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Abstract. We continue the exploration of sums involving gibonacci polynomials and their
numeric versions, and their Pell versions.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas. Clearly, fn(1) = Fn, the nth
Fibonacci number; and ln(1) = Ln, the nth Lucas number [1, 4, 5].

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively [4].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or

ln, ∆ =
√
x2 + 4, and E =

√
x2 + 1.

It follows by the Binet-like formulas that lim
m→∞

1

gm
= 0.

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following prop-
erties [4, 5]:

fn+k − fn−k =

{
fnlk, if k is odd;

fkln, otherwise;
(1)

ln+k − ln−k =

{
lkln, if k is odd;

∆2fkfn, otherwise;
(2)

l2n −∆2f2
n = 4(−1)n; (3)

gn+kgn−k − g2n =

{
(−1)n+k+1f2

k , if gn = fn;

(−1)n+k∆2f2
k , otherwise.

(4)

These properties can be established using the Binet-like formulas.

2. Gibonacci Polynomial Sums

We begin our explorations with four telescoping sums. Coupled with the above identities,
they play a pivotal role in our discourse.
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2.1. Telescoping Sums.

Lemma 1. Let k be an odd positive integer. Then,

∞∑
n=(k+1)/2
k≥1, odd

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r−1
.

Proof. Using recursion [4], we will first establish that

m∑
n=(k+1)/2
k≥1, odd

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r−1
−

k−1∑
r=0

1

g2m−2r+k
.

To this end, we let Am denote the left-hand side (LHS) of this equation and Bm its right-hand
side (RHS). Then,

Bm −Bm−1 =
k−1∑
r=0

[
1

g2m−2(r+1)+k
− 1

g2m−2r+k

]
=

1

g2m−k
− 1

g2m+k

= Am −Am−1.

Recursively, this implies that

Am −Bm = Am−1 −Bm−1 = · · · = A(k+1)/2 −B(k+1)/2

=

(
1

g1
− 1

g2k+1

)
−

[
k∑

r=1

1

g2r−1
−

k−1∑
r=0

1

g2k−(2r−1)

]
= 0.

Thus, Am = Bm.

Because lim
m→∞

1

gm+r
= 0, this yields the desired result. □

Lemma 2. Let k be an even positive integer. Then,

∞∑
n=k/2+ 1
k≥2, even

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r
.

Proof. Using recursion [4], we will first confirm that

m∑
n=k/2+ 1
k≥2, even

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r
−

k−1∑
r=0

1

g2m−2r+k
.

Again, we let Am = LHS of this equation and Bm its RHS. Then,

Bm −Bm−1 =

k−1∑
r=0

[
1

g2m−2(r+1)+k
− 1

g2m−2r+k

]
=

1

g2m−k
− 1

g2m+k

= Am −Am−1.
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This implies

Am −Bm = Am−1 −Bm−1 = · · · = Ak/2+1 −Bk/2+1

=

(
1

g2
− 1

g2k+2

)
−

[
k∑

r=1

1

g2r
−

k−1∑
r=0

1

g2k−2(r−1)

]
= 0.

Consequently, Am = Bm, as expected.
The given result follows from this formula. □

Lemma 3. Let k be an odd positive integer. Then,

∞∑
n=(k+1)/2
k≥1, odd

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r
.

Proof. Using recursion [4], we will first validate the formula

m∑
n=(k+1)/2
k≥1, odd

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r
−

k−1∑
r=0

1

g2m−(2r−1)+k
.

As before, we let Am = LHS and Bm = RHS. Then,

Bm −Bm−1 =
k−1∑
r=0

[
1

g2m−(2r+1)+k
− 1

g2m−(2r−1)+k

]
=

1

g2m+1−k
− 1

g2m+1+k

= Am −Am−1.

This implies

Am −Bm = Am−1 −Bm−1 = · · · = A(k+1)/2 −B(k+1)/2

=

(
1

g2
− 1

g2k+2

)
−

[
k∑

r=1

1

g2r
−

k−1∑
r=0

1

g2k−2(r−1)

]
= 0.

Consequently, Am = Bm.
The given result follows from this formula. □

Lemma 4. Let k be an even positive integer. Then,

∞∑
n=k/2

k≥2, even

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r−1
.

