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Abstract. Consider the integer sequences (F⌊
√
n⌋ : n ∈ N0) and (F⌊log2n⌋ : n ∈ N), letting

⌊x⌋ denote the integer part of a nonnegative value x, and where Fn denotes the nth Fibonacci
number for a nonnegative integer n. We apply an Abel-type summation lemma to prove
explicit evaluations for

∑m
n=1 F⌊

√
n⌋ and

∑m
n=1 F⌊log2n⌋ for a natural number m. We then

apply this summation lemma to determine an analytical formula for
∑m

n=1 F⌊n
s
⌋, letting s

denote a natural number parameter, and we demonstrate how our method may be applied to
evaluate sums of the form

∑m
n=1 F

⌊ r√n
s

⌋ for integers r ≥ 2 and s ≥ 1. We also consider the

problem of evaluating finite sums of expressions of the form F⌊log2(n
s )⌋ for a natural number

s. Much of our work is closely connected with evaluations for Fibonacci sums of the form
S(t,m) =

∑m
n=1 n

tFn, where t is a nonnegative integer.

1. Introduction

A large amount of research that has been based on the Fibonacci sequence (Fn : n ∈ N0)
has concerned identities for finite summations involving entries in this sequence. This article is
inspired by many previous research contributions on finite sums of this form, as in Chu’s recent
paper [5] on repeated applications of the partial sum operator to the Fibonacci sequence, along
with the recent work of Ollerton and Shannon [17] (cf. [2, 12]) on sums of the form

S(t,m) =

m∑
n=1

ntFn, (1.1)

where t is a nonnegative integer and m denotes a natural number. The finite difference-based
approach employed in [2] in the study of summations of the form

m∑
n=1

ntFn+r

is of relevance to our article, in which we use an Abel-type summation lemma involving
difference operators to prove identities for the partial sums of naturally occurring integer
sequences defined via the Fibonacci sequence.

In Section 2, we introduce and prove an explicit, nonrecursive formula for the partial sums
for the sequence (

F⌊√n⌋ : n ∈ N0

)
, (1.2)

letting ⌊·⌋ denote the floor function. In Section 3, we use a similar approach to explicitly
evaluate the partial sums of (

F⌊log2(n)⌋ : n ∈ N
)
. (1.3)

In Section 4, we apply our Abel summation-based method to evaluate the partial sums of
infinite families of sequences of Fibonacci numbers indexed by ⌊·⌋ composed with an expression
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involving a free natural number parameter. In this regard, we succeed in determining an
explicit evaluation for the partial sums of(

F⌊n
s ⌋ : n ∈ N0

)
(1.4)

for s ∈ N. We also demonstrate how our method may be applied to evaluate the partial sums
of (

F⌊ r√n
s

⌋ : n ∈ N0

)
for integers r ≥ 2 and s ≥ 1. The problem of evaluating finite sums of expressions of the form
F⌊log2(n

s )⌋ for a fixed parameter s ∈ N is also considered, but this proves to be more difficult

compared with the preceding cases.
The integer sequence indicated in (1.2) is indexed in the On-line Encyclopedia of Integer

Sequences (OEIS) [16] as A115338, but the partial sums of (1.2), starting at n = 0, n = 1, or
n = 2, are not indexed in the OEIS. This suggests that our identity for

m∑
n=1

F⌊√n⌋, (1.5)

as given in Section 2 below, is new. The integer sequence (1.3) is not in the OEIS, and the
partial sums of (1.3) are not in the OEIS.

Letting s ≥ 4, sequences of the form (1.4) do not appear to be included in the OEIS, and
the partial sums of these sequences for s ≥ 3 do not appear to be in the OEIS. Computer
algebra systems (CAS), including Maple 2020 and the latest version of Mathematica in 2022,
cannot evaluate the finite sums indicated in (1.5) and in

m∑
n=1

F⌊log2(n)⌋ (1.6)

and
m∑

n=1

F⌊n
s ⌋, (1.7)

even with the use of Maple commands such as with(combinat, fibonacci): or Mathematica
commands such as FunctionExpand. This motivates the practical application, in terms of the
development of CAS software, of the summation techniques we have applied to evaluate (1.5)–
(1.7). Sums as in (1.5)–(1.7), or, more broadly, Fibonacci and Lucas sums with summands
involving floor and ceiling functions, also do not appear in classic texts such as Fibonacci &
Lucas Numbers, and the Golden Section [21].

