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Abstract. We explore three sums involving gibonacci polynomials and extract their Pell
versions.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas. Clearly, fn(1) = Fn, the nth
Fibonacci number; and ln(1) = Ln, the nth Lucas number [1, 5].

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively [5].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or

ln, bn = pn or qn, ∆ =
√
x2 + 4, 2α(x) = x+∆, 2β(x) = x−∆, E =

√
x2 + 1, γ(x) = x+ E,

δ(x) = x− E, γ = γ(1), and δ = δ(1).

It follows by the Binet-like formulas that lim
m→∞

1

gm
= 0 and lim

m→∞

gm+k

gm
= αk(x).

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following prop-
erties [5, 7]:

fn+k − fn−k =

{
fnlk, if k is odd;

fkln, otherwise;
(1)

ln+k − ln−k =

{
lkln, if k is odd;

∆2fkfn, otherwise;
(2)

l2n −∆2f2
n = 4(−1)n; (3)

gn+kgn−k − g2n =

{
(−1)n+k+1f2

k , if gn = fn;

(−1)n+k∆2f2
k , otherwise;

(4)

gn+k+1gn−k − gn+kgn−k+1 =

{
(−1)n+k+1f2k, if gn = fn;

(−1)n+k∆2f2k, otherwise.
(5)

These properties can be confirmed using the Binet-like formulas.
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1.2. Telescoping Sums. We studied the following telescoping sums in [7]:

∞∑
n=(k+1)/2
k≥1, odd

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r−1
; (6)

∞∑
n=k/2+ 1
k≥2, even

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r
; (7)

∞∑
n=(k+1)/2
k≥1, odd

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r
; (8)

∞∑
n=k/2

k≥2, even

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r−1
. (9)

The next lemma presents an additional telescoping sum.

Lemma 1. Let k be an odd positive integer. Then,

∞∑
n=(k+1)/2
k≥1, odd

(
g2n+1−k

g2n−k
− g2n+1+k

g2n+k

)
=

k∑
r=1

g2r
g2r−1

− kα(x). (10)

Proof. Using recursion [5], we will first establish that

m∑
n=(k+1)/2
k≥1, odd

(
g2n+1−k

g2n−k
− g2n+1+k

g2n+k

)
=

k∑
r=1

g2r
g2r−1

−
k∑

r=1

g2m+1+2r−k

g2m+2r−k
.

To this end, we let Am denote the left-hand side of this equation and Bm its right-hand
side. Then,

Bm −Bm−1 =

k∑
r=1

g2m−1+2r−k

g2m−2+2r−k
−

k∑
r=1

g2m+1+2r−k

g2m+2r−k

=
g2m+1−k

g2m−k
− g2m+1+k

g2m+k

= Am −Am−1.

Recursively, this implies

Am −Bm = Am−1 −Bm−1 = · · · = A(k+1)/2 −B(k+1)/2

=

(
g2
g1

− g2k+2

g2k+1

)
−
(
g2
g1

− g2k+2

g2k+1

)
= 0.

Thus, Am = Bm.

Because lim
m→∞

gm+k

gm
= αk(x), the given result now follows, as desired. □
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This lemma has an interesting consequence:

∞∑
n=(k+1)/2
k≥1, odd

(
g2n−k

g2n+1−k
− g2n+k

g2n+1+k

)
=

k∑
r=1

g2r−1

g2r
+ kβ(x). (11)

Coupled with the above identities, the telescoping sums play a major role in our explorations.

2. Additional Gibonacci Polynomial Sums

With the above tools at our disposal, we are now ready for further explorations.

