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Abstract. We show how Catalan’s identity for the Fibonacci numbers can be leveraged to
construct a large family (with some eccentric members) of summation identities involving the
Fibonacci numbers. In the process, we provide a solution for a few problems that were posed
in the problem sections of The Fibonacci Quarterly.

1. Introduction

Many problems for solution in The Fibonacci Quarterly, where it is asked to evaluate a sum,
boil down to finding a way of rewriting the sum as a telescoping sum that, by its nature, is
easily evaluated. These type of problems are nothing new. Today’s versions just have more
complex summands than those of yesteryear; the simpler summands already having been
exhausted. To set the scene and showcase the principle, we start with a problem by Lucas
from about 150 years ago and provide some historical comments on Catalan’s identity. We
then take Catalan’s identity and leverage it to derive a theorem that allows one to generate a
host of Fibonacci summation identities.

2. Question 494

Édouard Lucas (1842–1891), in the June 1879 issue of the Belgian mathematical educational
journal Nouvelle Correspondance Mathématique (NCM), posed what might well be one of the
first problems on Fibonacci numbers and telescoping sums [7]. The NCM was founded in
1874 by Eugène Catalan (1814–1894) and Paul Mansion (1844–1919), with Catalan being the
editor-in-chief.

In “Question 494”, Lucas asked to find the sum of the infinite series
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The September 1880 issue of the NCM contained a solution by Mangon [8], a sub-lieutenant in
the artillery corps of the Belgian army. Mangon noted that the sum of squares in consecutive
denominators evaluates to 1, 1× 2, 2× 3, 3× 5, and so on. He recognized that these are the
product of the terms un−1 and un in Lamé’s sequence: 1, 2, 3, 5, 8, 13, . . . , that obey the law
of formation un = un−1 + un−2, starting with u1 = 1 and u2 = 2. Integrating the difference
equation, Mangon derives the closed-form expression
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and also points out that
unun−3 − un−1un−2 = (−1)n−1. (2.3)
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Thus, the sum of the first n terms in the infinite series is equal to
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. (2.4)

He then writes the fractions as differences, using (2.3) for the general term, and obtains the
telescoping sum
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Intermediate terms cancel, so that one is left with only the first and last term, and the sum
simplifies to

Sn = 1− un−2

un
=

un−1

un
. (2.6)

An application of (2.2) gives the limiting value and the answer to Lucas’ question as 2/(1+
√
5).1

In modern notation, recognizing that un = Fn+1, this can be condensed to
n∑

i=1
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=

n∑
i=1

(−1)i−1

FiFi+1
=

n∑
i=1

(
Fi−2

Fi
− Fi−1

Fi+1

)
=

F−1

F1
− Fn−1

Fn+1
=

Fn

Fn+1
,

with the desired limit, as Fn ∼ φn/
√
5, for large positive n, where φ = (1 +

√
5)/2 is the

golden ratio.

3. Armchair Comments

Enjoying a coffee in one’s easy chair, having the benefit of today’s knowledge of things
Fibonacci, it is tempting to go through Mangon’s proof and critique the finer points. However,
I find his proof is well laid out, progresses methodologically, meets with success, and reflects
the state of general Fibonacci knowledge at the time. I would say, bien fait! Around the
time that Lucas posed “Question 494”, the connection to Fibonacci, the Binet formula, and
other formulae we now take for granted were not common knowledge. In 1876, Lucas [5]
published his first article in the NCM on Lamé’s sequence, as the Fibonacci sequence was
known then. The notation ui, to denote terms of the sequence, is derived from a textbook
(1857) by Catalan [2, p. 86], used at the prestigious École Polytechnique. In 1877, Lucas [6]
published a lengthy, two-part article (totalling 120 pages) on the works of Leonard de Pise,
but that was in the Italian journal Bullettino di Bibliography. This would have only been
known in select academic circles. In the article, Lucas gives some properties of the Fibonacci
sequence, one being

