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Abstract. Let k ≥ 1 and g ≥ 2 be positive integers. Any positive integer N of the form

N = d1 . . . d1︸ ︷︷ ︸
m1 times

d2 . . . d2︸ ︷︷ ︸
m2 times

. . . dk . . . dk︸ ︷︷ ︸
mk times

(g),

where d1, . . . , dk ∈ {0, 1, . . . , g−1} with d1 ̸= 0, can be viewed as a concatenation of k repdigits
in base g. In this paper, we find all Fibonacci and Lucas numbers that are concatenations of
two repdigits in base g for 2 ≤ g ≤ 9.

1. Introduction

Let {Fn}n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, with initial values
F0 = 0 and F1 = 1 and let {Ln}n≥0 be the Lucas sequence defined by Ln+2 = Ln+1 + Ln,
where L0 = 2 and L1 = 1. If

(α, β) =

(
1 +

√
5

2
,
1−

√
5

2

)
is the pair of roots of the characteristic equation x2 − x − 1 = 0 of the Fibonacci and Lucas
numbers, then Binet’s formulas for their general terms are

Fn =
αn − βn

α− β
and Ln = αn + βn for n ≥ 0. (1.1)

It can be seen that 1 < α < 2, −1 < β < 0, and αβ = −1. The following relations between the
nth Fibonacci number Fn, the nth Lucas number Ln, and α are well known

αn−2 < Fn < αn−1 and αn−1 ≤ Ln ≤ 2αn for n ≥ 0. (1.2)

Notice that there are many papers in the literature that solve Diophantine equations related to
Fibonacci numbers and Lucas numbers. For instance in 2011, Luca and Oyono [9] concluded
that there is no solution (m,n, s) to the Diophantine equation F s

m + F s
m+1 = Fn for integers

m ≥ 2, n ≥ 1, and s ≥ 3 by applying linear forms in logarithms. In 2013, Marques and the
fourth author [10] found all solutions (n, a, b, c) to the Diophantine equation Fn = 2a+3b+5c

and Ln = 2a + 3b + 5c for integers n, a, b, c with 0 ≤ max{a, b} ≤ c.
We recall that a positive integer R is called a base g-repdigit if all its digits are the same in

base g. That is, R is of the form

R =
d(gm − 1)

g − 1
= d . . . d︸ ︷︷ ︸

m times

(g)

for some positive integers d, m with 1 ≤ d ≤ g − 1, and m ≥ 1. When g = 10, we omit the
base and we say that R is a repdigit. The problem of searching for repdigits in the Fibonacci
and Lucas sequences has been studied by Luca. In [8], he determined the largest repdigits in
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the Fibonacci and Lucas sequences are F10 = 55 and L5 = 11. Given k ≥ 1, we say that N is
a concatenation of k repdigits in base g, if N can be written in the form

d1 . . . d1︸ ︷︷ ︸
m1 times

d2 . . . d2︸ ︷︷ ︸
m2 times

. . . dk . . . dk︸ ︷︷ ︸
mk times

(g).

In [1], the authors solved the problem of finding the Fibonacci numbers that are concatenations
of two repdigits. In [5], Ddamulira studied the problem of finding the Padovan numbers that
are concatenations of two repdigits. In [13], Rayaguru and Panda determined all balancing
numbers that are concatenations of two repdigits. Motivated by these works, in this study, we
address the following two Diophantine equations

Fn = d1 . . . d1︸ ︷︷ ︸
m1 times

d2 . . . d2︸ ︷︷ ︸
m2 times

(g) and Ln = d1 . . . d1︸ ︷︷ ︸
m1 times

d2 . . . d2︸ ︷︷ ︸
m2 times

(g), (1.3)

where d1,m1,m2 ≥ 1 and d1, d2 ∈ {0, 1, . . . , g − 1} with d1 ̸= d2. That is, we will determine
all Fibonacci or Lucas numbers that are concatenations of two repdigits in base g. The main
object of this study is to generalize the work of the authors of [1] and [12]. Here is the outline
of this paper. In Section 2, we will give some lemmas, and then we prove our main theorems
in Section 3.

2. Useful Tools

In this section, we gather the tools we need to prove Theorems 2 and 3. Let η be an algebraic
number of degree d, let a > 0 be the leading coefficient of its minimal polynomial over Z, and
let η = η(1), . . . , η(d) denote its conjugates. The logarithmic height of α is defined by

h(η) =
1

d

log |a|+
d∑

j=1

logmax
(
1,
∣∣∣η(j)∣∣∣)

 .