Theorem 1. Let k be an odd positive integer and i =
√

−1. Then,

∞∑
n=(k+1)/2
k≥1, odd

lk
f2n + ifk

=
k∑

r=1

1

f2r−1
+ i

k∑
r=1

f2r
f2r−1

− ikα(x). (12)

Proof. Using the identity f2n = fnln [5], equations (4), (5), (6), and (10), and k with odd
parity, we get

lk
f2n + ifk

=
lk(f2n − ifk)

f2
2n + f2

k

=
lkf2n − if2k
f2n+kf2n−k

=
f2n+k − f2n−k

f2n+kf2n−k
− i

(
f2n+k+1f2n−k − f2n+kf2n−k+1

f2n+kf2n−k

)
,

∞∑
n=(k+1)/2
k≥1, odd

lk
f2n + ifk

=
∞∑

n=(k+1)/2
k≥1, odd

(
1

f2n−k
− 1

f2n+k

)
+ i

∞∑
n=(k+1)/2
k≥1, odd

(
f2n+1−k

f2n−k
− f2n+1+k

f2n+k

)

=
k∑

r=1

1

f2r−1
+ i

k∑
r=1

f2r
f2r−1

− ikα(x),

as desired. □

In particular, we have

∞∑
n=1

x

f2n + i
= 1 + iβ(x);

∞∑
n=2

l3
f2n + i(x2 + 1)

=

(
1

f1
+

1

f3
+

1

f5

)
+ i

(
f2
f1

+
f4
f3

+
f6
f5

)
− i3α(x).

It then follows that [2]
∞∑
n=1

1

F2n + i
= 1 + iβ;

∞∑
n=2

1

F2n + 2i
=

17

40
+

26− 15
√
5

40
i.

Consequently, we have
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∞∑
n=1

1

F2n − i
= 1− iβ;

∞∑
n=1

F2n

F 2
2n + 1

= 1; [7]

∞∑
n=1

1

F 2
2n + 1

= −β; [6, 7]
∞∑
n=2

1

F2n − 2i
=

17

40
− 26− 15

√
5

40
i;

∞∑
n=2

F2n

F 2
2n + 4

=
17

20
;

∞∑
n=2

1

F 2
2n + 4

= −13
40

+
3
√
5

16
.

This theorem has an interesting byproduct, as the following corollary shows.

Corollary 1.
∞∑

n=(k+1)/2
k≥1, odd

lk
f2n − ifk

=
k∑

r=1

1

f2r−1
− i

k∑
r=1

f2r
f2r−1

+ ikα(x). (13)

Adding equations (12) and (13), we get [7]

∞∑
n=(k+1)/2
k≥1, odd

f2n
f2
2n + f2

k

=
1

lk

k∑
r=1

1

f2r−1
. (14)

Its validity can be established independently [7] by using the relationship

f2nlk
f2
2n + f2

k

=
f2n+k − f2n−k

f2n+kf2n−k
,

where k is odd.
It follows from equation (14) that [7]

∞∑
n=1

f2n
f2
2n + 1

=
1

l1
;

∞∑
n=2

f2n
f2
2n + (x2 + 1)2

=
1

l3

(
1

f1
+

1

f3
+

1

f5

)
.

Consequently, we have [7]
∞∑
n=1

F2n

F 2
2n + 1

= 1; [7]
∞∑
n=2

F2n

F 2
2n + 4

=
17

40
,

respectively.
It also follows by equations (12) and (13) that

∞∑
n=(k+1)/2
k≥1, odd

1

f2
2n + f2

k

=
1

f2k

[
kα(x)−

k∑
r=1

f2r
f2r−1

]
.

This implies
∞∑
n=1

1

f2
2n + 1

= −β(x)
x

;
∞∑
n=1

1

F 2
2n + 1

= −β,

as found earlier.
Using identity (3), we can rewrite equation (14) as

∞∑
n=1

f2n
l22n +∆2f2

k − 4
=

1

∆2 lk

k∑
r=1

1

f2r−1
,

where k is odd. This implies
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∞∑
n=1

F2n

L2
2n + 1

=
1

5
;

∞∑
n=1

F2n

L2
2n + 16

=
17

200
.

The next result is an application of identities (2), (4), and (5).