F 2
1 + F 2

2 + · · ·+ F 2
n = FnFn+1, (3.1)

that he subsequently used as a cloak in “Question 494”.2

Catalan’s identity is named after Eugène Catalan, whom we have already mentioned as
cofounder of the NCM, and states that

F 2
n − Fn−dFn+d = (−1)n−dF 2

d , (3.2)

where n and d are arbitrary integers. We give Catalan’s identity in this particular form to
reflect that it relates a particular Fibonacci number to the Fibonacci numbers at a distance
of d apart. The identity is frequently referenced in the literature with the year 1879. This is

1The published solution contains a typographic error and gives 2/(1−
√
5) as the limiting value. An erratum

in the October 1880 issue of the NCM corrects this [8].
2It seems a time-honored practice for academics to take a new result that they have just discovered to dress

up an old problem and pose the outcome as a “new problem” for solution.
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only partly correct. Catalan’s identity first appeared in print in December 1886 as part of the
second instalment of Catalan’s collected works, entitled Mélanges Mathématiques, published
over three volumes of the Mémoires de la Société Royale des Sciences de Liège. Catalan retired
from the University of Liège in 1884 and was officially promoted to professor emeritus; he
regarded the Mélanges Mathématiques as his mathematical testament. The Mélanges consists
of 299 individual sections with a list of Catalan’s publications and a few errata at the end.
Most sections contain annotated reprints of articles that were previously published. However,
some of the later sections seem to be based on his private and unpublished research notes.
These notes are dated and annotated, but contain no reference to the material having been
published before. Section 189, entitled Sur la série de Lamé [3], is one of the latter. In
this section, one can find a theorem that is now known as Catalan’s identity, with a date,
presumably when Catalan wrote the note, given as October 1879.

Leonard Dickson (1874–1954), in his influential textbook History of the Theory of Numbers,
cites the above mentioned Mémoires as the source and a publication date of 1886 for Catalan’s
identity [4, p. 402]. Raymond Archibald (1875–1955), in a historic review of the Fibonacci
sequence in the Monthly, mentions that Catalan found the identity in 1879, also citing the
Mémoires as the source, but with a publication date for the latter as 1887 [1, pp. 236–237].
Perhaps, the tagline

“Discovered in October 1879, and not published until December 1886”

would be a more accurate description when mentioning the origins of Catalan’s identity.
It is clear that Mangon discovered identity (2.3) under his own steam, and could not have

been aware of Catalan’s identity. Could it have been that Mangon [or Lucas] inspired Catalan,
who as editor-in-chief of the NCM saw all correspondence, to write up his own research note
with a more general identity, that now bears his name? The timeline of events does not
preclude the possibility. Regardless, it shows that clearing one’s desk before retirement can
be beneficial to one’s legacy.

4. Problem H-832

The motivation to look closer into sums, whose evaluation boil down to telescoping sums,
comes from a well-crafted and visually pleasing problem for solution that Hideyuki Ohtsuka
posed in the Advanced Problem Section of the Fibonacci Quarterly [11]. In the November
2018 issue, he proposed Problem H-832 and asked to find closed-form expressions for the sums

n∑
k=0

F 3
rkLrk and

n∑
k=0

F 3
2Fk

F2Lk
, (4.1)

where n and r are nonnegative integers. A solution by Ohtsuka was published in the November
2020 issue, where he used Catalan’s identity to rewrite the summations as telescoping sums [12].
This made me wonder what type of problems can be constructed if one takes Catalan’s identity
as a point of departure.