This height has the following basic properties. For η1, η2 algebraic numbers, and m ∈ Z, we
have

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2,

h(η1η
±
2 ) ≤ h(η1) + h(η2),

h(ηm1 ) = |m|h(η1).

Now, let L a real number field of degree dL, η1, . . . , ηs ∈ L and b1, . . . , bs ∈ Z \ {0}. Let
B ≥ max{|b1|, . . . , |bs|} and

Λ = ηb11 · · · ηbss − 1.

Let A1, . . . , As be real numbers with

Ai ≥ max{dLh(ηi), | log ηi|, 0.16}, i = 1, 2, . . . , s.

The first tool we need is the following result due to Matveev [11]. Here, we use the version of
Bugeaud, Mignotte, and Siksek [3, Theorem 9.4].

Theorem 1. Assume that Λ ̸= 0. Then,

log |Λ| > −1.4 · 30s+3 · s4.5 · d2L · (1 + log dL) · (1 + logB) ·A1 · · ·As.

Our second tool is a version of the reduction method of Baker and Davenport [2]. We use
a slight variant of the version given by Dujella and Pethő [6]. For a real number x, we write
∥x∥ for the distance from x to the nearest integer.
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Lemma 1. Let M be a positive integer, p/q be a convergent of the continued fraction expansion
of the irrational number τ such that q > 6M , and A, B, and µ be some real numbers with
A > 0 and B > 1. Furthermore, let

ε := ∥µq∥ −M · ∥τq∥ .

If ε > 0, then there is no solution to the inequality

0 < |uτ − v + µ| < AB−w (2.1)

in positive integers u, v, and w with

u ≤ M and w ≥ log(Aq/ε)

logB
.

We see that Lemma 1 cannot be applied when µ = 0 (because then ε < 0). For this case,
we use the following well known technical result from Diophantine approximation known as
Legendre’s criterion, which is our third tool. This comes from the theory of continued fractions
(see [7], pages 30 and 37).

Lemma 2. Let η be an irrational number.

(i) If n and m are positive integers such that∣∣∣η − n

m

∣∣∣ < 1

2m2
,

then n/m = pk/qk is a convergent of η.
(ii) Let M be a positive real number and p0/q0, p1/q1, . . . be all the convergents of the

continued fraction of η. Let N be the smallest positive integer such that qN > M . Put
a(M) := max{ak : k = 0, 1, . . . , N}. Then, the inequality∣∣∣η − n

m

∣∣∣ > 1

(a(M) + 2)m2

holds for all pairs (n,m) of integers with 0 < m < M .

3. Main Results

We use the method in [1] to prove our two results of this paper. Note that in the case g = 2,
we will just take into account d1 = 1 and d2 = 0 because of the assumption d1 ̸= d2 of (1.3).
Moreover, the case g = 10 is already studied in [1]. Thus, we only need to investigate what
happens with 2 ≤ g ≤ 9.

3.1. Fibonacci Numbers as Concatenations of Two g-repdigits. In this subsection, we
will prove the following result.

Theorem 2. The only Fibonacci numbers that are concatenations of two repdigits in base g
with 2 ≤ g ≤ 9 are

2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 377, 1597.
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Namely, we have

2 = F3 = 102,
3 = F4 = 103,
5 = F5 = 123 = 105,
8 = F6 = 1002 = 204 = 135 = 126 = 108,
13 = F7 = 314 = 235 = 216 = 167 = 158 = 149,
21 = F8 = 415 = 258 = 239 = 307,
34 = F9 = 1145 = 546 = 467 = 428 = 379,
55 = F10 = 678 = 619,
89 = F11 = 2256 = 1157,
144 = F12 = 4006 = 2208,
377 = F14 = 1112223,
1597 = F17 = 44417.

The immediate consequence of Theorem 2 is the following result.

Corollary 1. The largest Fibonacci number that can be representable as a concatenation of
two repdigits in base g when g ∈ {2, . . . , 9} is F17 = 1597. More precisely, we have

F17 = 44417.

