INFINITE SUMS INVOLVING EXTENDED GIBONACCI POLYNOMIALS
REVISITED

THOMAS KOSHY

ABSTRACT. We explore two infinite sums involving gibonacci polynomials and their numeric
versions, and then extract their Pell and Jacobsthal counterparts.

1. INTRODUCTION

Extended gibonacci polynomials z,(x) are defined by the recurrence z,12(z) = a(z)zp4+1(x)+
b(x)zn(x), where z is a positive integer variable; a(x), b(x), zo(z), and zi(x) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = z and b(z) = 1. When zp(x) = 0 and z1(x) = 1, z,(z) = fu(z), the
nth Fibonacci polynomial; and when zy(x) = 2 and z1(z) = z, z,(x) = l,(x), the nth Lucas
polynomial. They can also be defined by Binet-like formulas. So, f,(1) = F,,, the nth Fibonacci
number; and [,,(1) = Ly, the nth Lucas number [1, 3, 4].

Pell polynomials py(x) and Pell-Lucas polynomials g, (x) are defined by p,(z) = f,(2z) and
qn(z) = 1,(2x), respectively. In particular, the Pell numbers P, and Pell-Lucas numbers Q,
are given by P, = p,(1) = fn(2) and 2Q,, = ¢,(1) = [,,(2), respectively [4].

Suppose a(x) = 1 and b(x) = x. When zo(z) = 0 and z1(z) = 1, z,(x) = Jp(z), the nth
Jacobsthal polynomial; and when zo(x) = 2 and 21(z) = 1, z,(x) = jn(z), the nth Jacobsthal-
Lucas polynomial [2, 4]. Correspondingly, J, = J,(2) and j, = j,(2) are the nth Jacobsthal
and Jacobsthal-Lucas numbers, respectively. So, J,(1) = F,, and j,(1) = L.

Gibonacci and Jacobsthal polynomials are linked by the relationships
Jn(l‘) = x(n_l)/an(l/\/E) and ]n(x) = xn/an(l/\/E) [4]

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(x). In addition, we let g, = f,, or I,
and ¢, = Jp(x) or jp(x), A=vVa2+4, D=+4r+1, E=vVz?2+1, 2a(x) =2+ A, 28(x) =
r—A, a=a(l), 8(1)=0,v(x) =x+E, §(z) =z — FE, and § = 6(1). It follows by the Binet-

k l
like formulas [4] that lim Gtk _ o (x), lim St _— (a:)’ and lim -2 — oF(x)A.
m—0o  gm, m—oo [, A m—oo  f,

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following fun-
damental properties [4]:

a) f2n - fnln; b) lZn = l% - 2(_1)71’

c) lop = AQf?L +2(-1)™ d) fatk + fa—k = feln, where k is odd;

e) lntk + ln—r = lkln, where k is even.
Properties (b) and (c) imply that lp» =12, , — 2 and lpn = A?f2,_, + 2, respectively, where
n > 2.

2. INFINITE GIBONACCI SUMS

With this background, we begin our explorations with the counterpart of Lemma 1 in [5],
where k has even parity.
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Lemma 2.1. Let k be an even positive integer and A = /z2 + 4. Then,
l l l Lyp—
=2+ 2+ 2+ AR (), (2.1)

= !

So_b b

= Jr fe o foe o fae o fak
Proof. With m > 2 and k even, it follows by identity (e) that

2
.on

lpom_o+1y = l[k.2m71+(k,2m71_2)] + l[k,gmfl_(k,Qm—l_Qﬂ

— lk2m—1_2lk2m—1

Using this result, identity (e), and recursion [4], we will first confirm that

— fron ﬁ + E + E T fak o Frogm (2.2)

i lo o o la lag—1  lgom_o
n=0

where m > 2.

To realize this goal, let A,, denote the LHS of this equation and B, its RHS. Using property
(e), we have

lpom-1_9  lpam_o
Bm = Bma Jram—1 fram
e L
Jrom Jrom
_ lgomatly lgomoo
fram fram
Jrom
= A, — A1

With recursion, this yields
Am_Bm = Am—l_Bm—lz"':AQ_BQ

[ l l l l [ lag— laj—
:(2+%+ﬁ_K2+2+2+%v_%q
e Joe o fak e foe o Jae o Jak fak
= 0.
. : In A 2 .
Thus, A,, = By,, confirming formula (2.2). Because lim = —-—~ = AB*(x), the given
n—% foya  o(x)
result follows from equation (2.2), as desired. O
It follows from equation (2.1) that
— I lo o 1o s 2 — I lo lo 1o lia 2
= 24242400 A ) = 2424 2+ LA ).
2 T RTERTRTR MW LT S Rttt MW

Consequently, we have

S L5 V5 136
 Fpnr 2 ’ i 2 20

The following lemma is an alternate version of Lemma 2.1. Both give the same formula
when k = 2.

