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Abstract. In a base phi representation, a natural number is written as a sum of powers of the
golden mean φ. There are many ways to do this. Well known is the standard representation,
introduced by George Bergman in 1957, where a unique representation is obtained by requiring
that no consecutive powers, φn and φn+1, occur in the representation. In this paper, we
introduce a new representation by allowing that the powers φ0 and φ1 may occur at the same
time, but no other consecutive powers. We then argue that this representation is much closer
to the classical representation of the natural numbers by powers of an integer than Bergman’s
standard representation.

1. Introduction

A natural number N is written in base phi if N has the form

N =
∞∑

i=−∞
aiφ

i,

where the ai are arbitrary nonnegative numbers, and where φ := (1 +
√
5)/2 is the golden

mean.
There are infinitely many ways to write a numberN as a sum of powers of φ. In 1957, George

Bergman ([2]) proposed restrictions on the digits ai, which entail that the representation
becomes unique. This is generally accepted as the representation of the natural numbers in
base phi. A natural number N is written in the Bergman representation if N has the form

N =

∞∑
i=−∞

diφ
i,

with digits di = 0 or 1, and where di+1di = 11 is not allowed. Similarly for base 10 numbers,
we write these representations as

β(N) = dLdL−1 . . . d1d0 · d−1d−2 . . . dR+1dR.

Here L is the largest positive, and R is the smallest negative power of φ that occurs.

The goal of the present paper is to introduce a new representation, which we tendentiously
call the canonical representation, which has properties that are much closer to the classical rep-
resentation of the natural numbers by powers of an integer than the Bergman representation.
The canonical representation of a natural number N by powers of φ has the form

N =
∞∑

i=−∞
ciφ

i,

with digits ci = 0 or 1, and where ci+1ci = 11 is not allowed, except that c1c0 = 11, as soon
as this is possible. We write these representations as

γ(N) = cLcL−1 . . . c1c0 · c−1c−2 . . . cR+1cR.
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Note that to obtain the canonical representation of N , one first determines if there exists a
representation of N with c1c0 = 11, and no other ci+1ci = 11, and if this is not the case, then
γ(N) = β(N).

The following table compares the two representations. Most of the time, γ(N) = β(N).
The sequence N = 3, 7, 10, . . . for which γ(N) ̸= β(N) is characterized in Proposition 3.3.

N β(N) γ(N)
1 1·0 1·0
2 10·01 10·01
3 100·01 11·01
4 101·01 101·01
5 1000·1001 1000·1001
6 1010·0001 1010·0001

N β(N) γ(N)
7 10000·0001 1011·0001
8 10001·0001 10001·0001
9 10010·0101 10010·0101
10 10100·0101 10011·0101
11 10101·0101 10101·0101
12 100000·101001 100000·101001

We now come to the heart of the matter. Why does the representation γ(·) deserve1 to be
called canonical? The evidence for this is two-fold. Representations of the natural numbers
in number systems can have two important characteristics. These two characteristics might
be indicated as ‘horizontal’, and ‘vertical’. Here ‘horizontal’ refers to the length of the repre-
sentations discussed in Section 4, and ‘vertical’ refers to Section 6. On the one hand, these
characteristics are shared by the canonical base phi representation, and by the classical base
b representation—where, one has to take into account that in base b there are only digits with
nonnegative indices. On the other hand, neither one of these characteristics is shared by the
Bergman representation.

2. Addition of Base Phi Representations

When N and N ′ are two natural numbers, with base phi representations aL . . . aR and
a′L′ . . . a′R′ , where we allow the digits ai, a

′
i to be arbitrary nonnegative numbers, then we obtain

a base phi representation of N + N ′, with digits ai + a′i for max (L,L′) ≤ i ≤ min (R,R′),
supplementing missing digits by 0’s.

For instance, if we add the Bergman representations 10 · 01 and 100 · 01 of the numbers 2
and 3, we see this as 010 · 01 + 100 · 01 = 110 · 02, which is a base phi representation of 5.

In this paper, we consider only β(N) + β(N ′) and γ(N) + γ(N ′). Note that in general,
β(N) + β(N ′) ̸= β(N +N ′), and similarly for γ(·). Because they represent, nevertheless, the
same number, we will write β(N) + β(N ′)

.
= β(N +N ′), and similarly for γ(·).

When we add two numbers in Bergman or canonical representation, then, in general, there
is a carry to the left and (two places) to the right. For example,

γ(5) = γ(4 + 1)
.
= γ(4) + γ(1) = 101 · 01 + 1· .