We will prove our result under the assumption that n > 200; then we will finish using
a computer program for what happens for n ≤ 200. From (1.3), the first equation can be
rewritten like this

Fn = d1 . . . d1︸ ︷︷ ︸
m1 times

d2 . . . d2︸ ︷︷ ︸
m2 times

(g)

= d1 . . . d1︸ ︷︷ ︸
m1 times

× gm2 + d2 . . . d2︸ ︷︷ ︸
m2 times

=
1

g − 1

(
d1g

m1+m2 − (d1 − d2)g
m2 − d2

)
. (3.1)

We prove the following lemma, which gives a relation on the size of n versus m1 +m2.

Lemma 3. All solutions of the Diophantine equation (1.3) satisfy

(m1 +m2) log g − 2 < n logα < (m1 +m2) log g + 1.

Proof. The proof is deduced essentially from the first relation of (1.2). So, one can see from
(3.1) that

αn−2 < Fn < gm1+m2 .

Taking the logarithm on both sides, we get

(n− 2) logα < (m1 +m2) log g,

which leads to

n logα < (m1 +m2) log g + 2 logα < (m1 +m2) log g + 1. (3.2)

For the lower bound, we have from (3.1) that

gm1+m2−1 < Fn < αn−1.

Taking the logarithm on both sides, we get that

(m1 +m2 − 1) log g < (n− 1) logα,
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which leads to

(m1 +m2) log g + logα− log g < n logα. (3.3)

Because 2 ≤ g ≤ 9, we can easily see that −2 < logα− log 9 ≤ logα− log g. Thus,

(m1 +m2) log g − 2 < n logα. (3.4)

Comparing (3.2) and (3.4) gives the result in the lemma. □

Next, we examine the Diophantine equation (3.1) in two different steps to find the upper
bound of n and m1 +m2. Thus, we need to prove the following result.

Lemma 4. All solutions to the Diophantine equation (3.1) satisfy

m1 +m2 < 3.8× 1029 and n < 5.4× 1029.

Proof. Step 1. Substituting Binet’s formula for Fn in (3.1), we get that

αn − βn

√
5

=
1

g − 1

(
d1g

m1+m2 − (d1 − d2)g
m2 − d2

)
,

which is equivalent to

(g − 1)αn − d1
√
5gm1+m2 = (g − 1)βn −

√
5((d1 − d2)g

m2 + d2),

from which we deduce that∣∣(g − 1)αn − d1
√
5gm1+m2

∣∣ =
∣∣(g − 1)βn −

√
5((d1 − d2)g

m2 + d2)
∣∣

≤ 8 +
√
5(8gm2 + 8)

< 27.7 · gm2 .

Thus, dividing both sides by d1
√
5gm1+m2 , we get that∣∣∣∣g − 1

d1
√
5
· αn · g−(m1+m2) − 1

∣∣∣∣ < 27.7 · gm2

d1
√
5gm1+m2

<
12.4

gm1
. (3.5)

Put

Γ1 :=
g − 1

d1
√
5
· αn · g−(m1+m2) − 1. (3.6)

Next, we apply Theorem 1 on Γ1. First, we need to check that Γ1 ̸= 0. If it were not, then we
would get that

α2n =
5d21g

2(m1+m2)

(g − 1)2
,

which is impossible because α2n is irrational for all n ≥ 1. Therefore, Γ1 ̸= 0. So, we apply
Theorem 1 on Γ1 with s := 3 and

(η1, b1) :=

(
g − 1

d1
√
5
, 1

)
, (η2, b2) := (α, n), (η3, b3) := (g,−m1 −m2).
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Using gm1+m2−1 < Fn < αn−1 < gn−1, we get m1 +m2 < n. Therefore, we can take B := n.
Observe that L := Q(η1, η2, η3) = Q(α), so dL := 2. We have

h(η1) = h

(
g − 1

d1
√
5

)
≤ h

(
g − 1

d1

)
+ h(

√
5)

= log(max{g − 1, d1}) +
1

2
log 5

≤ log 8 +
1

2
log 5.

Furthermore, h(η2) = h(α) =
1

2
logα and h(η3) = h(g) = log g ≤ log 9. Thus, we can take

A1 := 5.8, A2 := 0.5, and A3 := 4.4.

Using the previous data, Theorem 1 tells us that

log |Γ1| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n)(5.8)(0.5)(4.4).