5. Parametric Fibonacci Summation Identities

Let a and b be integers with the same parity, then we can write Catalan’s identity in the
form

Fb+aFb−a = F 2
b − F 2

a , (5.1)

in which one can recognize the “Ansatz” to a telescoping sum. As a first illustration, take a =
2k and b = 2k+2, so that the parity condition is satisfied, and sum both sides of (5.1) over k
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from zero to n to give

n∑
k=0

F4k+2F2 =

n∑
k=0

(
F 2
2(k+1) − F 2

2k

)
=

n+1∑
k=1

F 2
2k −

n∑
k=0

F 2
2k = F 2

2n+2 − F 2
0 . (5.2)

This shows a telescoping sum in action, and one sees that all elements cancel out, except
the last and first. Tidying up this example, using F2 = 1 and F0 = 0, and considering its
companion sum, obtained by taking a = 2k − 1 and b = 2k + 1, gives the twin set

n∑
k=0

F4k+2 = F 2
2n+2 and

n∑
k=0

F4k = F 2
2n+1 − 1. (5.3)

One can easily extend this procedure, introduce parameters, and derive a closed-form expres-
sion for a more general sum. In this case,

F2r ×
n∑

k=0

F4rk+2(r+c) = F 2
2r(n+1)+c − F 2

c , (5.4)

where r and c are arbitrary integers. The utility of introducing parameters is that, once the
final identity has been obtained, one can then select parameter values to obtain specific cases
that are visually more appealing or intriguing, such as

F2n ×
n∑

k=0

F4nk = F 2
(2n+1)n − F 2

n , (5.5)

where n, the upper limit of the summation, is also part of the summand’s index. Of course,
when one proposes to find a closed-form expression for a Fibonacci summation as a “problem
for solution”, one can also select the parameters to obfuscate the origins of the problem and
provide less handles for its solution. In particular, one should choose the parameter values
such that the corresponding sequence does not have an entry in the On-Line Encyclopedia of
Integer Sequences (OEIS) [10], where one can find references for a particular number sequence
and often closed-form expressions. This rules out the identities in (5.3); one can find the corre-
sponding number sequences as sequences A049684 and A058038 in the OEIS. The summation
in identity (5.5) does not (yet) have an entry in the OEIS.

A more versatile generalization can be obtained by letting a and b be consecutive elements
in a general sequence of integers, as we have done in the following theorem.

Theorem 5.1. Let {µn} be a sequence of integers that have the same parity. Then,
n∑

k=0

Fµk+1+µk
Fµk+1−µk

= F 2
µn+1

− F 2
µ0
. (5.6)

Proof. Take a = µk and b = µk+1 in (5.1) and sum both sides over the index k, where the
right-hand side simplifies as it is a telescoping sum. □

The identities in (5.3) can be obtained from Theorem 5.1 by taking µk = 2k and µk = 2k−1,
respectively. The general identity (5.4) by taking µk = 2rk + c, and the special case (5.5) by
taking µk = n(2k − 1).

Now onto some other interesting applications of Theorem 5.1. Taking µk = 2Fk and µk =
2Lk gives identities where the Fibonacci and Lucas numbers appear as indices of the Fibonacci
numbers:

n∑
k=0

F2Fk+2
F2Fk−1

= F 2
2Fn+1

and
n∑

k=0

F2Lk+2
F2Lk−1

= F 2
2Ln+1

− 9. (5.7)
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Many more such identities can be derived. Noting that the parity of the Fibonacci numbers,
starting with F0, is 0, 1, 1, 0, 1, 1, and so on, one sees that the Fibonacci numbers that are a
distance of three apart have the same parity. The same goes for the Lucas numbers. Taking
µk = F3k−1 and µk = L3k−1, and an application of Theorem 5.1 gives

n∑
k=0

F2F3k+1
F2F3k

= F 2
F3n+2

− 1 and

n∑
k=0

F2L3k+1
F2L3k

= F 2
L3n+2

− 1, (5.8)

where we have used that Fn−1 + Fn+2 = 2Fn+1 and Fn+2 − Fn−1 = 2Fn, for all n, in partic-
ular n = 3k, and the same holding for the Lucas numbers. This is still some way away from
solving Problem H-832, but we have some success in that the first Fibonacci identity in (5.8)
answers one of the questions in Problem B-1282, also posed by Ohtsuka [13].

