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Abstract. We explore the Jacobsthal versions of seven gibonacci sums.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 5].

On the other hand, let a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) =
Jn(x), the nth Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the
nth Jacobsthal-Lucas polynomial. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth
Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn; and jn(1) = Ln

[2, 5].
In the interest of brevity and clarity, we omit the argument in the functional notation; so zn

will mean zn(x). In addition, we let ∆ =
√
x2 + 4, D =

√
4x+ 1, and κ =

{
−1, if cn = Jn;

D2, otherwise.

Jacobsthal and Jacobsthal-Lucas polynomials satisfy the following Cassin-like identities [5]:

Jn+kJn−k − J2
n = −(−x)n−kJ2

k ; (1)

jn+kjn−k − j2n = (−x)n−kD2J2
k . (2)

Gibonacci and Jacobsthal polynomials are linked by the relationships Jn(x) =

x(n−1)/2fn(1/
√
x) and jn(x) = xn/2ln(1/

√
x) [3], and [5] on page 566.

1.1. Gibonacci Polynomial Sums. In [6], we studied the following gibonacci sums:

∞∑
n=k+1
k≥1, odd

lk
gn+kgn−k

=
k∑

r=1

1

gk+rgr
; (3)

∞∑
n=3

xln
fn+2fnfn−2

=
1

f3f1
+

1

f4f2
; (4)

∞∑
n=3

xfn
ln+2lnln−2

=
1

∆2

(
1

l3l1
+

1

l4l2

)
; (5)
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∞∑
n=3

(−1)n
(
gn−3

gn−2
− gn+1

gn+2

)
= −g0

g1
+

g1
g2

− g2
g3

+
g3
g4

; (6)

∞∑
n=3

1

gn+2gn−2
=

{
− 1

f4
Sf3 , if gn = fn;

1
∆2f4

Sl3 , otherwise;
(7)

∞∑
n=3

(−1)n

f4
n − (−1)n(x2 − 1)f2

n − x2
= − 1

f3f2
4

; (8)

∞∑
n=3

(−1)n

l4n + (−1)n(x2 − 1)∆2l2n −∆4x2
= − 1

f4l4l3l2
, (9)

where Sg3 =
g0
g1

− g1
g2

+
g2
g3

− g3
g4

.

2. Jacobsthal Polynomial Sums

Our objective is to find the Jacobsthal versions of the above seven results using the Jacobsthal-
gibonacci links.

To this end, in the interest of clarity and convenience, we let A and B denote the left side
and right side of each equation, respectively, and LHS and RHS those of the corresponding
Jacobsthal equation, again respectively.

2.1. Jacobsthal Version of Equation (3).

Proof.

Case 1. Suppose gn = fn. Let A =
lk

fn+kfn−k
. Now, replace x with 1/

√
x, and then multiply

the numerator and denominator with xn−1. This yields

A =
x(2n−k−2)/2(xk/2lk)[

x(n+k−1)/2fn+k

] [
x(n−k−1)/2fn−k

] ;
LHS =

∞∑
n=k+1
k≥1, odd

x(2n−k−2)/2jk
Jn+kJn−k

,

where cn = cn(x).

We now let B =
1

fk+rfr
. Replacing x with 1/

√
x, and then multiplying the numerator and

denominator with x(k+2r−2)/2 yields

B =
x(k+2r−2)/2[

x(k+r−1)/2fk+r

] [
x(r−1)/2fr

] ;
RHS =

k∑
r=1

x(k+2r−2)/2

Jk+rJr
.

Equating the two sides, we get

∞∑
n=k+1
k≥1, odd

xn

Jn+kJn−k
=

xk

jk

k∑
r=1

xr

Jk+rJr
.
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Case 2. Suppose gn = ln. Let A =
lk

ln+kln−k
. Replacing x with 1/

√
x, and then multiplying

the numerator and denominator with xn yields

A =
x(2n−k)/2(xk/2lk)[

x(n+k)/2ln+k

] [
x(n−k)/2ln−k

] ;
LHS =

∞∑
n=k+1
k≥1, odd

x(2n−k)/2jk
jn+kjn−k

,

where cn = cn(x).