Comparing the above inequality with (3.5) gives

m1 log g < 1.24 · 1013(1 + log n). (3.7)

Step 2. Combining (3.1) with Binet’s formula for Fn, we obtain

αn −
√
5

(
d1g

m1 − (d1 − d2)

g − 1

)
gm2 = βn −

√
5d2

g − 1
,

from which we deduce that∣∣∣∣αn −
√
5

(
d1g

m1 − (d1 − d2)

g − 1

)
gm2

∣∣∣∣ =
∣∣∣∣∣βn − d2

√
5

g − 1

∣∣∣∣∣ ≤ 1 +
√
5 < 3.3.

Thus, dividing both sides by αn, we get that∣∣∣∣∣
(
(d1g

m1 − (d1 − d2))
√
5

g − 1

)
· α−n · gm2 − 1

∣∣∣∣∣ < 3.3

αn
. (3.8)

Put

Γ2 :=

(
(d1g

m1 − (d1 − d2))
√
5

g − 1

)
· α−n · gm2 − 1. (3.9)

Next, we apply Theorem 1 on Γ2. First, we need to check that Γ2 ̸= 0. If not, then we would
get that

α2n =
5(d1g

m1 − (d1 − d2))
2

(g − 1)2
g2m2 ,

which is impossible because α2n is irrational for n ≥ 1. Thus, Γ2 ̸= 0. So, we apply Theorem 1
on Γ2 with

s := 3, η1 :=
(d1g

m1 − (d1 − d2))
√
5

g − 1
, η2 := α, η3 := g,

and the exponents

b1 := 1, b2 := −n, b3 := m2.
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As before, we have that m2 < n. Thus, we can take B := n. Similarly, L = Q(η1, η2, η3) =
Q(α), so we take dL := 2. Furthermore, we have

h(η1) = h

(
(d1g

m1 − (d1 − d2))
√
5

g − 1

)

≤ h

( √
5

g − 1

)
+ h(d1g

m1 − (d1 − d2))

≤ h(
√
5) + h(g − 1) + h(d1) + h(d1 − d2) + log 2 +m1h(g)

≤ 1

2
log 5 + 3 log 8 + log 2 +m1 log g

≤ 1

2
log 5 + 3 log 8 + log 2 + 1.24 · 1013(1 + log n) (by (3.7))

≤ 1.25 · 1013(1 + log n).

Thus, we can take

A1 := 2.5 · 1013(1 + log n), A2 := 0.5, and A3 := 4.4.

Theorem 1 tells us that

log |Γ2| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n)(2.5 · 1013(1 + log n))(0.5)(4.4).

Comparing the above inequality with (3.8) gives

n logα− log 3.3 < 5.34× 1025(1 + log n)2,

which is equivalent to

n < 1.11× 1026(1 + log n)2. (3.10)

The above inequality gives us

n < 5.4 · 1029,
and Lemma 3.2 implies

m1 +m2 < 3.8 · 1029.
This completes the proof. □

To lower the bounds in Lemma 4, we return to inequality (3.5). Put

Λ1 := − log(Γ1 + 1)

= (m1 +m2) log g − n logα− log

(
g − 1

d1
√
5

)
.

Inequality (3.5) can be written as ∣∣e−Λ1 − 1
∣∣ < 12.4

gm1
.

Assume that m1 ≥ 5. Because 2 ≤ g ≤ 9, we get
∣∣e−Λ1 − 1

∣∣ < 12.4

gm1
<

1

2
, which implies that

1

2
< e−Λ1 <

3

2
. If Λ1 > 0, then

0 < Λ1 < eΛ1 − 1 = eΛ1(1− e−Λ1) <
24.8

gm1
.
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If Λ1 < 0, then

0 < |Λ1| < e|Λ1| − 1 = e−Λ1 − 1 <
12.4

gm1
.

In any case, it is always true that 0 < |Λ1| <
24.8

gm1
, which implies

0 <

∣∣∣∣∣(m1 +m2)
log g

logα
− n−

log
(
(g − 1)/d1

√
5
)

logα

∣∣∣∣∣ < 51.6 · g−m1 . (3.11)

It is easy to see that
log g

logα
is irrational. If

log g

logα
=

p

q
(p, q ∈ Z and p > 0, q > 0, gcd(p, q) = 1),

then αp = gq ∈ Z, which is an absurdity because 2 ≤ g ≤ 9. Now, we apply Lemma 1 with

τ :=
log g

logα
, µ := −

log
(
(g − 1)/d1

√
5
)

logα
, A := 51.6, B := g.