Another play on parity along the same lines is obtained by taking µk = Fk−1FkFk+1 and
µk = Lk−1LkLk+1, creating two sequences where all numbers are even. This gives

n∑
k=0

F2FkF
2
k+1

F2F 2
kFk+1

= F 2
FnFn+1Fn+2

and
n∑

k=0

F2LkL
2
k+1

F2L2
kLk+1

= F 2
LnLn+1Ln+2

− 1. (5.9)

Of course, one can go completely overboard, take µk = 2FFFk
, or have even more levels of

depth, and derive the corresponding summation identities. However, that will show more
clearly the structure, which might give a clue as to how the identity is constructed, and is thus
less effective at bamboozling one’s audience.

Some of the more unusual summation identities that were promised in the abstract are
derived from Theorem 5.1 by the choice of µk = k(k−1), µk = 2k, and µk = k!. These choices
give

n∑
k=0

F2k2F2k = F 2
n(n+1), (5.10)

n−1∑
k=0

F3×2kF2k = F 2
2n + 1, (5.11)

and
n−1∑
k=1

F(k+2)×k!Fk×k! = F 2
n! + 1, (5.12)

respectively. Note that we derived the second and third summation, starting at the indices
k = 1 and k = 2, respectively, to satisfy the parity condition, and then manually extended
the range to start at k = 0 and k = 1, to improve their visual appearance. This manipulation
also converts the right-hand side from the difference of two factors, which is a pointer to a
telescopic sum, to the sum of two positive factors, obfuscating the underlying structure.

One can even throw other recurrent sequences into the mix. Consider the Tribonacci se-
quence, defined by the recursion Tn+3 = Tn+2+Tn+1+Tn, with initial conditions T0 = T1 = 0
and T2 = 1. Taking µk = T4k, using the property that Tribonacci numbers, a distance of four
apart, have the same parity, gives

n∑
k=0

F2T4k+3
F2(T4k+2+T4k+1) = F 2

T4n+4
, (5.13)

where we used Tn+4 + Tn = 2Tn+3 and Tn+4 − Tn = 2Tn+2 + 2Tn+1.
The fun does not end here. Catalan’s identity (3.2) also holds for the Fibonacci polyno-

mials Fn(x), defined by the recursion Fn+2(x) = xFn+1(x) + Fn(x), with initial conditions
F0(x) = 0 and F1(x) = 1. This implies that Theorem 5.1 can be generalized and remains valid
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when we replace the Fibonacci numbers in (5.6) by the Fibonacci polynomials. This, in one
stroke, generalizes all identities that we derived. One could thus ask to determine closed-form
expressions for

n∑
k=0

F4nk(x) and
n∑

k=0

P2Fk+2
P2Fk−1

, (5.14)

where Pn is the nth Pell number, defined by the recursion Pn+2 = 2Pn+1 + Pn, with initial
conditions P0 = 0 and P1 = 1. The answers, mutatis mutandis, can be found in (5.5) and (5.7).

6. Complicating Things

Normally, one does not earn brownie points in mathematics, or any other discipline, for that
matter, when one takes a simple identity and turns it into a more complex one. Constructing
and posing “problems for solution” in mathematical journals might just be the only exception.
So, let’s go for some brownie points. Taking r = 2 in Theorem A.1 in the Appendix gives

n∑
k=0

F 2
µk+1

Fµk+2+µk
Fµk+2−µk

= F 2
µn+1

F 2
µn+2

− F 2
µ0
F 2
µ1
, (6.1)

where {µn} is a sequence of integers, with the property that elements, a distance of two apart,
have the same parity. Taking µk = r(k − 1) in (6.1) satisfies the parity condition for all
integers r and gives the summand as F 2

rkF2rkF2r. Now use F2n = FnLn to give

F2r

n∑
k=0

F 3
rkLrk = F 2

rnF
2
r(n+1), (6.2)

and provides a closed-form expression for the first sum by Ohtsuka in (4.1). Taking µk = 2Fk−1

and µk = 2Lk−1, both obviously satisfying the parity condition for (6.1), gives

n∑
k=0

F 3
2Fk

F2Lk
= F 2

2Fn
F 2
2Fn+1

and
n∑

k=0

F 3
2Lk

F10Fk
= F 2

2Ln
F 2
2Ln+1

− 9, (6.3)