Let B =
1

lk+rlr
. Replacing x with 1/

√
x, and then multiplying the numerator and denomi-

nator with x(k+2r)/2 yields

B =
x(k+2r)/2[

x(k+r)/2lk+r

] [
xr/2lr

] ;
RHS =

k∑
r=1

x(k+2r)/2

jk+rjr
,

where cn = cn(x).
Equating the two sides yields

∞∑
n=k+1
k≥1, odd

xn

jn+kjn−k
=

xk

jk

k∑
r=1

x(k+2r)/2

jk+rjr
.

Combining the two cases, we get the desired Jacobsthal version:

∞∑
n=k+1
k≥1, odd

xn

cn+kcn−k
=

xk

jk

k∑
r=1

xr

ck+rcr
. (10)

□

It then follows that [6]

∞∑
n=k+1
k≥1, odd

Lk

Fn+kFn−k
=

k∑
r=1

1

Fk+rFr
;

∞∑
n=k+1
k≥1, odd

Lk

Ln+kLn−k
=

k∑
r=1

1

Lk+rLr
;

∞∑
n=k+1
k≥1, odd

2n

Jn+kJn−k
=

2k

Jk

k∑
r=1

1

Jk+rJr
;

∞∑
n=k+1
k≥1, odd

2n

jn+kjn−k
=

2k

jk

k∑
r=1

1

jk+rjr
.

In particular, we then have [6]
∞∑
n=2

1

F 2
n + (−1)n

= 1;
∞∑
n=2

1

L2
n − 5(−1)n

=
1

3
;

∞∑
n=2

2n

J2
n − (−2)n−1

= 4;
∞∑
n=2

2n

j2n + 9(−2)n−1
=

4

5
,

respectively.
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Because cn+kcn−k − c2n = (−x)n−kκJ2
k , we can rewrite equation (10) as

∞∑
n=k+1
k≥1, odd

xn

c2n + (−x)n−kκJ2
k

=
xk

jk

k∑
r=1

xr

ck+rcr
.

2.2. Jacobsthal Version of Equation (4).

Proof. With A =
xln

fn+2fnfn−2
, replacing x with 1/

√
x, and multiplying the numerator and

denominator with x(3n−3)/2 yields

A =
x(2n−3)/2(xn/2ln)√

x[x(n+1)/2fn+2][x(n−1)/2fn][x(n−3)/2fn−2]

=
xn−2jn

Jn+2JnJn−2
;

LHS =

∞∑
n=3

xn−2jn
Jn+2JnJn−2

,

where cn = cn(x).

We now let B =
1

f3f1
+

1

f4f2
. Replace x with 1/

√
x, and multiply each numerator and

denominator with x2. This gives

B =
x2

(x2/2f3)(x0/2f1)
+

1

(x3/2f4)(x1/2f2)

RHS =
x

J3J1
+

1

J4J2
,

where cn = cn(x).
Combining the two sides, we get the desired Jacobsthal version:

∞∑
n=3

xnjn
Jn+2JnJn−2

=
x3

J3J1
+

x2

J4J2
. (11)

□

It then follows that [6]

∞∑
n=3

Ln

Fn+2FnFn−2
=

5

6
;

∞∑
n=3

2njn
Jn+2JnJn−2

=
52

15
.

2.3. Jacobsthal Version of Equation (5).

FEBRUARY 2023 5



THE FIBONACCI QUARTERLY

Proof. With A =
xfn

ln+2lnln−2
, replace x with 1/

√
x, and multiply the numerator and denomi-

nator with x3n/2 yields

A =
xn[x(n−1)/2fn]

[x(n+2)/2ln+2][xn/2ln][x(n−2)/2ln−2]

=
xnJn

jn+2jnjn−2
;

LHS =

∞∑
n=3

xnJn
jn+2jnjn−2

,

where cn = cn(x).