Note that m1 +m2 < 3.8 · 1029 by Lemma 4, so we take M := 3.8 · 1029. The application of
Lemma 1 leads to the different results, which are reported in Table 1.

g 2 3 4 5 6 7 8 9

rth convergent q68 q62 q66 q60 q60 q68 q60 q58
ε ≥ 0.451 0.229 0.002 0.104 0.058 0.061 0.026 0.043
m1 ≤ 110 71 58 47 44 40 37 36

Table 1.

Referring to the above results, it follows that m1 ≤ 110 is valid in all cases.
For fixed 1 ≤ m1 ≤ 110 and d1, d2 ∈ {0, 1, . . . , g− 1} with d1 ̸= d2 and d1 ̸= 0, we return to

(3.8) and put

Λ2 := log(Γ2 + 1)

= m2 log g − n logα+ log

(
(d1g

m1 − (d1 − d2))
√
5

g − 1

)
.

From inequality (3.8) and n ≥ 200, we conclude that∣∣eΛ2 − 1
∣∣ < 3.3

αn
<

1

2
,

which implies that
1

2
< eΛ2 <

3

2
. If Λ2 > 0, then 0 < Λ2 < eΛ2 − 1 <

3.3

αn
. If Λ2 < 0, then

0 < |Λ2| < e|Λ2| − 1 = e−Λ2 − 1 = e−Λ2(1− eΛ2) <
6.6

αn
.

In any case, because 0 < |Λ2| <
6.6

αn
, we have

0 <

∣∣∣∣∣m2
log g

logα
− n+

log
(√

5(d1g
m1 − (d1 − d2))/(g − 1)

)
logα

∣∣∣∣∣ < 13.8

αn
. (3.12)

Again, we apply Lemma 1 with

τ :=
log g

logα
, µ :=

log
(√

5(d1g
m1 − (d1 − d2))/(g − 1)

)
logα

, A := 13.8, B := α

and M := 3.8 · 1029. With the help of Maple, the results obtained are presented in Table 2.
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g 2 3 4 5 6 7 8 9

rth convergent q69 q62 q70 q69 q68 q72 q62 q58
ε ≥ 0.004 0.001 0.0001 0.00009 0.000009 0.001 0.0008 0.0001
n ≤ 118 74 61 55 52 43 40 38

Table 2.

Thus, n ≤ 118 is valid in all cases, contradicting that n > 200. Now, we search for the
solutions to the first Diophantine equation of (1.3) with

0 ≤ n ≤ 200, 1 ≤ m1 ≤ 110, 1 ≤ m2 ≤ 140,

2 ≤ g ≤ 9, 1 ≤ d1 ≤ g − 1, and 0 ≤ d2 ≤ g − 1,

by applying a program written in Maple. The only solutions we obtain are listed in Theorem 2.
This completes its proof.

3.2. Lucas Numbers as Concatenations of Two g-repdigits. In this subsection, we will
follow the method in Subsection 3.1. For the sake of completeness, we will give most of the
details.

Theorem 3. The only Lucas numbers that are concatenations of two repdigits in base g with
2 ≤ g ≤ 9 are

2, 3, 4, 7, 11, 18, 29, 47, 76, 123, 521, 843, 1364.

Namely, we have

2 = L0 = 102,
3 = L2 = 103,
4 = L3 = 1002 = 104,
7 = L4 = 134 = 125 = 107,
11 = L5 = 234 = 215 = 156 = 147 = 138 = 129,
18 = L6 = 2003 = 306 = 247 = 209,
29 = L7 = 456 = 417 = 358 = 329,
47 = L8 = 2334 = 1156 = 657 = 578 = 529,
76 = L9 = 22113 = 1148 = 849,
123 = L10 = 4435,
521 = L13 = 22256,
843 = L14 = 113335,
1364 = L15 = 1111104.

The next result is a straightforward consequence of the above theorem.

Corollary 2. The largest Lucas number that can be represented as a concatenation of two
repdigits in base g when g ∈ {2, . . . , 9} is L15 = 1364. Namely we have

L15 = 1111104.

For the proof, we assume that n > 510. We rewrite the second Diophantine equation of
(1.3) as

Ln =
1

g − 1

(
d1g

m1+m2 − (d1 − d2)b
m2 − d2

)
. (3.13)

The next lemma relates the sizes of n and m1 +m1.

Lemma 5. All solutions of the Diophantine equation (3.13) satisfy

(m1 +m2) log g − 2.68 < n logα < (m1 +m2) log g + 0.5.
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Proof. The proof follows from (1.2). One can see from (3.13) that

αn−1 ≤ Ln < gm1+m2 .

