SUMS INVOLVING GIBONACCI POLYNOMIALS

THOMAS KOSHY

ABSTRACT. We explore sums involving gibonacci polynomials, and deduce the Pell versions
for two of them.

1. INTRODUCTION

FEzxtended gibonacci polynomials z,(x) are defined by the recurrence z,12(x) = a(z)znp+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), zo(z), and z;(z) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = x and b(z) = 1. When zp(z) = 0 and z1(x) = 1, z,(z) = fan(x), the
nth Fibonacci polynomial; and when zo(z) = 2 and z1(x) = z, z,(x) = l,(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas. Clearly, f,(1) = F,, the nth
Fibonacci number; and 1,,(1) = Ly, the nth Lucas number [1, 3].

Pell polynomials p,(x) and Pell-Lucas polynomials gy (z) are defined by p,(z) = f,(2z) and
qn(z) = 1,(2x), respectively [3].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, Will mean z,(x). In addition, we let g, = f,, or

ln, by = pp OF qn, A =22+ 4, and E = Va2 +
It follows by the Binet-like formulas that lim gnj = of (), where 20(z) = 2 + A.

n—oo gTL

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following prop-
erties [3]:

falg, if k is odd;
n+k = Jn— i 1
Jntk — Jn—k { filn, otherwise; Y
— |l if k£ is odd,; (2)
ntk —in—k = A2 fk:fm otherwise;
12— A2 = ?

In+k9n—k — 972L

{(_1)n+k+1f’§7 if g = fu:

(-1)"*kA2f2 otherwise.

[Note: Identity (2) gives the correct version of Exercise 40 on page 57 in [3].]
Using the gibonacci recurrence and identity (4), we can establish that

{(—1>”f4, i gy = fos

~1)"t1A2fy otherwise;

(
{(_1)n+1f37 if gn = fn;
(

~1)"A%f3, otherwise.

Identities (5) and (6) with g, = f,, and z = 1 appear in [2, 10].

In+29n—-3 — In+19n—2 =

In+29n—2 — Gn+19n—1
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It also follows from identity (4) that [3, 4]
Fat2fiifami Sz = fo — (F1)" (2% = 1) f7 — 2®.
This is the polynomial version of the Gelin-Cesaro identity [4, 8]
FrioFni1Fy 1 Fpy o =F}—1.
The Lucas counterpart of identity (7) is [3, 4]
Lnsolnsiln1ln_o =12 + (-1)"(2® — 1)A%12 — A2,

This implies
Lypt2Lni1Ln—1Ln—2 = L;, — 25.

These properties play a pivotal role in our discourse.

2. GIBONACCI POLYNOMIAL SUMS

With the above background, we begin our explorations with three lemmas.

Lemma 1. Let g, = f, orl,, and k be a positive integer. Then,

S () - g
ki1 InIn—k In+kIn —1 Gk+r3r .
E>1

Proof. Using recursion [3], we will first establish that

m

D ) D e
nekt1 InIn—k In+kGn — lngrrgT — lgm—l—rngrr k
k>1

To this end, we let A,, = LHS and B,, = RHS. Then,

B B . f:( 1 - 1 >

p— Im—14+r9m—1+r—k Im+rGm+r—k

B 1 1
ImIm—k Im+k9m
= A, —An_1.
Recursively, this yields
Am - Bm = Amfl - Bmfl == Ak-‘,—l - Bk+1
k k
1 1
B <gk+191 92k+1gk+1> (; Gk+rJr ; gk+r+lgr+1>

= 0.
Thus, A,, = B,,, as desired.