NOVEMBER 2022 303



THE FIBONACCI QUARTERLY

Lemma 2.2. Let k be an even positive integer and A = /x2 + 4. Then,
lk U lp | sk k
= — 4+ — + — — AB%(z).
Z fk on f2k Jae  fak (=)

Proof. With m > 2 and k even, it follows by identity (e) that

lk:(mel) + lk

lk(2m*1—1)lk~2m*1 .

Urom=1 4 p@m—1_1)] + {[gam—1_g@m-1_1)

With this result, identity (a), and recursion [4], we will now establish that

k lk Iy I3
= SRR .
Z fk on f2k far  far

where m > 2. Again, we let A,, be the LHS of this equation and B,, its RHS. Then,

lk(2'm_1)

Jrom

lk(27n71_1) _ lk(27n_1)

B = Bm1 = Sram—1 fram
_ hrorplpomr lyemoy
B Srom Jram
I R e )
B Jr2m Jram
 from
A, — A .
With recursion, this yields
An—B,n = Apn-1—Bm-1=---=A45— By

(e b (b
B (fk+f2k+f4k) [(fk fzkJr

= 0.

Thus, A,, = B, confirming formula (2.4).

. I A
Because lim = —
m—00 fr, 4k « (:C)

It follows from Lemma 2.2 that

bbb b aa Sk
wa = PR R AR 2 G

They yield

respectively, as obtained earlier.

Ik

Iy

—+
f4k

ly

fa

3
2

I3k

far

ls

fs

V5

R

>_

ly

f16

I3

|

f4k

l12

+ o+ =

f16

(2.3)

(2.4)

= AB¥(z), equation (2.4) yields the given result, as desired.

O

AB(z).

With Lemma 2.1 at our disposal, we now establish the counterpart of Theorem 1 in [5] for

k with even parity.
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Theorem 2.3. Let k be an even positive integer and A = \/x2 + 4. Then,

Jean—t & i 11 fuae AB(x)
Zl i [f% T T fude L | (2:5)

Proof. With property (c), Lemma 2.1, and m > 3, we have

Sron-1 Jron—1
sz—z - z%—z Zz

k2n—2

pon — 2 lop — 2

foant  fk 1 1 1
szzn_g Ty -2 A2fk+A2;f.

¢ Jhan
11 1 o ApB?
I +[++f4k2 5(1‘)]’
log, — 2 Jor  fak o Jfarle ly
as desired. 0O
It follows from equation (2.5) that
n 11 1 Ap?
Z fo _ +[++6_ 5(33)};
lont1 —2 ly—2 o fs o fsle la
Z forr 4 n i [1 1 N ha A»BQ(@]
lont2 — 2 ls — 2 fs  fie Sl la '
They yield
y o1V Fyir 3 _ V5
— Lont1 —2 2 10’ Lont2 —2 10 10’
respectively.

An Alternate Version. Using Lemma 2.2, we can rewrite equation (2.5) in an alternate way:
Z foon o f 1 3 1

e L 1 fa ﬁ’“(w)}
B * [f2k+f4k+f4k:lk Al |

(2.6)

This implies

i Fk,2n71 o Fk +1 i—i-i-i- L3k _ \/gﬁk
o Lk.gn -2 Lgk -2 5 ng F4k F4kLk Lk '

It then follows that
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i& _ L VA By 3 V5
“ Lyn+1 — 2 2 0’ Lont2 —2 10 10’

as we found before.
Finally, we explore the counterpart of Theorem 2 in [5] with & even.