Taking the logarithm of the extreme sides, we get

(n− 1) logα < (m1 +m2) log g,

which leads to

n logα < (m1 +m2) log g + logα < (m1 +m2) log g + 0.5. (3.14)

For the lower bound, from (3.13) we have

gm1+m2−1 ≤ Ln ≤ αn+1.

Taking the logarithm of extreme sides, we get

(m1 +m2 − 1) log g < (n+ 1) logα,

which leads to

(m1 +m2) log g − 2.68 < (m1 +m2 − 1) log g − logα < n logα. (3.15)

Comparing (3.14) and (3.15) gives the result in the lemma. □

Next, we examine (3.13) in two different steps.

Step 1. Substituting the second relation of (1.1) in (3.13), we get

(g − 1)αn − d1g
m1+m2 = −(g − 1)βn − (d1 − d2)g

m2 − d2,

from which we deduce that∣∣(g − 1)αn − d1g
m1+m2

∣∣ ≤ (g − 1)|β|n + |d1 − d2|gm2 + d2

≤ 3(g − 1)gm2 ≤ 24 · gm2 .

Thus, dividing both sides by d1b
m1+m2 , we get∣∣∣∣g − 1

d1
· αn · g−(m1+m2) − 1

∣∣∣∣ ≤ 24 · gm2

d1gm1+m2
≤ 24

gm1
. (3.16)

Let

Γ3 :=
g − 1

d1
· αn · g−(m1+m2) − 1. (3.17)

Next, we apply Theorem 1 on Γ3. First, we need to check that Γ3 ̸= 0. If it is not, then we
would get that

αn =
d1g

m1+m2

g − 1
∈ Q,

which is impossible. We conclude that Γ3 ̸= 0. So, we apply Theorem 1 on (3.17) with s := 3
and

(η1, b1) :=

(
g − 1

d1
, 1

)
, (η2, b2) := (α, n), (η3, b3) := (g,−m1 −m2).

Thus, we have L = Q(α), dL = [L : Q] = 2. Note that

h(η1) := h

(
g − 1

d1

)
= log (max{g − 1, d1}) ≤ log 8,

and from the previous subsection, we can take

A1 = 4.2, A2 = 0.5, and A3 := 4.4.
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Because gm1+m2−1 < Ln ≤ 2αn < gn+1, we have thatm1+m2 < n+2. As B ≥ max{|1|, |n|, |−
(m1 +m2)|}, we can take B := n+ 2. Hence, we get

|Γ3| > exp(−8.97 · 1012(1 + log(n+ 2))). (3.18)

Thus, from (3.16) and (3.18), we obtain

m1 log g < 8.98 · 1012(1 + log(n+ 2)). (3.19)

Step 2. We rewrite equation (3.13). Then, we get∣∣∣∣αn −
(
d1g

m1 − (d1 − d2)

g − 1

)
gm2

∣∣∣∣ = |β|n +
d2

g − 1
< 2.

It follows that ∣∣∣∣(d1g
m1 − (d1 − d2)

g − 1

)
· α−n · gm2 − 1

∣∣∣∣ ≤ 2

αn
. (3.20)

Let

Γ4 :=

(
d1g

m1 − (d1 − d2)

g − 1

)
· α−n · gm2 − 1. (3.21)

Next, we apply Theorem 1 on (3.21). First, we need to check that Γ4 ̸= 0. If not, then we
would get that

αn =

(
d1g

m1 − (d1 − d2)

g − 1

)
· gm2 ∈ Q,

which is false. It follows that Γ4 ̸= 0. According to Theorem 1, we can consider the following
data:

s := 3, η1 :=
d1g

m1 − (d1 − d2)

g − 1
, η2 := α, η3 := g,

and
b1 := 1, b2 := −n, b3 := m2.

Thus, we have L = Q(α), dL = [L : Q] = 2. From (3.19), we can get

h(η1) = h

(
d1b

m1 − (d1 − d2)

g − 1

)
≤ h (d1g

m1 − (d1 − d2)) + h(g − 1)

≤ 3 log(g − 1) +m1 log g + log 2

≤ 9 · 1012(1 + log(n+ 2)).

Thus, as above, we take

A1 = 1.8 · 1013(1 + log(n+ 2)), A2 = 0.5, and A3 = 4.4.