= 102 · 01 .
= 110 · 02 = 1000 · 1001.

Here we used twice that 2φn = φn+1 + φn−2 for all integers n, a direct consequence of γ(2) =
10 · 01. Note that there is not only a double carry, but that we also have to get rid of the 11’s
(except if c1c0 = 11), by replacing them with 100’s. This is allowed because of the equation
φn+2 = φn+1 + φn. We call this operation a golden mean flip.

1The word ‘canonical’ for our expansion seems to conflict with a free interpretation of Occam’s razor: a
principle formulated by the 14th century Franciscan friar William of Ockham. Called Ockam’s razor (often
spelled Occam’s razor), it advises you to seek the more economical solution. Occam’s Razor is the principle
that, “non sunt multiplicanda entia praeter necessitatem” [i.e., “don’t multiply the agents in a theory beyond
what’s necessary.”]”

106 VOLUME 61, NUMBER 2



BASE PHI REPRESENTATIONS

3. Existence and Uniqueness

The key to the existence and uniqueness of the canonical representation is the following
lemma.

Lemma 3.1. A natural number N has a canonical representation γ(N) with c1c0 = 11 if and
only if N has a Bergman representation β(N) with d1d0 · d−1 = 00 · 0.

Proof. The proof is based on the analysis of the Bergman representation from the paper [4].
Let β(N) = dLdL−1 . . . d1d0 · d−1d−2 . . . dR+1dR. In [4], the natural numbers N are coded

by four letters {A,B,C,D} according to a coding function T as follows:
We let

T (N) = A iff d1d0(N) = 10, T (N) = B iff d1d0 · d−1(N) = 00 · 0,
T (N) = C iff d0(N) = 1, T (N) = D iff d1d0 · d−1(N) = 00 · 1.

This leads to the following scheme.

N β(N) T (N)

1 1 C
2 10 · 01 A
3 100 · 01 B
4 101 · 01 C
5 1000 · 1001 D
6 1010 · 0001 A
7 10000 · 0001 B
8 10001 · 0001 C

N β(N) T (N)

9 10010 · 0101 A
10 10100 · 0101 B
11 10101 · 0101 C
12 100000 · 101001 D
13 100010 · 001001 A
14 100100 · 001001 B
15 100101 · 001001 C
16 101000 · 100001 D

N β(N) T (N)

17 101010 · 000001 A
18 1000000 · 000001 B
19 1000001 · 000001 C
20 1000010 · 010001 A
21 1000100 · 010001 B
22 1000101 · 010001 C
23 1001000 · 100101 D
24 1001010 · 000101 A

Note that in this table, A is always followed by B, and that B is always preceded by A.
That this is true for all natural numbers N follows directly from Theorem 5.2 in [4]. With
these ingredients, we can now give a proof of the lemma. The first step is to prove the
following claim. Here we use that according to Remark 5.4 in [4], Bergman representations
with d1d0 · d−1(N) = 10 · 1 cannot occur.

CLAIM: A natural number N has a canonical representation γ(N) with c1c0 = 11 if and
only if N − 1 has a Bergman representation β(N − 1) with d2d1d0 · d−1 = 010 · 0, in other
words: N − 1 has type A.

[Proof of Claim ⇐]. Suppose N − 1 has a Bergman representation β(N − 1) with d2d1d0 ·
d−1 = 010 · 0. When we add 1, we find that β(N)

.
= 1 . . . 011 · 0 . . . 1, where .

= means that we
obtain a representation of N , but not the Bergman representation. But then, clearly we have
obtained a representation of N with c1c0 = 11, but with no other occurrences of 11.

[Proof of Claim ⇒]. Suppose γ(N) = 1 . . . 011 · 0 . . . 1. When we perform a golden mean
flip, we obtain γ(N)

.
= 1 . . . 100 · 0 . . . 1. Possibly, we have to perform more golden mean

flips to obtain a representation of N with no 11. In any case, the result will be of the
form 1 . . . 00 · 0 . . . 1. By the unicity of the Bergman representation, we have found that
β(N) = 1 . . . 00 · 0 . . . 1. So N is of type B. But then, given above, N − 1 must be of type A.

The lemma now simply follows because A is always followed by B in the T -coding of the
natural numbers. □

Proposition 3.2. The canonical representation of a natural number is unique.
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Proof. Suppose N has canonical representations with c1c0 ̸= 11. By Lemma 3.1, these repre-
sentations correspond 1-to-1 to Bergman representations of N , so uniqueness follows from the
uniqueness of the Bergman representation.