With B =
1

∆2

(
1

l3l1
+

1

l4l2

)
, replace x with 1/

√
x, and multiply each numerator and de-

nominator with x3. This yields

B =
x

D2

(
1

l3l1
+

1

l4l2

)
=

x

D2

(
x2

(x3/2l3)(x1/2l1)
+

x3

(x4/2l4)(x2/2l2)

)
;

RHS =
x3

D2

(
1

j3j1
+

x

j4j2

)
,

where cn = cn(x).
Equating the two sides yields the Jacobsthal version of equation (5):

∞∑
n=3

xnJn
jn+2jnjn−2

=
x3

D2

(
1

j3j1
+

x

j4j2

)
. (12)

□

This implies [6]
∞∑
n=3

Fn

Ln+2LnLn−2
=

5

84
;

∞∑
n=3

2nJn
jn+2jnjn−2

=
88

595
.

2.4. Jacobsthal Version of Equation (6).

Proof.

Case 1. Suppose gn = fn. Let A =
fn−3

fn−2
− fn+1

fn+2
. Replace x with 1/

√
x, and then multiply

the numerators and denominators with x(n+1)/2. We then get

A =
x5/2

[
x(n−4)/2fn−3

]
x2

[
x(n−3)/2fn−2

] −
x1/2

(
xn/2fn+1

)
x(n+1)/2fn+2

;

LHS =
√
x

∞∑
n=3

(−1)n
(
Jn−3

Jn−2
− Jn+1

Jn+2

)
,

where cn = cn(x).
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Now, let B = −
(
f0
f1

− f1
f2

+
f2
f3

− f3
f4

)
. Replacing x with 1/

√
x, and multiplying the nu-

merators and denominators with x3/2, we get

RHS = −
√
x

(
J0
J1

− J1
J2

+
J2
J3

− J3
J4

)
,

where cn = cn(x).
Equating the two sides yields

∞∑
n=3

(−1)n
(
Jn−3

Jn−2
− Jn+1

Jn+2

)
= −

(
J0
J1

− J1
J2

+
J2
J3

− J3
J4

)
.

Case 2. Let gn = ln. With A =
ln−3

ln−2
− ln+1

ln+2
, replace x with 1/

√
x, and then multiply each

numerator and denominator with x(n+2)/2. We then get

A =
x5/2

[
x(n−3)/2ln−3

]
x2

[
(x(n−2)/2ln−2

] −
x1/2

[
x(n+1)/2ln+1

]
x(n+2)/2ln+2

;

LHS =
√
x

∞∑
n=3

(−1)n
(
jn−3

jn−2
− jn+1

jn+2

)
,

where cn = cn(x).

Now, with B = −
(
l0
l1

− l1
l2

+
l2
l3

− l3
l4

)
, replace x with 1/

√
x, and multiply the numerator

and denominator with x2. This yields

RHS = −
√
x

(
j0
j1

− j1
j2

+
j2
j3

− j3
j4

)
,

where cn = cn(x).
Equating the two sides gives

∞∑
n=3

(−1)n
(
jn−3

jn−2
− jn+1

jn+2

)
= −

(
j0
j1

− j1
j2

+
j2
j3

− j3
j4

)
.

Combining the two cases, we get the desired Jacobsthal version:

∞∑
n=3

(−1)n
(
cn−3

cn−2
− cn+1

cn+2

)
= −

(
c0
c1

− c1
c2

+
c2
c3

− c3
c4

)
. (13)

□

This implies [6]

∞∑
n=3

(−1)n
(
Gn−3

Gn−2
− Gn+1

Gn+2

)
= −

(
G0

G1
− G1

G2
+

G2

G3
− G3

G4

)
;

∞∑
n=3

(−1)n
(
Cn−3

Cn−2
− Cn+1

Cn+2

)
= −

(
C0

C1
− C1

C2
+

C2

C3
− C3

C4

)
.