Theorem 2. Let k be an odd positive integer. Then,

∞∑
n=(k+1)/2
k≥1, odd

lk
l2n −∆fk

=
k∑

r=1

1

l2r−1
+

1

∆

k∑
r=1

l2r
l2r−1

− kα(x)

∆
. (15)

Proof. Using the identity f2n = fnln [5], and equations (2), (4), (5), (6), and (10), we get

lk
l2n −∆fk

=
lk(l2n +∆fk)

l22n −∆2f2
k

=
lkl2n

l2n+kl2n−k
+

∆f2k
l2n+kl2n−k

=
l2n+k − l2n−k

l2n+kl2n−k
− 1

∆

(
l2n+1+kl2n−k − l2n+kl2n+1−k

l2n+kl2n−k

)
,

∞∑
n=(k+1)/2
k≥1, odd

lk
l2n −∆fk

=
∞∑

n=(k+1)/2
k≥1, odd

(
1

l2n−k
− 1

l2n+k

)
+

1

∆

∞∑
n=(k+1)/2
k≥1, odd

(
l2n+1−k

l2n−k
− l2n+1+k

l2n+k

)

=
k∑

r=1

1

l2r−1
+

1

∆

k∑
r=1

l2r
l2r−1

− kα(x)

∆
,

as expected. □

This theorem also has an interesting implication, as the next corollary shows.

Corollary 2.

∞∑
n=(k+1)/2
k≥1, odd

lk
l2n +∆fk

=
k∑

r=1

1

l2r−1
− 1

∆

k∑
r=1

l2r
l2r−1

+
kα(x)

∆
. (16)

It follows from equations (15) and (16) that

∞∑
n=1

1

l2n −∆
=

∆+ l2 − l1α(x)

∆ l21
;

∞∑
n=1

1

l2n +∆
=

∆− l2 + l1α(x)

∆ l21
,

respectively. They yield

∞∑
n=1

1

L2n −
√
5

=
1 +

√
5

2
;

∞∑
n=1

1

L2n +
√
5

=
3−

√
5

2
,

again respectively.
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It also follows by equations (15) and (16) that [7]

∞∑
n=(k+1)/2
k≥1, odd

l2n
l22n −∆2f2

k

=
1

lk

k∑
r=1

1

l2r−1
; (17)

∞∑
n=(k+1)/2
k≥1, odd

1

l22n −∆2f2
k

=
1

∆2f2k

[
k∑

r=1

l2r
l2r−1

− kα(x)

]
.

Consequently, we have
∞∑
n=1

L2n

L2
2n − 5

= 1;
∞∑
n=1

1

L2
2n − 5

=
5−

√
5

10
.

With identity (3), we can rewrite equation (17) as

∞∑
n=(k+1)/2
k≥1, odd

l2n

∆2
(
f2
2n − f2

k

)
+ 4

=
1

lk

k∑
r=1

1

l2r−1
.

This implies
∞∑
n=1

l2n
∆2f2

2n − x2
=

1

l21
;

∞∑
n=1

L2n

5F 2
2n − 1

= 1.

The next result invokes the telescoping sums (8) and (11).

Theorem 3. Let k be an odd positive integer and i =
√

−1. Then,

∞∑
n=(k+1)/2
k≥1, odd

lk
l2n+1 + i∆fk

=

k∑
r=1

1

l2r
− i

∆

[
k∑

r=1

l2r−1

l2r
+ kβ(x)

]
. (18)

Proof. Using the identity f2n = fnln, and equations (2), (4), (5), (8), and (11), we have

lk
l2n+1 + i∆fk

=
lk(l2n+1 − i∆fk)

l22n+1 +∆2f2
k

=
l2n+1+k − l2n+1−k

l2n+1+kl2n+1−k
− i

∆

(
l2n+1+kl2n−k − l2n+kl2n+1−k

l2n+1+kl2n+1−k

)
,

∞∑
n=(k+1)/2
k≥1, odd

lk
l2n+1 + i∆fk

=

∞∑
n=(k+1)/2
k≥1, odd

(
1

l2n+1−k
− 1

l2n+1+k

)
− i

∆

∞∑
n=(k+1)/2
k≥1, odd

(
l2n−k

l2n+1−k
− l2n+k

l2n+1+k

)

=
k∑

r=1

1

l2r
− i

∆

[
k∑

r=1

l2r−1

l2r
+ kβ(x)

]
,

as desired. □

The next result follows from equation (18).