With regard to the finite sum in (1.5), the partial sum identity

m∑
n=1

⌊√
n
⌋
= (m+ 1)

⌊√
m
⌋
−

(⌊
√
m⌋+ 1)

3 − 3
2 (⌊

√
m⌋+ 1)

2
+

⌊√m⌋+1

2

3
(1.8)

is well known and included in a number of classic textbooks, namely, Concrete Mathematics [8,
p. 87], The Art of Computer Programming: Fundamental Algorithms [11, §1.2.4], and Discrete
Mathematics and its Application [19, §2.4]. This classic identity has inspired us to devise
methods for evaluating sums that are similar in appearance to the left side of (1.8) and that
involve Fibonacci numbers. This has led us to discover a remarkable identity, as given in
Section 2, for sums of the form shown in (1.5).
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We recall the Binet formula Fn = ϕn−(−ϕ)−n
√
5

, writing ϕ = 1+
√
5

2 to denote the famous

mathematical constant known as the golden ratio [13]. A source of motivation behind the
evaluation of sums involving Fibonacci numbers and the floor function, as in the sums shown
in (1.5)–(1.7), is due to past research [9] on lower Wythoff sequences concerning sums of the
form

m∑
n=1

⌊nϕ⌋ .

For additional literature concerning analytical formulas for finite sums involving the floor or
ceiling or rounding functions, we cite references [7, 10, 14, 15, 18, 20], noting that many
classical and fundamental results in number theory, such as Legendre’s formula for the p-adic
valuation of factorials, concern finite sums of integer parts. Our main proof technique, which
relies on the finite sum rearrangement shown in (1.10), may be applied broadly to such past
references.

1.1. The Modified Abel Lemma on Summation by Parts. To prove our main identities,
we make use of what we refer to as an Abel-type summation lemma. As in [3], we record that
what is known as Abel’s lemma on summation by parts was formulated in 1826 by Niels Henrik
Abel [1], and that the modified Abel lemma on summation by parts (cf. [4, 6, 22, 23]) may be
formulated as below:

∞∑
n=1

Bn∇An =
(

lim
m→∞

AmBm+1

)
−A0B1 +

∞∑
n=1

An ·∆Bn, (1.9)

if this limit exists and if one of the two infinite series given above converges, letting the
operators∇ and ·∆ be such that∇τn = τn−τn−1 and ·∆τn = τn−τn+1 for a mapping τ : N0 → C.
In this article, we apply a finite sum identity corresponding to the series rearrangement identity
shown in (1.9): For a natural number m, the following finite sum companion to (1.9) holds
true:

m∑
n=1

Bn∇An = AmBm+1 −A0B1 +
m∑

n=1

An ·∆Bn. (1.10)

Our proofs of Theorems 2.1, 3.1, and 4.1 follow a similar format, as described as follows.
To determine an evaluation for the finite sum

m∑
n=1

F⌊g(n)⌋

for a function g, we begin by setting An = n and Bn = F⌊g(n)⌋ in the finite sum version of the
modified Abel lemma, as shown in (1.10). So, the formula in (1.10) gives us that

m∑
n=1

F⌊g(n)⌋ = mF⌊g(m+1)⌋ +

m∑
n=1

n
(
F⌊g(n)⌋ − F⌊g(n+1)⌋

)
. (1.11)

Then, using indicator functions, as defined below, we proceed to rewrite the latter sum in
(1.11) to be expressible in terms of previously known Fibonacci sums. We write

1S(x) =

{
1, if x ∈ S;

0, if x ̸∈ S

for a set S, and the functions g we input into (1.11) are such that the summand factor
F⌊g(n)⌋ − F⌊g(n+1)⌋ may be simplified using indicator functions.
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2. On the Sum
∑m

n=1 F⌊√n⌋
Theorem 2.1. The sum

m∑
n=1

F⌊√n⌋ (2.1)

is equal to(
2
⌊√

m+ 1
⌋
− 3
)
F⌊√m+1⌋−1 −

(⌊√
m+ 1

⌋2 − 2
⌊√

m+ 1
⌋
−m+ 4

)
F⌊√m+1⌋ + 3

for all natural numbers m.