Proof. To establish this formula, we will first confirm using recursion [4] that

m∑
n=k/2

k≥2, even

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r−1
−

k−1∑
r=0

1

g2m−(2r−1)+k
.
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Let Am = LHS and Bm = RHS of this equation. Then,

Bm −Bm−1 =
k−1∑
r=0

[
1

g2m−(2r+1)+k
− 1

g2m−(2r−1)+k

]
=

1

g2m+1−k
− 1

g2m+1+k

= Am −Am−1.

Recursively, this yields

Am −Bm = Am−1 −Bm−1 = · · · = Ak/2 −Bk/2

=

(
1

g1
− 1

g2k+1

)
−

[
k∑

r=1

1

g2r−1
−

k−1∑
r=0

1

g2k−(2r−1)

]
= 0.

Consequently, Am = Bm, establishing the validity of the given formula. □

With these tools at our disposal, we are now ready for the explorations.

Theorem 1. Let k be a positive integer; 1 ≤ r ≤ k;

L =

{
(k + 1)/2, k ≥ 1, if k is odd;

k/2 + 1, k ≥ 2, otherwise;
an =

{
fn, if k is odd;

ln, otherwise;

s =

{
2r − 1, if k is odd;

2r, otherwise;
and dk =

{
lk, if k is odd;

fk, otherwise.

Then,
∞∑

n=L

a2n
f2
2n − (−1)kf2

k

=
1

dk

k∑
r=1

1

fs
. (5)

Proof. Suppose k is odd. With identities (1) and (4), and Lemma 1, we have

f2nlk
f2
2n + f2

k

=
f2n+k − f2n−k

f2n+kf2n−k
,

∞∑
n=(k+1)/2
k≥1, odd

f2nlk
f2
2n + f2

k

=

∞∑
n=(k+1)/2
k≥1, odd

(
1

f2n−k
− 1

f2n+k

)

=

k∑
r=1

1

f2r−1
.

On the other hand, let k be even. Using identities (1) and (4), and Lemma 2, we get

fkl2n
f2
2n − f2

k

=
f2n+k − f2n−k

f2n+kf2n−k
,

∞∑
n=k/2+ 1
k≥2, even

fkl2n
f2
2n − f2

k

=

∞∑
n=k/2+ 1
k≥2, even

(
1

f2n−k
− 1

f2n+k

)

=

k∑
r=1

1

f2r
.
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Combining the two cases yields the desired result. □

In particular, with the identity f2n = fnln [4], we get

∞∑
n=1

f2n
f2
2n + 1

=
1

f2
;

∞∑
n=1

F2n

F 2
2n + 1

= 1;

∞∑
n=2

l2n
f2
2n − x2

=
l3

f2
2 f4

;
∞∑
n=2

L2n

F 2
2n − 1

=
4

3
.

With identity (3), we can rewrite equation (5) as

∞∑
n=L

a2n
l22n − (−1)k∆2f2

k − 4
=

1

∆2dk

k∑
r=1

1

fs
. (6)

This implies

∞∑
n=1

f2n
l22n +∆2 − 4

=
1

∆2f2
;

∞∑
n=1

F2n

L2
2n + 1

=
1

5
;

∞∑
n=1

l2n
l22n − (x2 + 2)2

=
l3

∆2f2
2 f4

;

∞∑
n=2

L2n

L2
2n − 9

=
4

15
.

The next result employs identities (1) and (4).

Theorem 2. Let k be a positive integer; 1 ≤ r ≤ k;

M =

{
(k + 1)/2, k ≥ 1, if k is odd;

k/2, k ≥ 2, otherwise;
an =

{
fn, if k is odd;

ln, otherwise;

t =

{
2r, if k is odd;

2r − 1, otherwise;
and dk =

{
lk, if k is odd;

fk, otherwise.