As before, we have that m2 < n+ 2. Thus, we take B := n+ 2. Hence, we get

|Γ4| > exp(−3.85 · 1025(1 + log(n+ 2))2). (3.22)

Thus, from (3.20) and (3.22), we get

n < 8.01 · 1025(1 + log(n+ 2))2.

This implies that n < 3.9 · 1029. Hence, we conclude that

m1 +m2 <
n logα+ 2.68

log 2
≤ 2.8 · 1029.

To sum up, we have the following lemma.
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Lemma 6. All solutions to the Diophantine equation (3.13) satisfy

m1 +m2 < 2.8 · 1029 and n < 3.9 · 1029.

We note that the bounds in Lemma 6 are too large for computational purposes. However,
with the help of Lemmas 1 and 2, they can be considerably sharpened. The rest of the proof
is dedicated towards this goal. Put

Λ3 := − log(Γ3 + 1)

= (m1 +m2) log g − n logα− log

(
g − 1

d1

)
.

From (3.16), we conclude that ∣∣e−Λ3 − 1
∣∣ < 24

gm1
. (3.23)

Note that if m1 ≥ 6 and 2 ≤ g ≤ 9, then |e−Λ3 − 1| <
24

gm1
<

1

2
, which implies that

1

2
< e−Λ3 <

3

2
. If Λ3 > 0, then

0 < Λ3 < eΛ3 − 1 = eΛ3(1− e−Λ3) <
48

gm1
.

If Λ3 < 0, then

0 < |Λ3| < e|Λ3| − 1 = e−Λ3 − 1 <
24

gm1
.

In all cases, we have 0 < |Λ3| <
48

gm1
, which implies

0 <

∣∣∣∣(m1 +m2)
log g

logα
− n− log((g − 1)/d1)

logα

∣∣∣∣ < 100 · g−m1 . (3.24)

Note that m1 + m2 < 2.8 · 1029 by Lemma 6. According to (3.24) and Lemma 1, we take
M := 2.8 · 1029. To apply Lemma 1 for 3 ≤ g ≤ 9 and 1 ≤ d1 ≤ g − 2, we define the following
quantities:

τ :=
log g

logα
, µ := − log((g − 1)/d1)

logα
, A := 100, B := g.

The results obtained following the application of the Lemma 1 are presented in Table 3.

g 3 4 5 6 7 8 9

rth convergent q62 q66 q60 q58 q68 q60 q58
ε ≥ 0.07 0.18 0.14 0.01 0.14 0.05 0.03
m1 ≤ 72 55 47 44 40 37 36

Table 3.

Therefore, the inequalities

m1 ≤
log (100q/ε)

logα
≤ 72 (3.25)
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hold in all cases. Now, in the case d1 = g − 1, we have that µ = 0. In this case, we will apply
Lemma 2. Inequality (3.24) can be rewritten as

0 <

∣∣∣∣(m1 +m2)
log g

logα
− n

∣∣∣∣ < 100

gm1
.

According to Lemma 2, we take M := 2.8×1029 because m1+m2 < 2.8×1029. For 2 ≤ g ≤ 9,
we use Maple to find the first convergent qN such that qN > M , and then we get a(M) :=
max{ai : i = 0, . . . , N}. Thus, Lemma 2 tells us that

100

gm1
>

∣∣∣∣(m1 +m2)
log g

logα
− n

∣∣∣∣ > 1

(a(M) + 2)(m1 +m2)

>
1

(a(M) + 2) · 2.8× 1029
,

which implies

m1 <
log
(
100 · (a(M) + 2) · 2.8 · 1029

)
log g

.

We thus arrive at the results in Table 4.

g 2 3 4 5 6 7 8 9

qN > M q68 q61 q64 q58 q56 q66 q59 q57
a(M) 134 161 66 59 347 35 44 80
m1 ≤ 112 71 55 47 44 39 36 35

Table 4.

So we have

m1 ≤ 112. (3.26)

Combining (3.25) and (3.26), we can consider 1 ≤ m1 ≤ 112.
Let

Λ4 := log(Γ4 + 1)

= m2 log g − n logα+ log

(
d1g

m1 − (d1 − d2)

g − 1

)
.

From (3.20) and n > 510, we conclude that∣∣eΛ4 − 1
∣∣ < 2

αn
<

1

2
,

which implies that
1

2
< eΛ4 <

3

2
. If Λ4 > 0, then

0 < Λ4 < eΛ4 − 1 <
2

αn
.