In particular, we then get [6]
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∞∑
n=3

(−1)n
(
Fn−3

Fn−2
− Fn+1

Fn+2

)
=

7

6
;

∞∑
n=3

(−1)n
(
Ln−3

Ln−2
− Ln+1

Ln+2

)
= −155

84
;

∞∑
n=3

(−1)n
(
Jn−3

Jn−2
− Jn+1

Jn+2

)
=

19

15
;

∞∑
n=3

(−1)n
(
jn−3

jn−2
− jn+1

jn+2

)
= −1251

595
.

2.5. Jacobsthal Version of Equation (7).

Proof.

Case 1. Let gn = fn. Suppose A =
1

fn+2fn−2
. Now, replace x with 1/

√
x, and multiply the

numerator and denominator with xn−1. This gives

A =
xn−1[

x(n+1)/2fn+2

] [
x(n−3)/2fn−2

] ;
LHS =

∞∑
n=3

xn−1

Jn+2Jn−2
,

where cn = cn(x).

Now, with B = − 1

f4

(
f0
f1

− f1
f2

+
f2
f3

− f3
f4

)
, replace x with 1/

√
x, and multiply each numer-

ator and denominator with x3/2. This yields

RHS = −x
2

J4

(
J0
J1

− J1
J2

+
J2
J3

− J3
J4

)
,

where cn = cn(x).
Equating the two sides, we get

∞∑
n=3

xn

Jn+2Jn−2
= −x

3

J4

(
J0
J1

− J1
J2

+
J2
J3

− J3
J4

)
.

Case 2. Let gn = ln. With A =
1

ln+2ln−2
, replace x with 1/

√
x, and multiply the numerator

and denominator with xn. This yields

A =
xn[

x(n+2)/2ln+2

] [
x(n−2)/2ln−2

] ;
LHS =

∞∑
n=3

xn

jn+2jn−2
,

where cn = cn(x).

Next, we let B =
1

∆2f4

(
l0
l1

− l1
l2

+
l2
l3

− l3
l4

)
. Replace x with 1/

√
x, and multiply the nu-

merator and denominator with x2. This yields

B =
D2

xf4

(
l0
l1

− l1
l2

+
l2
l3

− l3
l4

)
;

RHS =
D2√x

J4

(
x2j0
x
√
xj1

− x
√
xj1

xj2
+

xj2√
xj3

−
√
xj3
j4

)
=

D2x

J4

(
j0
j1

− j1
j2

+
j2
j3

− j3
j4

)
.
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Equating the two sides gives

∞∑
n=3

xn

jn+2jn−2
=

D2x

J4

(
j0
j1

− j1
j2

+
j2
j3

− j3
j4

)
.

Combining the two cases, we get the Jacobsthal version of equation (7):

∞∑
n=3

xn

cn+2cn−2
=

{
−x3

J4
Sc3 , if cn = Jn;

D2x
J4

Sc3 , otherwise;
(14)

where Sc3 =
c0
c1

− c1
c2

+
c2
c3

− c3
c4
. □

It follows from equation (14) that [6]
∞∑
n=3

1

Fn+2Fn−2
=

7

18
;

∞∑
n=3

1

Ln+2Ln−2
=

31

252
;

∞∑
n=3

2n

Jn+2Jn−2
=

152

75
;

∞∑
n=3

2n

jn+2jn−2
=

22, 518

2, 975
.