Proof. We set g(n) =
√
n in (1.11). This gives us the following:

m∑
n=1

F⌊√n⌋ = mF⌊√m+1⌋ −
m∑

n=1

n
(
F⌊√n+1⌋ − F⌊√n⌋

)
= mF⌊√m+1⌋ −

m∑
n=1

n1N
(√

n+ 1
)
F⌊√n⌋−1

= mF⌊√m+1⌋ −
m∑

n=1

n1{i2−1:i∈N} (n) F⌊√n⌋−1

= mF⌊√m+1⌋ −
∑

2≤ℓ2≤m+1
n=ℓ2−1

nF⌊√n⌋−1

= mF⌊√m+1⌋ −
⌊√m+1⌋∑

ℓ=2

(
ℓ2 − 1

)
F⌊√ℓ2−1⌋−1

= mF⌊√m+1⌋ −
⌊√m+1⌋∑

ℓ=2

(
ℓ2 − 1

)
Fℓ−2. (2.2)

Applying reindexing to the sum shown in (2.2), this leads us to use known evaluations for
S(0, s), S(1, s), and S(2, s) for a parameter s, recalling the definition in (1.1). It is easily seen
that

s∑
n=0

Fn = Fs+2 − 1 (2.3)

and that
s∑

n=0

nFn = sFs+2 − Fs+3 + 2, (2.4)

and an evaluation for S(2, s) in terms of Fibonacci numbers is given in [12, 17]. Explicitly,
s∑

n=0

n2Fn =
(
s2 − 2s+ 5

)
Fs +

(
s2 − 4s+ 8

)
Fs+1 − 8,

as in [12, 17]. So, by applying reindexing to (2.2), we find that

m∑
n=1

F⌊√n⌋ = mF⌊√m+1⌋ −
⌊√m+1⌋−2∑

ℓ=0

(
ℓ2 + 4ℓ+ 3

)
Fℓ,

so that the above identities for S(0, s), S(1, s), and S(2, s) give us the desired result. □
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Currently, the only reference provided for the OEIS entry corresponding to the summand
in (2.1) is the text [24, p. 62], but the material on Fibonacci numbers in [24] is general and
does not apply in any meaningful way to Theorem 2.1 or our proof of this result.

3. On the Sum
∑m

n=1 F⌊log2(n)⌋

Letting log2(x) denote the base-2 logarithm of a value x, proofs of the known analytical
formula

m∑
n=1

⌊log2(n)⌋ = (m+ 1) ⌊log2(m)⌋ − 2
(
2⌊log2(m)⌋ − 1

)
are much like those for (1.8), again with reference to Knuth’s classic text The Art of Computer
Programming: Fundamental Algorithms [11, Section 1.2.4]. This, with our proof for Theorem
2.1, raises the question of how

m∑
n=1

F⌊log2(n)⌋

may be evaluated. This has led us to discover and prove the result highlighted below as
Theorem 3.1, where the sequence (Ln : n ∈ N0) of Lucas numbers is defined as per usual.

Theorem 3.1. The sum
m∑

n=1

F⌊log2(n)⌋

is equal to

(m+ 1)F⌊log2(m+1)⌋ −
4

5

(
2⌊log2(m+1)⌋−1L⌊log2(m+1)⌋−1 − 2

)
− 2

for all natural numbers m.

Proof. We set g(n) = log2(n) in (1.11). This gives us that
m∑

n=1

F⌊log2(n)⌋ = mF⌊log2(m+1)⌋ − 1−
m∑

n=2

n1N(log2(n+ 1))F⌊log2(n)⌋−1

= mF⌊log2(m+1)⌋ − 1−
m∑

n=2

n1{2i−1:i∈N,i≥2}(n)F⌊log2(n)⌋−1

= mF⌊log2(m+1)⌋ − 1−
∑

2≤n≤m
n=2ℓ−1

nF⌊log2(n)⌋−1

= mF⌊log2(m+1)⌋ − 1−
∑

3≤2ℓ≤m+1

(2ℓ − 1)F⌊log2(2ℓ−1)⌋−1

= mF⌊log2(m+1)⌋ − 1−
⌊log2(m+1)⌋∑

ℓ=2

(
2ℓ − 1

)
F⌊log2(2ℓ−1)⌋−1

= mF⌊log2(m+1)⌋ − 1−
⌊log2(m+1)⌋∑

ℓ=2

(
2ℓ − 1

)
Fℓ−2. (3.1)

The sequence (
j∑

i=0

2iFi : i ∈ N0

)
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agrees with the OEIS entry A014334 given by the exponential convolution of the Fibonacci
sequence with itself [16], and it is known that

j∑
i=0

2iFi =
1

5

(
2j+1Lj+1 − 2

)
(3.2)

for all j ∈ N0. So, by applying a reindexing argument to the sum shown in (3.1), we find that

m∑
n=1

F⌊log2(n)⌋ = mF⌊log2(m+1)⌋ − 1−
⌊log2(m+1)⌋−2∑

ℓ=0

(
2ℓ+2 − 1

)
Fℓ.