respectively, where we use Ln = Fn−1+Fn+1 and 5Fn = Ln+1+Ln−1. This provides a closed-
form expression for the second sum by Ohtsuka in (4.1) and gives the Lucas equivalent as a
bonus. To collect the last few brownie points, we take r = 3 in Theorem A.1. This gives

n∑
k=0

F 2
µk+1

F 2
µk+2

Fµk+r+µk
Fµk+r−µk

= F 2
µn+1

F 2
µn+2

F 2
µn+3

− F 2
µ0
F 2
µ1
F 2
µ2
, (6.4)

where {µn} is a sequence of integers, with the property that elements, a distance of three
apart, have the same parity. For µn = Fn−1, the parity condition is satisfied and gives

n∑
k=0

F 3
Fk
F 3
Fk+1

LFk
LFk+1

= F 2
Fn

F 2
Fn+1

F 2
Fn+2

, (6.5)

where we used Fn+3 + Fn = 2Fn+2, Fn+3 − Fn = 2Fn+1, and F2n = FnLn.
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7. Epilogue

Lucas’ “Question 494” and Mangon’s answer made it into Dickson’s History of the Theory
of Numbers [4, p. 402], albeit with the originally published and incorrect answer. One cannot
fault Dickson for not picking up the erratum. Just goes to show that one should always verify
a formula or result before usage. Lucas went on to shape the way we think about recurrent
sequences, was instrumental in attaching the name Fibonacci to the eponymous sequence, and
also made his mark in recreational mathematics. Mangon went on to become a lieutenant
and published a study on the efficacy of artillery fire a few years later [9]. Catalan’s NCM
was short lived, the journal saw its last issue in December 1880 and ceased publication, due
to lack of subscriptions. In 1881, Mansion and Neuberg filled the void left behind by the
disappearance of the NCM and started the journal Mathesis, with support from Catalan.
With the current article, Fibonacci aficionados that have an interest in solving or creating
Fibonacci summation problems have gained additional insights and a new tool in Theorem 5.1
and its generalization, Theorem A.1. Ohtsuka, I hope, will forgive my tongue-in-cheek article
and continue to provide the Fibonacci community with interesting and well-crafted “problems
for solution.”
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Appendix A. Telescoping Sums

Telescoping sums are normally based on the first-order difference of a function, where subse-
quent terms cancel each other, leaving only the initial and final terms. One can also construct
telescoping sums that are based on the difference of terms that are two apart, resulting in the
first two and last two terms being left. The same goes for taking terms three, four or those
further apart. An interesting variation, in the context of constructing problems for solution,
is obtained by taking g(n) = f(n+ 2)− f(n), multiplying both sides by f(n+ 1), resulting in
the telescoping sum

n∑
k=0

f(k+1)g(k) =
n∑

k=0

(f(k + 1)f(k + 2)− f(k)f(k + 1)) = f(n+1)f(n+2)−f(0)f(1), (A.1)

that leaves two components that each is the product of two consecutive terms. The natural
generalization, taking g(n) = f(n+ r)− f(n), where r is a positive integer, is given by

n∑
k=0

r−1∏
j=1

f(k + j)g(k) =

r∏
j=1

f(n+ j)−
r−1∏
j=0

f(j). (A.2)

This leads to the following generalization of Theorem 5.1 that does not require further proof.

Theorem A.1. Let {µn} be a sequence of integers, where µn and µn+r have the same parity,
and r is a positive integer. Then,

n∑
k=0

r−1∏
j=1

F 2
µk+j

Fµk+r+µk
Fµk+r−µk

=
r∏

j=1

F 2
µn+j

−
r−1∏
j=0

F 2
µj
, (A.3)

with the usual convention that an empty product evaluates to unity.

318 VOLUME 60, NUMBER 4



CATALAN’S IDENTITY

References

[1] R. C. Archibald, Undergraduate mathematics clubs, The American Mathematical Monthly, 25.5 (1918),
226–238.
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