Using the identities gn+kgn−k − g2n =

{
(−1)n+k+1f2

k , if gn = fn;

(−1)n+k∆2f2
k , otherwise;

and cn+kcn−k − c2n = (−x)n−kκJ2
k , we can rewrite these equations as follows:

∞∑
n=3

1

F 2
n − (−1)n

=
7

18
;

∞∑
n=3

1

L2
n + 5(−1)n

=
31

252
;

∞∑
n=3

2n

J2
n − (−2)n−2

=
152

75
;

∞∑
n=3

2n

j2n + 9(−2)n−2
=

22, 518

2, 975
,

respectively.

2.6. Jacobsthal Version of Equation (8).

Proof. Let A =
(−1)n

f4
n − (−1)n(x2 − 1)f2

n − x2
. Replacing x with 1/

√
x, and multiplying the nu-

merator and denominator with x2n−3 then yields

A =
(−1)nx

xf4
n + (−1)n(x− 1)f2

n − 1

=
(−1)nx2n−2

[x(n−1)/2fn]4 + (−1)n(x− 1)xn−2[x(n−1)/2fn]2 − x2n−3

=
(−1)nx2n−2

J4
n + (−1)n(x− 1)xn−2J2

n − x2n−3
;

LHS =
∞∑
n=3

(−1)nx2n−2

J4
n + (−1)n(x− 1)xn−2J2

n − x2n−3
,

where cn = cn(x).
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With B = − 1

f3f2
4

, replacing x with 1/
√
x and multiplying the numerator and denominator

with x4, gives

B = − x4

(x2/2f3)(x3/2f4)2
;

RHS = − x4

J3J2
4

,

where cn = cn(x).
Combining the two sides, we get the desired Jacobsthal version:

∞∑
n=3

(−1)nx2n

J4
n + (−1)n(x− 1)xn−2J2

n − x2n−3
= − x6

J3J2
4

. (15)

□

This yields [6]
∞∑
n=3

(−1)n

F 4
n − 1

= − 1

18
;

∞∑
n=3

(−4)n

J4
n + (−1)n2n−2J2

n − 22n−3
= −64

75
.

Finally, we explore the Jacobsthal consequence of equation (9).

2.7. Jacobsthal Version of Equation (9).

Proof. Let A =
(−1)n

l4n + (−1)n(x2 − 1)∆2l2n −∆4x2
. Replace x with 1/

√
x, and multiply the nu-

merator and denominator with x2n−3. This yields

A =
(−1)n

x3l4n − (−1)n(x2 − x)D2l2n −D4

=
(−1)nx2n

(xn/2ln)4 − (−1)n(x− 1)xn−2D2j2n −D4x2n−3
;

LHS =
∞∑
n=3

(−1)nx2n

(xn/2ln)4 − (−1)n(x− 1)xn−2D2j2n −D4x2n−3
,

where cn = cn(x).

Now, let B = − 1

f4l4l3l2
. Replacing x with 1/

√
x and multiplying the numerator and de-

nominator with x6 yields

B = − x6

(x3/2f4)(x4/2l4)(x3/2l3)(x2/2l2)
;

RHS = − x6

J4j4j3j2
,

where cn = cn(x).
Equating the two sides, we get the Jacobsthal version of equation (9):

∞∑
n=3

(−1)nx2n

(xn/2ln)4 − (−1)n(x− 1)xn−2D2j2n −D4x2n−3
= − x6

J4j4j3j2
. (16)

□
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This implies [6]
∞∑
n=3

(−1)n

L4
n − 25

= − 1

252
;

∞∑
n=3

(−4)n

j4n − 9(−2)n−2j2n − 81 · 22n−3
= − 64

2, 975
.

3. Vieta and Chebyshev Implications

Finally, we can find the Vieta and Chebyshev versions of equations (3) through (9) using
the relationships Vn(x) = in−1fn(−ix), vn(x) = inln(−ix), Vn(x) = Un−1(x/2), and vn(x) =
2Tn(x/2) [3, 4, 5], where i =

√
−1. In the interest of brevity, we omit them and encourage

gibonacci enthusiasts to explore them.
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