$
LHS
$$= \sum_{n=1}^{\infty} \frac{x^{(k \cdot 2^{n-1}+1)/2} J_{k \cdot 2^{n-1}}}{j_{k \cdot 2^n} - 2x^{k \cdot 2^{n-1}}},$$

where $g_n = g_n(1/\sqrt{x})$ and $c_n = c_n(x)$.

Replacing x with $1/\sqrt{x}$ in B, and then multiplying the numerator and denominator with $x^{(4k-1)/2}$, yield

$$B = \frac{f_k}{l_{2k} - 2} + \frac{x}{D^2} \left(\frac{1}{f_{2k}} + \frac{1}{f_{4k}} + \frac{f_{4k-1}}{f_{4k}} + \frac{1 - D}{2\sqrt{x}} \right)$$

$$= \frac{x^k \left[x^{(k-1)/2} f_k \right]}{x^{2k/2} l_{2k} - 2x^k} + \frac{x}{D^2} \left[\frac{x^k}{x^{(2k-1)/2} f_{2k}} + \frac{x^{(4k-1)/2}}{x^{(4k-1)/2} f_{4k}} + \frac{\sqrt{x} \left[x^{(4k-2)/2} f_{4k-1} \right]}{x^{(4k-1)/2} f_{4k}} + \frac{1 - D}{2\sqrt{x}} \right];$$

$$\text{RHS} = \frac{x^k J_k}{j_{2k} - 2x^k} + \frac{1}{D^2} \left[\frac{x^{k+1}}{J_{2k}} + \frac{x^{(4k+1)/2}}{J_{4k}} + \frac{x^{3/2} J_{4k-1}}{J_{4k}} + \frac{(1 - D)\sqrt{x}}{2} \right],$$

where $g_n = g_n(1/\sqrt{x})$ and $c_n = c_n(x)$.

By combining the two sides, we get the Jacobsthal version of the formula:

$$\sum_{n=1}^{\infty} \frac{x^{k \cdot 2^{n-2}} J_{k \cdot 2^{n-1}}}{j_{k \cdot 2^n} - 2x^{k \cdot 2^{n-1}}} = \frac{x^{(2k-1)/2} J_k}{j_{2k} - 2x^k} + \frac{1}{D^2} \left[\frac{x^{(2k+1)/2}}{J_{2k}} + \frac{x^{2k}}{J_{4k}} + \frac{x J_{4k-1}}{J_{4k}} + \frac{1 - D}{2} \right]. \tag{4.2}$$

This implies

$$\sum_{n=1}^{\infty} \frac{F_{k \cdot 2^{n-1}}}{L_{k \cdot 2^n} - 2} = \frac{F_k}{L_{2k} - 2} + \frac{1}{5} \left(\frac{1}{F_{2k}} + \frac{1}{F_{4k}} + \frac{F_{4k-1}}{F_{4k}} + \beta \right).$$

It then follows that [9, 10]

$$\sum_{n=1}^{\infty} \frac{F_{2^{n-1}}}{L_{2^n} - 2} = \frac{3}{2} - \frac{\sqrt{5}}{10}; \qquad \frac{F_{3 \cdot 2^{n-1}}}{L_{3 \cdot 2^n} - 2} = \frac{3}{8} - \frac{\sqrt{5}}{10},$$

as obtained earlier.

4.3. Jacobsthal Version of Formula (2.7).

Proof. We have
$$A = \frac{f_{k \cdot 2^{n-1}}}{l_{k \cdot 2^n} + 1}$$
 and $B = \frac{f_k}{l_{2k} + 1} + \frac{f_{2k} - f_{4k}}{l_{4k} + 1} + \frac{1}{\Delta}$.

Replacing x with $1/\sqrt{x}$ in A, and then multiplying the numerator and denominator with $x^{k \cdot 2^{n-1}}$, we get

$$A = \frac{x^{(k \cdot 2^{n-1} + 1)/2} \left[x^{(k \cdot 2^{n-1} - 1)/2} f_{k \cdot 2^{n-1}} \right]}{x^{(k \cdot 2^n)/2} l_{k \cdot 2^n} + x^{k \cdot 2^{n-1}}}$$

$$= \frac{x^{(k \cdot 2^{n-1} + 1)/2} J_{k \cdot 2^{n-1}}}{j_{k \cdot 2^n} + x^{k \cdot 2^{n-1}}};$$

$$\text{LHS} = \sum_{n=1}^{\infty} \frac{x^{(k \cdot 2^{n-1} + 1)/2} J_{k \cdot 2^{n-1}}}{j_{k \cdot 2^n} + x^{k \cdot 2^{n-1}}},$$

where $g_n = g_n(1/\sqrt{x})$ and $c_n = c_n(x)$.

Now, replace x with $1/\sqrt{x}$ in B, and then multiply the numerator and denominator with x^{2k} . This yields

$$B = \frac{x^{(k+1)/2} \left[x^{(k-1)/2} f_k \right]}{x^{2k/2} l_{2k} + x^k} + \frac{x^{(2k+1)/2} \left[x^{(2k-1)/2} f_{2k} \right] - x^{1/2} \left[x^{(4k-1)/2} f_{4k} \right]}{x^{4k/2} l_{4k} + x^{2k}} + \frac{\sqrt{x}}{D};$$

$$RHS = \frac{\sqrt{x}}{D} + \frac{x^{(k+1)/2} J_k}{j_{2k} + x^k} + \frac{x^{(2k+1)/2} J_{2k} - \sqrt{x} J_{4k}}{j_{4k} + x^{2k}} + \frac{\sqrt{x}}{D},$$

where $g_n = g_n(1/\sqrt{x})$ and $c_n = c_n(x)$.