Suppose N has canonical representations with c1c0 = 11. Changing c0 = 1 to c0 = 0, these
representations correspond 1-to-1 to Bergman representations of N −1. Again, uniqueness
follows from the uniqueness of the Bergman representation. □

How many canonical representation are there in which 11 occurs? It follows from the next
proposition that this happens for about 28% of the natural numbers.

Proposition 3.3. The canonical representation is not equal to the Bergman representation,
i.e., γ(N) ̸= β(N), if and only if there exists a natural number n, such that N = ⌊(φ+ 2)n⌋.

Proof. Because by Lemma 3.1, γ(N) ̸= β(N) if and only if N is of type B, Theorem 5.1 in [4]
gives the result. □

4. The Length of Representations

In this section, we compare the lengths L+ |R|+1 of the canonical representations γ(N) =
cL . . . c0 · c−1 . . . cR and the Bergman representations β(N) = dL . . . d0 · d−1 . . . dR.

Note that in the classical base b representation, the natural numbers are partitioned into
intervals Bn := [bn−1, bn− 1], where the representation of a number N has n digits if and only
if N ∈ Bn. For base phi representations, the role of bn is taken over by the Lucas numbers
Ln, where L0, L1, L2, · · · = 2, 1, 3, . . . are defined by L0 := 2, L1 := 1, and Ln = Ln−1 + Ln−2

for n ≥ 2.
It is therefore important to know the representations of the Lucas numbers. The formulas

(4.3) for γ(L2n + 1) and (4.4) for γ(L2n+1 + 1) will be useful in Section 6.

Lemma 4.1. For all n ≥ 1, one has

β(L2n) = 102n · 02n−11, γ(L2n) = [10]n−111 · 02n−11, (4.1)

β(L2n+1) = γ(L2n+1) = 1[01]n · [01]n, (4.2)

β(L2n + 1) = γ(L2n + 1) = 102n−11 · 02n−11, (4.3)

β(L2n+1 + 1) = γ(L2n+1 + 1) = 102n+1 · [10]n01. (4.4)

Proof. The expressions for β(L2n) and β(L2n+1) are well-known (see, e.g., [4]), and easy to
prove: they follow directly from L2n = φ2n + φ−2n, and the recursion L2n+1 = L2n + L2n−1.

When we perform n golden mean flips on [10]n−111·02n−11, we obtain 102n·02n−11 = β(L2n).
This implies the expression for γ(L2n).

The equality γ(L2n+1) = β(L2n+1) follows by an application of Lemma 3.1, because β(L2n+1)
is of type C.

The expression for β(L2n+1) and γ(L2n+1) follows immediately from Lemma 3.1 by adding
1 to the Bergman expansion of L2n in equation (4.1), which yields a valid Bergman expansion
for L2n + 1, which is of type C.

We leave the proof of equation (4.4) to the reader, see also Lemma 3.3 (2) in [10]. □

What are the intervals of constant expansion length for the Bergman representation?
As in [4], we define the so called Lucas intervals Λ2n := [L2n, L2n+1] and Λ2n+1 := [L2n+1 +
1, L2n+2 − 1].
The next result is Theorem 2.1 in [10], derived from Theorem 1 in [8].
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Proposition 4.2. The intervals of constant expansion length for the Bergman expansion are
the Lucas intervals Λn, n ≥ 1. More precisely: if β(N) = dLdL−1 . . . d1d0 · d−1d−2 . . . dR+1dR,
then the left most index L = L(N) and the right most index R = R(N) satisfy

L(N) = 2n = −R(N) iff N ∈ Λ2n, L(N) = 2n+ 1, −R(N) = 2n+ 2 iff N ∈ Λ2n+1.

What is ‘wrong’ with the Bergman Lucas intervals when we compare them with the intervals
Bn of constant expansion length for base b? Answer: The odd index intervals are too small
compared with the even index intervals: |Λ2n| = L2n−1 + 1, and |Λ2n+1| = L2n − 1.

Our next task is to determine the intervals of constant expansion length for the canonical
representation.
We define the canonical Lucas intervals

Γ0 := {1}, Γn := [Ln + 1, Ln+1] for n ≥ 1.