Then,

∞∑
n=M

a2n+1

f2
2n+1 + (−1)kf2

k

=
1

dk

k∑
r=1

1

ft
. (7)

Proof. With k odd, equations (1) and (4), and Lemma 3, we have

f2n+1lk
f2
2n+1 − f2

k

=
f2n+1+k − f2n+1−k

f2n+1+kf2n+1−k
,

∞∑
n=(k+1)/2
k≥1, odd

f2n+1lk
f2
2n+1 − f2

k

=

∞∑
n=(k+1)/2
k≥1, odd

(
1

f2n+1−k
− 1

f2n+1+k

)

=

k∑
r=1

1

f2r
.
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Now, let k be even. Using equations (1) and (4), and Lemma 4, we get

fkl2n+1

f2
2n+1 + f2

k

=
f2n+1+k − f2n+1−k

f2n+1+kf2n+1−k
,

∞∑
n=k/2

k≥2, even

fkl2n+1

f2
2n+1 + f2

k

=

∞∑
n=k/2

k≥2, even

(
1

f2n+1−k
− 1

f2n+1+k

)

=

k∑
r=1

1

f2r−1
.

By combining both cases, we get the given result, as desired. □

In particular, with the identity fn+1 + fn−1 = ln [4], we get

∞∑
n=1

f2n+1

f2
2n+1 − 1

=
1

f2
2

;
∞∑
n=1

F2n+1

F 2
2n+1 − 1

= 1;

∞∑
n=1

l2n+1

f2
2n+1 + x2

=
l2

f2f3
;

∞∑
n=1

L2n+1

F 2
2n+1 + 1

=
3

2
.

With identity (3), equation (7) yields

∞∑
n=M

a2n+1

l22n+1 + (−1)k∆2f2
k + 4

=
1

∆2dk

k∑
r=1

1

ft
. (8)

This implies

∞∑
n=1

f2n+1

l22n+1 −∆2 + 4
=

1

∆2f2
2

;
∞∑
n=1

F2n+1

L2
2n+1 − 1

=
1

5
;

∞∑
n=1

l2n+1

l22n+1 + (x2 + 2)2
=

l2
∆2f2f3

;

∞∑
n=1

L2n+1

L2
2n+1 + 9

=
3

10
.

The next theorem features the Lucas version of Theorem 1.

Theorem 3. Let k be a positive integer; 1 ≤ r ≤ k;

L =

{
(k + 1)/2, k ≥ 1, if k is odd;

k/2 + 1, k ≥ 2, otherwise;
hn =

{
ln, if k is odd;

fn, otherwise;

s =

{
2r − 1, if k is odd;

2r, otherwise;
and ek =

{
lk, if k is odd;

∆2fk, otherwise.

Then,

∞∑
n=L

h2n
l22n + (−1)k∆2f2

k

=
1

ek

k∑
r=1

1

ls
. (9)
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Proof. Suppose k is odd. With identities (2) and (4), and Lemma 1, we have

lkl2n
l22n −∆2f2

k

=
l2n+k − l2n−k

l2n+kl2n−k
,

∞∑
n=(k+1)/2
k≥1, odd

lkl2n
l22n −∆2f2

k

=

∞∑
n=(k+1)/2
k≥1, odd

(
1

l2n−k
− 1

l2n+k

)

=

k∑
r=1

1

l2r−1
.

Now, let k be even. Using identities (2) and (4), and Lemma 2, we have

∆2fkf2n
l22n +∆2f2

k

=
l2n+k − l2n−k

l2n+kl2n−k
,

∞∑
n=k/2+ 1
k≥2, even

∆2fkf2n
l22n +∆2f2

k

=
∞∑

n=k/2+ 1
k≥2, even

(
1

l2n−k
− 1

l2n+k

)

=
k∑

r=1

1

l2r
.

The given result now follows by combining the two cases. □

With the identities f2n = fnln and ln+1+ ln−1 = ∆2fn [4], it follows from this theorem that
∞∑
n=1

l2n
l22n −∆2

=
1

l21
;

∞∑
n=1

L2n

L2
2n − 5

= 1;

∞∑
n=2

f2n
l22n +∆2x2

=
f3
f8

;
∞∑
n=2

F2n

L2
2n + 5

=
2

21
.

Using the identity l2n −∆2f2
n = 4(−1)n, we can rewrite equation (9) as

∞∑
n=L

h2n
∆2f2

2n + (−1)k∆2f2
k + 4

=
1

ek

k∑
r=1

1

ls
. (10)

It then follows that
∞∑
n=1

l2n
∆2f2

2n − x2
=

1

l21
;

∞∑
n=1

L2n

5F 2
2n − 1

= 1;

∞∑
n=2

f2n
∆2f2

2n + (x2 + 2)2
=

f3
f8

;
∞∑
n=2

F2n

5F 2
2n + 9

=
2

21
.