Theorem 2.4. Let k be an even positive integer and A = /22 + 4. Then,

Jreon—1 e — for
- 2.7
Zz“nﬂ 12k+1+A (2.7)

Proof. With m > 1 and recursion [4], we will first confirm that

Z lfk on-1 Jk = fok n fram (2.8)
pon +1 log+1 0 lpom +1
As before, let A,, = LHS and B,, = RHS. Using properties (a) and (b), we get
B, B, , — Jeom  fram-o
lpom +1 lpom-1+1

_ Jrkom frome1 (Gegm1 — 1)

C hpam 1 (lgmet +1) (lgmr — 1)

_ Jrkom from = froma

N lp.om + 1 l22m L —1

_ Jrkem from = froma

© lpam + 1 lpom + 1

 Jram—

N lp.om + 1

= An— Am_1.

Recursively, this yields
Am_Bm = Am—l_Bm—lz"':Al_Bl
e <fk —for | fok )

+
lop, + 1 lo +1

lop +1
= 0.
Thus, A,, = B,,, as predicted.
Because lim l—n = A, equation (2.7) follows from equation (2.8), as desired. O
n—oo n
In particular Theorem 2.4 yields
Z fe _ p f4+7; Z forr Sz fs 1
12n+1 +1 Iy +1 A lgn+2 +1 ls+1 A
It then follows that
o
Fon 1 5 Fon 3 5
= _,+£; Z 2l _,+£,
Lon+1 +1 4 ) L2n+2 +1 8 )
n=1
respectively.

Next, we explore the Pell implications of formulas (2.1), (2.3), (2.5), (2.6), and (2.7).
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3. PELL VERSIONS

Because b, (x) = gn(2), it follows from equations (2.1), (2.3), (2.5), (2.6), and (2.7) that

o

Z a2 — q72+£+q72+Q4k_2 —2E(52(1‘);

n—o Pk-2" Pk P2k D4k Pk

(o]

oot o Oy Ok Gk B Rk (a);

— Dk P2k Pak D4k
o Dpant _ b 1 <1 1 n (J4k2> (),
= Qron — 2 Gk —2  AE? \por  pax  Parge 2Eqy’
N L R 1 < L1 g > ()
= Qron — 2 @k —2  AE? \pa Pk paar) 2Eq;’
(o)

Pron-t  _ Ppr—p2k 1
= Qran + 1 @r+1  2F

respectively, where k is an even positive integer. Consequently, we have

) 2

Z 1 — i+i+i+Q4k—2 @

£ Pygn P. ' Py | Pu | 3Py 3

o0

ZQk — %4_%_'_%_’_%_\/55]“;

= Pran Py Py Py Pag
i Ppgn-t Py N 1( 1 N 1 N Qu—2 V26%)
= Qpan — 1 Qa—1 4\ Py, Pu, 3Py 6 )’

f: Pogpn R 11 1 Qu V2
— Qpon — 1 Qox —1 4\ Py Py PuQr 2Qr )’

n=1
i Peonr B — Poy V2
it QQk.Qn +1 2Q2k +1 4’

respectively, where k is an even positive integer.

4. JACOBSTHAL CONSEQUENCES

Using the gibonacci-Jacobsthal relationships, we now explore the Jacobsthal implications
of formulas (2.1), (2.5), and (2.7). In each case, for clarity and convenience, we let A denote
the fractional expression on the left side and B the corresponding expression on the right side,
and LHS and RHS those of the Jacobsthal formula to be found. In the interest of brevity, we
omit the Jacobsthal implications of formulas (2.3) and (2.6).

4.1. Jacobsthal Version of Formula (2.1).

la la la la  lag—2 2
Proof. We have A = and B= —+4+ —+ — + — ApB%(x).
f Jroan Je  foe o fae o fa (@)
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Replacing x with 1/4/x in A, and then multiplying the numerator and denominator with

a?(k'2n_1)/2, we get

p(k2"=3)/2 (332/212)
x(an_l)/2fk2n
x(k-2n73)/2j2 .

Jp.on ’
(k-2"—3)/2 ;
xz J2
LHS = _,
TLZ:() Jk.2n

where g, = gn(1//) and ¢, = ¢, (z).