So Γ1 = [2, 3], Γ2 = {4}, Γ3 = [5, 7], Γ4 = [8, 11], etc.
Note that |Γn| = Ln+1 −Ln for all n ≥ 1, an expression that is similar to |Bn| = bn − bn−1 for
the classical base b expansion.

Proposition 4.3. The intervals of constant expansion length for the canonical expansion
are the canonical Lucas intervals Γn, n ≥ 1. More precisely: if γ(N) = cLcL−1 . . . c1c0 ·
c−1c−2 . . . cR+1cR, then the left most index L = L(N) and the right most index R = R(N)
satisfy

L(N) = 2n = −R(N) iff N ∈ Γ2n, L(N) = 2n+ 1, −R(N) = 2n+ 2 iff N ∈ Γ2n+1.

Proof. Directly from Lemma 4.1, we see that |γ(L2n)| = |β(L2n)| − 1. Therefore, we have to
move the first number L2n from Λ2n = [L2n, L2n+1] to Λ2n−1 = [L2n−1 + 1, L2n − 1] as a first
step to obtain the intervals of constant length expansion for the canonical expansion. This
leads exactly to the intervals Γn. It remains to see that this first step is the only change we
have to make, i.e., that |γ(N)| = |β(N)| for all N ̸= L2n. To prove this, note that we can
transform the canonical representation to the Bergman representation by a number of golden
mean flips, starting with replacing 011 · 0 in γ(N) by 100 · 0. A second golden mean flip will
follow if and only if 1011 · 0 occurs in γ(N), and then 0000 · 0 occurs in β(N). Now either this
process stops before reaching the left end of γ(N) and then |γ(N)| = |β(N)|, or it continues to
the left end, and then β(N) = 10 . . . 0 ·d−1 . . . dR. But, by Lemma 4.1, this information suffices
to conclude that N = L2n for some natural number n. This follows from the observation in [6]
that, in general, the β+−part of an expansion β(N) = β+(N) · β−(N) determines N , because
the β−-part codes a real number smaller than 1. □

5. The Recursive Structure Theorem

To obtain recursive relations for the Bergman representation is relatively simple for the
intervals Λ2n, but the intervals Λ2n+1 = [L2n+1 + 1, L2n+2 − 1] have to be divided into three
subintervals. These three intervals are

In := [L2n+1 + 1, L2n+1 + L2n−2 − 1], (5.1)

Jn := [L2n+1 + L2n−2, L2n+1 + L2n−1], (5.2)

Kn := [L2n+1 + L2n−1 + 1, L2n+2 − 1]. (5.3)

It will be convenient to use the free group versions of words of 0’s and 1’s. This means that
we will write, for example, (01)−10001 = 1−1001. We can then formulate the following result
from [5].
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Theorem 5.1. [Recursive structure theorem for the Bergman representation]
I For all n ≥ 1 and k = 1, . . . , L2n−1, one has β(L2n+k) = β(L2n)+β(k) = 10 . . . 0β(k) 0 . . . 01.
II For all n ≥ 2 and k = 1, . . . , L2n−2 − 1,

In : β(L2n+1 + k) = 1000(10)−1β(L2n−1 + k)(01)−11001,

Kn : β(L2n+1 + L2n−1 + k) = 1010(10)−1β(L2n−1 + k)(01)−10001.

Moreover, for all n ≥ 2 and k = 0, . . . , L2n−3,

Jn : β(L2n+1 + L2n−2 + k) = 10010(10)−1β(L2n−2 + k)(01)−1001001.

Because the canonical Lucas intervals are only—literally—marginally different from the
Bergman Lucas intervals, we can transform Theorem 5.1 into a similar result for the canonical
representation.

This time, the interval Γ2n+1 = [L2n+1 + 1, L2n+2] has to be divided into the three subin-
tervals

In := [L2n+1 + 1, L2n+1 + L2n−2], (5.4)

Jn := [L2n+1 + L2n−2 + 1, L2n+1 + L2n−1], (5.5)

Kn := [L2n+1 + L2n−1 + 1, L2n+2]. (5.6)

The result becomes the following.

Theorem 5.2. [Recursive structure theorem for the canonical representation]
I For all n ≥ 1 and k = 1, . . . , L2n−1, one has γ(L2n + k) = 102n · 02n−11 + γ(k) =
10 . . . 0 γ(k) 0 . . . 01.
II For all n ≥ 2 and k = 1, . . . , L2n−2,

In : γ(L2n+1 + k) = 1000(10)−1γ(L2n−1 + k)(01)−11001,

Kn : γ(L2n+1 + L2n−1 + k) = 1010(10)−1γ(L2n−1 + k)(01)−10001.