1
Because lim — = 0, the given result now follows.
m—0o0 gm
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Consequences: Lemma 1 has interesting consequences, depending on the value of g, and the
parity of k. First, notice that

ign-i-k_gn—k _ i( 1 1 >

In9n—k In+k9n

o1 IntkIndn—k it
k>1 k>1
k
1
= > : (10)
1 Jk+rgr

Case 1. Suppose g, = fn. If k is odd, then by equation (1), this yields

- l LA
k
L . (11)
n_zkﬂ fn+kfn7k ;fk+rf'r

k>1,o0dd

Consequently,
i v 11
—farifor 0 fs
On the other hand, if k is even, we get

Z B ; fk—H"fr. (12)

n=Fk+1 fn+kfnfn—k
k>2, even

Case 2. Suppose g, = l,,. If k is odd, then by equations (2) and (10), we get

—— anrklnfk —1 lk+rl7"
k>1, 0dd
otherwise, we get
o) k
A2 1
2 szzfn =2 (14)
nepi1 'mkintn—k =1 'ktrir
k>2, even
With identity (4), equations (11) and (13) yield
[e%S) k
Ik 1
= ; (15)
n;l 72L + (_1)nf]3 ; fk—l—rfr
k>1, 0dd
n=k+1 I3 - (_l)nAQfZ r=1 borly
k>1, 0dd
respectively.
Consequently, we have
= () ’ = Ly —5(-1)" 3
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With the sum = a(z) [4], formula (15) yields
n=0 f2” + 1
o0 x %) . o .
_r o R
;ﬁnﬂ ;ﬁnl—l nz::? PR e

x
This implies
i 1 3-V5
= Fy, -1 2
It follows from equations (12) and (14) that
- Ly, 5 - F, 5
By el D Y ey el 7S

respectively.
Using identity (4), we can rewrite equations (12) and (14) in a different way:

2R, fah | fafe
S who 111
4 l% + (—1)”A2l‘21n A2 l314 lyly )’
respectively.
Consequently, we have
1 1 > L, 5
Z = + ; Z 3 n = @
fn+2fnfn 2 fsfi  fufe = B - (C)nE, 6
1 /1 1 > F, 5
Zm%%z_AAMﬁWJ’ 2 s, T s

The next lemma explores an application of identity (5).
Lemma 2. Let g, = f, orl,. Then,

o
> nr <9n—3_9n+1> — H 992 9 (16)

— Gn—2  Gn+2 g 92 93 G4
Proof. Let R = RHS. We will first establish that

i(-m <9"3 - g”“) =R+ (-1)" (g”” _gmol g Im 9’”“) . Qan

3 gn—2 In+-2 Im—1 9m Im+1 Im+2

Clearly, the LHS is a telescoping sum. So, when m is odd, we get LHS = R — S5,,,, where
S, = gm—2  Gm-1 4 gm gm-‘rl;
Im—1 9m Im+1 Im+2
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otherwise, we get RHS = R + 5,,.
Combining the two cases, we get formula (17), as expected.

. 9n
Because lim
n=% gny1 o)
the given result, as desired. ([

, it follows that li_>m Sm = 0. Consequently, formula (17) yields
n oo

In particular, we have

Fn_g 6’ Ln—Q '

n=3 Fn+2 n=3 84

This lemma yields has a delightful byproduct.

Lemma 3. Let g, = fp orl,, and Sy, = o _9n + 9293 Then,

g1 g2 g3 g4

i # _ 7isf37 if gn = fn; (18)
% In+20n—2 ﬁsb otherwise.

Proof. We will establish this using identity (5) and Lemma 2.
Case 1. Let g, = fr. Then,

= 1 1 & Jn+2fn—3 — fnt1fn—2
- = _1)"
7;) fnt2fn—2 fa nz_;( ) frt2fn—2
1 - fn—3 fn+1>
= —_ —1 n —
f4 7;))( ) (fn—Q fn+2
_L(f_fh )
Ja\fi fo f3 [
1
= ——54,.
1 I3
Case 2. Let g, = l,,. Then,
- 1 1 - ln+2ln—3 - ln+1ln—2
P — o _1 n
= Intaln— A2fy ;:3( ) lngaln—2
1 - ln—3 ln+1>
= 1) —
A2fy nzzg( ) (ln—2 ln+o
_ 1 (b b bk
Y AN T P P
1
= g
Combining the two cases, we get the desired result. U

It follows from equation (18) that
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1 1 7
= ——S; —_— = —.
Z ”xQ f4 f3 7;3 F2 _ (_1)n 18
oo
1 1 7 1
éan—l+ZFn r1 18 nzgzg ”A%Q Az, s
oo
1 31 1 1 31
; L2 4+ 5(-1)" 252 Z Lgn +5 Z < L3, 1—5 252

The lemmas, coupled with identities (6) through (8), yield the next result.