Next, we replace z with 1/{/x in B, and then multiply the numerator and denominator
with z(#~1/2 This gives

M2
g o b, b, b lws DOL-DPVr

fr f2k Jar  fak 422
B k= 3)/2( 2/2l2) x%*3)/2(x2/2l2) x(4k*3)/2(x2/2l2)
- x(k—l)/ka 33(2k_1)/2f2k $(4k_1)/2f4k
. \/E[x(4k_2)/2l4k_g] - D(l—D)z\/E‘
x(k=1)/2f,, 42 ’
RHS — Jl(k_3)/2j2 N $(2k_3)/2j2 N (4k: 3)/ ) fJ4k L D(l —D)2\/5
Jk Jog, Juk Jag 42 ’

where g, = gn(1/v/x) and ¢, = ¢, ().
Equating the two sides gives the desired Jacobsthal version:

n—1_1 . — . —1 . —1 y
L2 :U(k /24, ghlj, g2k 1]2+x]4k—1 D(1 - D)?

+ + -
nz_% Jp.on Jk Jok Jak Jak 4z

This implies

BRI B S S N Y.
n—0 F2n+1 2 2 ’ n—=0 F2n+2 2 2 ’
as obtained earlier.
4.2. Jacobsthal Version of Formula (2.5).
fran fr 1 [ 1 1 | fu—e ABx)
Proof. We have A = —*— and B = — | — 4+ — + — )
/ lgon — 2 lop — 2 for  far o farlo la
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Replacing x with 1//x in A, and then multiplying the numerator and denominator with
a?(k'2n)/2, we get

\/E [x(k'Q"’l—l)ﬂfk.Qn—l}
[ B2/ 20 on | — 200277
Vady.gn-1

jk on — 2zk2" 7

LHS = Z VETkgns

DWW

where g, = g,(1/v/x) and ¢, = ¢, ().
Now, replace x with 1/y/z in B, and then multiply the numerator and denominator with
zW+1/2 This gives

fk i 1 1 l4k_2 _ D(l — D)2
lop, — 2

B:

—+—+

for  fa o faklo da\/xly

B 2(k+1)/2 [w(kfl)/ka] " 2(2k=1)/2 (Ak=1)/2
22k/2]y, — 2k D2 2 @k=1)/2 £, + g(4k=1)/2 ¢,

eV [2 Py g ] D -D)? |
sOR=D/2 £, (2221, 1/z (22/21y)

+

ﬁ

— L+D/2 7, N (2k=1)/2 N (4k=1)/2 :Efj4k | D(1 - D)?
Jok —2ak  D? Jor Ja, Jakj2 4v/x o

where g, = g,(1/y/x) and ¢, = ¢, (z).
By combining the two sides, we get the Jacobsthal version of the formula:

i Jpon—1 B k2 g, T {:pk_l N x2k-1 N Tjag—o D1 — D)Q]
ne1 Jkan — 2zk2" Jok — 2a¥ Jok; Jak Jargo 4x99 '

This implies

o0
Fion F 1( 1 1 Ly 532
Zmli 1 7+7+4k2_\[5 .
“Lpon —2 Loy, —2 5\ Fy  Fi  3Fy 3

In particular, we then have

i FQn . 1 é F2n+1 . i é
“Lynr—2 2107 Lynsz—2 10 10’
as obtained earher.
4.3. Jacobsthal Version of Formula (2.7).
Jran-1 fe—fa |1
P We have A = —*—— and B=—"—""+4 —.
roof. e have P an — + A
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First, replace  with 1/y/x in A, and then multiply the numerator and denominator with
22" We then get

pR27141) /2 [x(k~2”*1—1)/2fk_2n71}

A = [aj(kgn)/glen] +:Ek.2n—1
_ B2 )
N

on—1
LHS - oo x(k 2 +1)/2Jk~2”*1 7

: on—1
=1 Jk2n + zk2"

where g, = g,(1/v/x) and ¢, = ¢, ().
Next, replace 2 with 1/y/x in B, and then multiply the numerator and denominator with
zF. This yields
g = e fa VT
lop +1 D
p(k+1)/2 [x(k—l)/ka] T [x(Qk—l)/2f2k] s @
(22/219;) + zk D’
x(k+1)/2Jk _ ﬁJ2k @
Jok + xk D’
where g, = g,(1/y/x) and ¢, = ¢, (z).
By equating the two sides, we get the Jacobsthal version of the formula:

n—2
N A B e S |

g + 2T o tak D

RHS =

In particular, this yields

o0

Z Fion—1  Fy— Fop N V5
n=1

Lipon +1 N Lop +1 5
It then follows that

[o¢] (o)

Fon 1 5 Fon 3 5
- S L) s fen 3, V5
ol L2n+1+1 4 5 ot L2n+2+1 8 5

as found earlier.
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