By expanding the summand of this latter sum, we may apply the identity in (3.2) with the
Fibonacci sum identity shown in (2.3). □

It is not obvious how the above proof may be generalized to be applicable to sums of the
form

∑m
n=1 F⌊logs(n)⌋ for a natural number parameter s > 2, because it is not obvious how sums

of the form
∑m

n=1 s
nFn may be expressed explicitly in terms of Fibonacci/Lucas numbers for

s > 2 (see the OEIS sequences A082987 and A082988 for example).

4. Infinite Families

Mimicking our proof of Theorem 2.1, we may prove a known formula for sums of the form∑m
n=1 ⌊ r

√
n⌋ using Faulhaber’s formula [8], which refers to the following classical identity:

m∑
n=1

nt =
1

t+ 1

t+1∑
n=1

(−1)δn,t

(
t+ 1

n

)
Bt+1−nm

i,

writing δ to denote the Kronecker delta symbol, and letting Bi denote the ith Bernoulli
number. We may similarly generalize our identity highlighted as Theorem 2.1, i.e., to evaluate
sums of the form

m∑
n=1

F⌊ r√n⌋. (4.1)

Explicitly, setting g(n) = r
√
n in (1.11), we find that the following equalities hold for r ≥ 2:

m∑
n=1

F⌊ r√n⌋ = mF⌊ r√m+1⌋ +
m∑

n=1

n
(
F⌊ r√n⌋ − F⌊ r√n+1⌋

)
= mF⌊ r√m+1⌋ −

m∑
n=2r−1

n1N(
r
√
n+ 1)F⌊ r√n+1⌋−2

= mF⌊ r√m+1⌋ −
m∑

n=2r−1

n1{ir−1:i∈N}(n)F⌊ r√n+1⌋−2

= mF⌊ r√m+1⌋ −
⌊ r√m+1⌋∑

ℓ=2

(ℓr − 1)Fℓ−2

= mF⌊ r√m+1⌋ −
⌊ r√m+1⌋−1∑

ℓ=0

((ℓ+ 2)r − 1)Fℓ.
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By expanding the summand factor ((ℓ+ 2)r − 1) according to the binomial theorem, and by
using known identities for evaluating sums as in (1.1) in terms of Fibonacci numbers, this
gives us a way of providing a closed form for (4.1) for a given natural number r ≥ 2.

We may similarly mimic our proofs of Theorems 2.1 and 3.1 to evaluate the partial sums of
expressions of the form F⌊n

s ⌋ for a parameter s ∈ N. The cases for s = 1 and s = 2 are easily

addressed and previously known, so we omit these base cases. Of course, if s > m, then the
sum in (4.2) vanishes. So, we restrict our attention to the cases where 3 ≤ s ≤ m.

Theorem 4.1. For 3 ≤ s ≤ m, the sum

m∑
n=1

F⌊n
s ⌋ (4.2)

is equal to

s
(
F⌊m+1

s ⌋+1 − 1
)
+

(
m+ 1− s

⌊
m+ 1

s

⌋)
F⌊m+1

s ⌋.

Proof. In (1.11), we set g(n) = n
s for a parameter s ∈ N. This leads us to the following:

m∑
n=1

F⌊n
s ⌋ = mF⌊m+1

s ⌋ + 1− s−
m∑

n=s

n1N

(
n+ 1

s

)
F⌊n

s ⌋−1

= mF⌊m+1
s ⌋ + 1− s−

m∑
n=s

n1{si−1:i∈N} (n)F⌊n
s ⌋−1

= mF⌊m+1
s ⌋ + 1− s−

∑
s≤n≤m
n=sℓ−1

nF⌊n
s ⌋−1

= mF⌊m+1
s ⌋ + 1− s−

∑
2≤ℓ≤m+1

s
n=sℓ−1

nF⌊n
s ⌋−1

= mF⌊m+1
s ⌋ + 1− s−

⌊m+1
s ⌋∑

ℓ=2

(sℓ− 1)F⌊ sℓ−1
s ⌋−1

= mF⌊m+1
s ⌋ + 1− s−

⌊m+1
s ⌋−2∑
ℓ=0

(s(ℓ+ 2)− 1)Fℓ.