Theorem 1.

E 1
Zf4 - DR R )

Proof. With identities (6) through (8) and the lemmas, we get
- ="
— fnr2fniifo1fo2

Jn+2fn—2 — far1fn-1
fSZ Jnt2fo1fn-1fn2

1 & 1 1
B ; <fn+1fn1 - fn+2fn2>

_ Lty 1 o _h L _fs
S Kf% f3>+f4(f1 f2+f3 f4>]
1

I
as desired. O

LHS

Using the identity 2 — A2 f2 = 4(-1)" [3], we can rewrite equation (17) in a different way:
= (-1)"A* 1

= - . 20
nZ;a I — (1) (22 — 1)AZ +8]i2 — (2 +4)A% + 16 f3f? (20)
It follows from equations (19) and (20) that [2, 5]
o~ (1" 1
- - 21
S oL o
S =" 1
= —— 22
nz:; L& —§(-1)"L2 — 9 450’ (22)

respectively.
Equation (21), coupled with the equation [4, 6, §]

1 35 5V5

F4—1 18 6
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yields
= 1 > 1 1
_nz:; d -1 +;F24n—1 T
o0 )
2 7 : —1+ZF41—1 - :;»Z_5\6/57
n—2 “2n—1 n—2 T'2n
respectively. It follows from these two equations that
i B SE V ) ! _ . 55
=Py, -1 18 127 =y, -1 12 °
Equation (22) implies
i 1 i 1 1
L5, +8L3, -9 L5, —8L3, —9 450

2.1. Lucas Versions. We now explore the Lucas version of Theorem 1 and its consequences.

Theorem 2.

> 1 = 29
e l% + (_1)n($2 — 1)A2l% — A2 Falalzly”
Proof. By equation (13) and Lemma 3, we have
i B
= Int1lna LI I3l
S (bbb
= Intaln—2 A2fs \li ly I3 1)’
respectively.
Using identities (6) and (8), we then get
i (-1)" _ 1 i Intaln—s = bnyiln—
— l% — (—1)n($2 — 1)A2l72l — Aix? A2f3 — Intalnt1ln—1ln—2
1 « 1 1
A% 7; <ln+1ln—1 - ln+2ln—2>
L (L AN (b bk
A% [\ Ll I3k AN2fa\ly Do 13 U
- 1
falalsly’

as desired.

In particular, we have

="
Li—25

oo
n=3

o o0
D I
— L3, —25 —~ Ly 1—25
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9252’
7
= —. 24
504 (24)
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Equation (24), coupled with the result [4, 7, 9]

IA_25 63 30
I —25 63 30

yields
P W} L _ 1 V5
L3, —25 18 60’ “— L3, 1 —25 24 60
With identity (3), we can rewrite equation (23) as

(1) 1

nz—:S A4f;% + (—l)nAQ[(.%’Q — I)AQ + Q]an — A2($4 + 322 + 1) _f4l4l3l2 '
This yields

5F4 4+ 2(-1)"F2 -5 252

n=3
3. PELL IMPLICATIONS

The Pell versions of sums involving gibonacci polynomials can be obtained using the rela-
tionship b, (x) = gn(2z). For example, those of equations (19) and (23) are:

= (-1)" 1
%ﬁ—HWW—W%Mﬁ__m%
f: (-1)" 1
qp +4(-1)"(42? — 1)E%¢2 — 6422 E* P4q4q3q2’

n=3
respectively. In the interest of brevity, we omit the others.
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