Corollary 3. Let k be an odd positive integer and i =
√

−1. Then,

∞∑
n=(k+1)/2
k≥1, odd

lk
l2n+1 − i∆fk

=
k∑

r=1

1

l2r
+

i

∆

[
k∑

r=1

l2r−1

l2r
+ kβ(x)

]
.
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Theorem 3, coupled with Corollary 3, yields [7]

∞∑
n=(k+1)/2
k≥1, odd

l2n+1

l22n+1 +∆2f2
k

=
1

lk

k∑
r=1

1

l2r
. (19)

This can be confirmed independently [7] using the equation

lkl2n+1

l22n+1 − (−1)k∆2f2
k

=
l2n+1+k − l2n+1−k

l2n+1+kl2n+1−k
,

where k is odd.
It also follows by Theorem 3 and Corollary 3 that

∞∑
n=(k+1)/2
k≥1, odd

1

l22n+1 +∆2f2
k

=
1

∆2fk

[
k∑

r=1

l2r−1

l2r
+ kβ(x)

]
.

Thus, we have
∞∑
n=1

l2n+1

l22n+1 +∆2
=

1

l1l2
;

∞∑
n=1

L2n+1

L2
2n+1 + 5

=
1

3
;

∞∑
n=1

1

l22n+1 +∆2
=

1

∆2

[
l1
l2

+ β(x)

]
;

∞∑
n=1

1

L2
2n+1 + 5

=
1

6
−

√
5

10
.

Using identity (3), we can rewrite equation (19) in a different way:

∞∑
n=(k+1)/2
k≥1, odd

l2n+1

∆2f2
2n+1 +∆2f2

k − 4
=

1

lk

k∑
r=1

1

l2r
.

Consequently, we have
∞∑
n=1

l2n+1

∆2f2
2n+1 +∆2 − 4

=
1

l1l2
;

∞∑
n=1

L2n+1

5F 2
2n+1 + 1

=
1

3
.

3. Pell Implications

Using the relationship bn(x) = gn(2x), we can find the Pell versions of gibonacci formulas.
For example, those of equations (12), (15), and (18) are:

∞∑
n=(k+1)/2
k≥1, odd

qk
p2n + ipk

=

k∑
r=1

1

p2r−1
+ i

k−1∑
r=0

p2r
p2r−1

− ikγ(x);

∞∑
n=(k+1)/2
k≥1, odd

qk
q2n − 2Epk

=

k∑
r=1

1

q2r−1
+

1

2E

k∑
r=1

q2r
q2r−1

− kγ(x)

2E
;

∞∑
n=(k+1)/2
k≥1, odd

qk
q2n+1 + i2Epk

=

k∑
r=1

1

q2r
− i

2E

k∑
r=1

q2r−1

q2r
− ikδ(x)

2E
,

respectively.
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They yield

∞∑
n=(k+1)/2
k≥1, odd

Qk

P2n + iPk
=

1

2

k∑
r=1

1

P2r−1
+

i

2

k−1∑
r=0

P2r

P2r−1
− ikγ

2
;

∞∑
n=(k+1)/2
k≥1, odd

Qk

Q2n −
√
2Pk

=
1

2

k∑
r=1

1

Q2r−1
+

√
2

4

k∑
r=1

Q2r

Q2r−1
−

√
2kγ

4
;

∞∑
n=(k+1)/2
k≥1, odd

Qk

Q2n+1 + i
√
2Pk

=
1

2

k∑
r=1

1

Q2r
− i

√
2

4

k∑
r=1

Q2r−1

Q2r
− i

√
2kδ

4
,

again respectively.

4. Chebyshev and Vieta Implications

Finally, we add that Chebyshev polynomials Tn and Un, Vieta polynomials Vn and vn,
and gibonacci polynomials gn are linked by the relationships Vn(x) = in−1fn(−ix), vn(x) =
inln(−ix), Vn(x) = Un−1(x/2), and vn(x) = 2Tn(x/2) [3, 4, 5], where i =

√
−1. They can

be employed to find the Chebyshev and Vieta versions of Theorems 1–3. In the interest of
brevity, we omit them and encourage gibonacci enthusiasts to explore them.
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