This gives us that the sum in (4.2) may be written as

mF⌊m+1
s ⌋ + 1− s− (2s− 1)

⌊m+1
s ⌋−2∑
ℓ=0

Fℓ − s

⌊m+1
s ⌋−2∑
ℓ=0

ℓFℓ,

so that the desired result then follows directly from the Fibonacci sum identities given in (2.3)
and (2.4). □

We may mimic our proofs of Theorems 2.1 and 4.1 to evaluate summations of the following
form:

m∑
n=1

F⌊ r√n
s

⌋. (4.3)
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For s = 1 or r = 1, the evaluation of the sum in (4.3) has been considered previously in our

article. We let r ≥ 2 and s ≥ 2. Under these assumptions, by setting g(n) =
r√n
s in (1.11), we

can show that (4.3) may be written as

mF⌊ r√m+1
s

⌋ + 1− sr −

⌊ r√m+1
s

⌋
−2∑

ℓ=0

(((2 + ℓ)s)r − 1)Fℓ,

so that, for a given value r, by expanding the above summand, we may apply known techniques
from Ollerton and Shannon, et al. [17] (cf. [2, 12]) on the evaluation of sums of the form S(t,m),
as defined in (1.1).

In (1.11), we set g(n) = log2
(
n
s

)
for a natural number s. This gives us that

m∑
n=1

F⌊log2(n
s )⌋ = mF⌊log2(m+1

s )⌋ +
m∑

n=1

n
(
F⌊log2(n

s )⌋ − F⌊log2(n+1
s )⌋

)
. (4.4)

In this case, determining an identity for the second factor in the summand on the right side
of (1.11) is more complicated, compared to our previous proofs. We need to consider the two
separate cases indicated in (4.5), adopting the usual convention for extending the Fibonacci
sequence (Fi : i ∈ N0) to allow negative indices for Fi, with the recursion Fi = Fi−1 + Fi−2

holding true for all integers i.
For an integer n ≥ 1, the difference F⌊log2(n

s )⌋ − F⌊log2(n+1
s )⌋ is equal to{

−1{s 2i−1:i∈N}(n)F⌊log2(n+1
s )⌋−2, if n ≥ s;

−1{⌈s 2i−1⌉:i∈{⌈log2( 1
s )⌉,⌈log2( 1

s )⌉+1,...,0}}(n)F⌊log2(n+1
s )⌋−2, if n < s,

(4.5)

letting ⌈·⌉ denote the ceiling function. For m < s and m ≥ s, we may write the right side of
(4.4) as

mF⌊log2(m+1
s )⌋ −

⌊log2(m+1
s )⌋∑

ℓ=⌈log2( 1
s )⌉

⌈
s2ℓ − 1

⌉
F⌊

log2

(
⌈s2ℓ−1⌉+1

s

)⌋
−2

,

noting that ⌈s2ℓ − 1⌉ = s2ℓ − 1 when ℓ ≥ 0. Although the indices of the Fibonacci numbers
involved in the above summands may be simplified, evaluating the required sums proves to be
considerably difficult, and this may serve as a suitable subject for a follow-up to our article.

5. Conclusion

All of the above proofs involve the application of the identity in (1.11). However, we may
mimic (1.11) and the above proofs using sequences defined with Fibonacci-type recurrence
relations, such as the Lucas sequence and the rows of Wythoff arrays; see A035513 in the OEIS
[16]. However, such generalizations would typically require appropriate analogues of the closed
forms for the sums of the form S(t,m), recalling (1.1). Furthermore, the input sequence g(n)
for (1.11) is supposed to be such that it has an inverse h(n) such that g(h(n)) = h(g(n)) = n
and such that h(n) is integer-valued. For example, this applies to g(n) =

√
n and its inverse

h(n) = n2. Also, in all of the above proofs, we used indicator functions, via the property that

⌊g(n+ 1)⌋ − ⌊g(n)⌋ ∈ {0, 1} (5.1)

for all n.
From the foregoing considerations, we encourage the development of our methods using:
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(1) Higher-order recurrence relations, apart from the recurrences for the Fibonacci and
Lucas sequences; and

(2) Input sequences g(n) that are steeper relative to the constraint indicated in (5.1).

We have considered the sequence of triangular numbers in relation to our proof of Theorem
2.1 because they form an integer sequence given by a quadratic polynomial of basic importance
in many areas in mathematics. This has led us to discover an analytical formula, which appears
to be new, for the OEIS sequence A006463. For the sake of brevity, we leave it to a future
project to explore applications and generalizations of this result.

Acknowledgement. The author thanks an anonymous referee who provided helpful com-
ments concerning this article.
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