If Λ4 < 0, then

0 < |Λ4| < e|Λ4| − 1 = e−Λ4 − 1 = e−Λ4(1− eΛ4) <
4

αn
.

In any case, because 0 < |Λ4| <
4

αn
, we have

0 <

∣∣∣∣m2
log g

logα
− n+

log ((d1g
m1 − (d1 − d2))/(g − 1))

logα

∣∣∣∣ < 8.4 · α−n. (3.27)
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If g = 2, then d1 = 1 and d2 ∈ {0, 1}. Assuming d2 = 0 and m1 ̸= 1, (3.27) becomes

0 <

∣∣∣∣m2
log 2

logα
− n+

log (2m1 − 1)

logα

∣∣∣∣ < 8.4 · α−n. (3.28)

So, in this case, we apply Lemma 1 with the data:

τ :=
log 2

logα
, µ :=

log (2m1 − 1)

logα
, A := 8.4, B := α.

We take M := 2.8 · 1029. Using Maple, we find that q68 of log 2/ logα satisfies q68 > 6M and
ε ≥ 0.003. So according to Lemma 1, we get

n <
log(8.4q68/0.003)

logα
< 166. (3.29)

Next, assume that d2 = 0 and m1 = 1 or d2 = 1. In this case, (3.27) becomes

0 <

∣∣∣∣a log 2logα
− n

∣∣∣∣ < 8.4 · α−n, where a ∈ {m2,m1 +m2}. (3.30)

Because q67 of log 2/ logα satisfies q68 > M and a(M) = 134, by Lemma 2, we get∣∣∣∣a log 2logα
− n

∣∣∣∣ > 1

136a
>

1

136 · 2.8 · 1029
. (3.31)

From (3.30) and (3.31), we deduce that

n <
log(8.4 · 136 · 2.8 · 1029)

logα
< 156. (3.32)

From now on, we assume that 3 ≤ g ≤ 9. For inequality (3.27), we study the following two
cases.

Case (d1,m1, d2) ̸= (1, 1, 0).
Here we have µ ̸= 0 and we apply Lemma 1 with

τ :=
log g

logα
, µ :=

log ((d1g
m1 − (d1 − d2))/(g − 1))

logα
, A := 8.4, B := α,

and M := 2.8× 1029. With the help of Maple, we get the following results in Table 5.

g 3 4 5 6 7 8 9

rth convergent q75 q98 q110 q114 q122 q120 q58
ε ≥ 10−12 10−18 10−25 10−29 10−32 10−35 10−34

n ≤ 260 327 380 415 451 482 509

Table 5.

So, we have in all cases

n ≤ 509. (3.33)
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Case (d1,m1, d2) = (1, 1, 0).
In this case, inequalities (3.27) become

0 <

∣∣∣∣m2
log g

logα
− n

∣∣∣∣ < 8.4

αn
. (3.34)

Once again, we apply Lemma 2 with M := 2.8 · 1029, while finding qN such that qN > M and
a(M) := {ai : i = 0, 1, . . . , N}. It follows that∣∣∣∣m2

log g

logα
− n

∣∣∣∣ > 1

(a(M) + 2) ·m2
>

1

(a(M) + 2) · 2.8× 1029
. (3.35)

Combining (3.34) and (3.35), we get

n <
log
(
8.4 · (a(M) + 2) · 2.8 · 1029

)
logα

.

Therefore, for 3 ≤ g ≤ 9 and using Maple, we get the following results in Table 6.

g 3 4 5 6 7 8 9

qN > M q61 q66 q59 q56 q67 q60 q57
a(M) 161 66 59 347 35 44 80
n ≤ 157 155 155 158 154 154 155

Table 6.

which lead in all cases to

n ≤ 158. (3.36)

In summary, from (3.29), (3.32), (3.33), and (3.36), we have n ≤ 509. This contradicts the
assumption n > 510. Finally, we search for the solutions to the second Diophantine equation
of (1.3) with

0 ≤ n ≤ 510, 1 ≤ m1 ≤ 112, 1 ≤ m2 ≤ 360,

2 ≤ g ≤ 9, 1 ≤ d1 ≤ g − 1, and 0 ≤ d2 ≤ g − 1,

by applying a program written in Maple. The only solutions we obtained are listed in Theo-
rem 3. This completes the proof.
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