Finally, we present the Lucas version of Theorem 2.

Theorem 4. Let k be a positive integer; 1 ≤ r ≤ k;

M =

{
(k + 1)/2, k ≥ 1, if k is odd;

k/2, k ≥ 2, otherwise;
t =

{
2r, if k is odd;

2r − 1, otherwise;

hn =

{
ln, if k is odd;

fn, otherwise;
and ek =

{
lk, if k is odd;

∆2fk, otherwise.
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Then,
∞∑

n=M

h2n+1

l22n+1 − (−1)k∆2f2
k

=
1

ek

k∑
r=1

1

lt
. (11)

Proof. Suppose k is odd. Using identities (2) and (4), and Lemma 3, we have

lkl2n+1

l22n+1 − (−1)k∆2f2
k

=
l2n+1+k − l2n+1−k

l2n+1+kl2n+1−k
,

∞∑
n=(k+1)/2
k≥1, odd

lkl2n+1

l22n+1 +∆2f2
k

=
∞∑

n=(k+1)/2
k≥1, odd

(
1

l2n+1−k
− 1

l2n+1+k

)

=
k∑

r=1

1

l2r
.

On the flip side, let k be even. By identities (2) and (4), and Lemma 4, we get

∆2fkf2n+1

l22n+1 −∆2f2
k

=
l2n+1+k − l2n+1−k

l2n+1+kl2n+1−k
,

∞∑
n=k/2

k≥2, even

∆2fkf2n+1

l22n+1 −∆2f2
k

=

∞∑
n=k/2

k≥2, even

(
1

l2n+1−k
− 1

l2n+1+k

)

=

k∑
r=1

1

l2r−1
.

Combining the two cases yields the desired result. □

In particular, using the identity ln+1 + ln−1 = ∆2fn [4], we get
∞∑
n=1

l2n+1

l22n+1 +∆2
=

1

l1l2
;

∞∑
n=1

L2n+1

L2
2n+1 + 5

=
1

3
;

∞∑
n=1

f2n+1

l22n+1 −∆2x2
=

1

l1l3
;

∞∑
n=1

F2n+1

L2
2n+1 − 5

=
1

4
.

With identity (3), we can rewrite equation (11) in a slightly different way:

∞∑
n=1

h2n+1

∆2f2
2n+1 − (−1)k∆2f2

k − 4
=

1

ek

k∑
r=1

1

lt
. (12)

This implies
∞∑
n=1

l2n+1

∆2f2
2n+1 + x2

=
1

l1l2
;

∞∑
n=1

L2n+1

5F 2
2n+1 + 1

=
1

3
;

∞∑
n=1

f2n+1

∆2f2
2n+1 − (x2 + 2)2

=
1

l1l3
;

∞∑
n=1

F2n+1

5F 2
2n+1 − 9

=
1

4
.

3. Pell Consequences

With the gibonacci-Pell relationship bn(x) = gn(2x), Theorems 1–4 yield the following Pell
versions:
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∞∑
n=L

a∗2n
p22n − (−1)kp2k

=
1

d∗k

k∑
r=1

1

ps
;

∞∑
n=M

a∗2n+1

p22n+1 + (−1)kp2k
=

1

d∗k

k∑
r=1

1

pt
;

∞∑
n=L

h∗2n
q22n + 4(−1)kE2p2k

=
1

e∗k

k∑
r=1

1

qs
;

∞∑
n=M

h∗2n+1

q22n+1 − 4(−1)kE2p2k
=

1

e∗k

k∑
r=1

1

qt
,

respectively, where a∗n = an(2), d
∗
n = dn(2), e

∗
n = en(2), and h∗n = hn(2). In the interest of

brevity, we omit their numeric versions and encourage gibonacci enthusiasts to explore them.

4. Chebyshev and Vieta Implications

Finally, we add that Chebyshev polynomials Tn and Un, Vieta polynomials Vn and vn,
and gibonacci polynomials gn are linked by the relationships Vn(x) = in−1fn(−ix), vn(x) =
inln(−ix), Vn(x) = Un−1(x/2), and vn(x) = 2Tn(x/2) [2, 3, 4], where i =

√
−1. They can be

employed to find the Chebyshev and Vieta versions of Theorems 1–4. Again, we omit them
and encourage gibonacci enthusiasts to pursue them.
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