Equating the two sides yields the Jacobsthal version of the formula:

$$\sum_{n=1}^{\infty} \frac{x^{k \cdot 2^{n-2}} J_{k \cdot 2^{n-1}}}{j_{k \cdot 2^n} + x^{k \cdot 2^{n-1}}} = \frac{x^{k/2} J_k}{j_{2k} + x^k} + \frac{x^k J_{2k} - J_{4k}}{j_{4k} + x^{2k}} + \frac{1}{D}.$$
 (4.3)

It follows from equation (4.3) that

$$\sum_{n=1}^{\infty} \frac{F_{k \cdot 2^{n-1}}}{L_{k \cdot 2^n} + 1} = \frac{F_k}{L_{2k} + 1} + \frac{F_{2k} - F_{4k}}{L_{4k} + 1} + \frac{\sqrt{5}}{5}.$$

In particular, we then have [3, 8]

$$\sum_{n=1}^{\infty} \frac{F_{2^{n-1}}}{L_{2^n} + 1} = \frac{\sqrt{5}}{5}; \qquad \sum_{n=1}^{\infty} \frac{F_{3 \cdot 2^{n-1}}}{L_{3 \cdot 2^n} + 1} = -\frac{6}{19} + \frac{\sqrt{5}}{5},$$

as found earlier.

Finally, we present the Jacobsthal versions of formulas (2.3) and (2.6); in the interest of brevity, we omit their proofs:

$$\sum_{k=1}^{\infty} \frac{x^{k \cdot 2^{n-1}} J_k}{J_{k \cdot 2^n}} = x^{k/2} + \frac{x^k J_k}{J_{2k}} + \frac{x^k J_k}{J_{4k}} + \frac{x^{2k} J_{3k}}{J_{4k}} + \frac{(1-D)^k}{2^k}; \tag{4.4}$$

$$\sum_{n=1}^{\infty} \frac{x^{k \cdot 2^{n-2}} J_{k \cdot 2^{n-1}}}{j_{k \cdot 2^n} - 2x^{k \cdot 2^{n-1}}} = \frac{J_k}{j_{2k} - 2x^k} + \frac{1}{D^2 J_k} \left[\frac{x^k J_k}{J_{2k}} + \frac{x^{2k} J_k}{J_{4k}} + \frac{x^k J_{3k}}{J_{4k}} + \frac{(1-D)^k}{2^k} \right], (4.5)$$

respectively, where k is odd.

They yield

$$\sum_{n=1}^{\infty} \frac{F_k}{F_{k \cdot 2^n}} = 1 + \frac{F_k}{F_{2k}} + \frac{F_k}{F_{4k}} + \frac{F_{3k}}{F_{4k}} + \beta^k;$$

$$\sum_{n=1}^{\infty} \frac{F_{k \cdot 2^{n-1}}}{L_{k \cdot 2^n} - 2} = \frac{F_k}{L_{2k} - 2} + \frac{1}{5F_k} \left(\frac{F_k}{F_{2k}} + \frac{F_k}{F_{4k}} + \frac{F_{3k}}{F_{4k}} + \beta^k \right),$$

respectively, where k is odd.

It then follows that

$$\sum_{n=0}^{\infty} \frac{1}{F_{2^n}} = \frac{7}{2} - \frac{\sqrt{5}}{2} [2, 6]; \qquad \sum_{n=0}^{\infty} \frac{1}{F_{3 \cdot 2^n}} = \frac{7}{4} - \frac{\sqrt{5}}{2};$$

$$\sum_{n=1}^{\infty} \frac{F_{2^{n-1}}}{L_{2^n} - 2} = \frac{3}{2} - \frac{\sqrt{5}}{10} [9, 10]; \qquad \sum_{n=1}^{\infty} \frac{F_{3 \cdot 2^{n-1}}}{L_{3 \cdot 2^n} - 2} = \frac{3}{8} - \frac{\sqrt{5}}{10};$$

as found earlier.

5. Acknowledgment

The author thanks Zhenguang Gao and the reviewer for their careful reading of the article and for encouraging words.

References

- [1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407–420.
- [2] I. J. Good, A reciprocal series of Fibonacci numbers, The Fibonacci Quarterly, 12.4 (1974), 346.
- [3] T. Herring et al., Solution to Problem B-1148, The Fibonacci Quarterly, 53.2 (2015), 183-184.
- [4] A. F. Horadam, Jacobsthal representation polynomials, The Fibonacci Quarterly, 35.2 (1997), 137–148.
- [5] T. Koshy, Polynomial extensions of the Lucas and Ginsburg identities revisited, The Fibonacci Quarterly, 55.2 (2017), 147–151
- [6] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume I, Second Edition, Wiley, Hoboken, New Jersey, 2018.
- [7] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, New Jersey, 2019.
- [8] H. Ohtsuka, *Problem B-1148*, The Fibonacci Quarterly, **52.2** (2014), 179.
- [9] H. Ohtsuka, *Problem B-1166*, The Fibonacci Quarterly, **53.2** (2015), 180.
- [10] J. Seibert, Solution to Problem B-1166, The Fibonacci Quarterly, 54.2 (2016), 170–171.

MSC2020: Primary 11B39, 11C08

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701, USA *Email address*: tkoshy@emeriti.framingham.edu