Moreover, for all n ≥ 2 and k = 1, . . . , L2n−3,

Jn : γ(L2n+1 + L2n−2 + k) = 10010(10)−1γ(L2n−2 + k)(01)−1001001.

Proof. These statements follow directly from Theorem 5.1, except that we have to do an extra
check for the exceptional numbers N = L2n, and for the endpoints of the intervals In and Kn

in (5.4) and (5.6).
The numbers N = L2n+2 are the endpoints of the intervals Kn, and the recursion formula

above remains valid for k = L2n−2, as we can see by an application of Lemma 4.1:

γ(L2n+2) = [10]n11 · 02n+11 = 10[10]n−111 · 02n−1001 = 1010(10)−1γ(L2n)(01)
−10001.

The endpoint of In is equal to L2n+1+L2n−2 = L2n+L2n−1+L2n−2 = 2L2n. For the recursion
formula above to remain valid for k = L2n−2 in the In case, we therefore have to prove that

γ(2L2n) = 1000(10)−1γ(L2n−1 + L2n−2)(01)
−11001

= 1000(10)−1γ(L2n)(01)
−11001

= 1000(10)−1[10]n−111 · 02n−11(01)−11001

= 1000[10]n−211 · 02n−21001.

We leave the proof of this canonical expansion of 2L2n as a (nontrivial) exercise to the reader
(Hint: pass to the Bergman expansion, and exploit the unicity of the canonical expansions.
See also page 3 of [5]) □
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Remark 5.1. It is important to observe the close relationship between the intervals In, Jn,
Kn in (5.4), (5.5), (5.6) and the canonical Lucas intervals:

In = Γ2n−1 + L2n, Jn = Γ2n−2 + L2n+1, Kn = Γ2n−1 + L2n+1.

Here we use the notation A + x = {a + x : a ∈ A} for a set of real numbers A and a real
number x.

We end this section with a typical application of the Recursive Structure Theorem, a lemma
that will be useful in the next section.

Lemma 5.3. a) For all n ≥ 2, one has c−2n+3(N) = 0 for all N from Γ2n.
b) For all n ≥ 2, one has c−2n+1(N) = 1 for the first L2n−1 numbers N from Γ2n+1, and

c−2n+1(N) = 0 for the last L2n−2 numbers N from Γ2n+1.

Proof of a). By the Recursive Structure Theorem, Part I, the expansions in Γ2n =
[L2n + 1, L2n+1] look like the expansions in the interval [1, L2n−1]. This interval is a union
of Γ0,Γ1, . . . ,Γ2n−1,Γ2n−2. Except for the last two, the numbers N from these intervals have
canonical expansions that have a right endpoint R(N) with −R(N) ≤ 2n−4. So automatically,
we have c−2n+3(N) = 0 for the N from these intervals. From Proposition 4.3, we see that the
last two intervals Γ2n−1 and Γ2n−2 contain only numbers N with −R(N) = 2n− 2. But then,
the digit c−2n+3(N) directly to the left of c−2n+2(N) = 1 must be equal to 0.

Proof of b). From Proposition 4.3, we have −R(N) = 2n+2 for all N ∈ Γ2n+1 = In∪Jn∪Kn.
Using Remark 5.1, we see that the interval In ∪ Jn has length |Γ2n−1|+ |Γ2n−2| = L2n−2 +

L2n−3 = L2n−1. We see directly from the Recursive Structure Theorem, Part II, that the
expansions of the numbers N in In ∪ Jn have cR+3(N)cR+2(N)cR+1(N)cR(N) = 1001. Here
R(N) + 3 = −2n − 2 + 3 = −2n + 1. On the other hand, we see that the expansions in the
interval Kn all have in cR+3(N)cR+2(N)cR+1(N)cR(N) = 0001. These two observations imply
part b). □

6. Vertical Runs

When we make a table of the classical base b expansions of the natural numbers, one observes
a regular structure of the runs of the digits in the columns of the table. As an example, consider
the case b = 2 of the binary expansion.

N expansion
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111

N expansion
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

N expansion
16 10000
17 10001
18 10010
19 10011
20 10100
21 10101
22 10110
23 10111

In digit position i, for i ≥ 0, only runs of 2i 1’s occur—separated by runs of 2i 0’s.

For the Bergman expansion, there is no such regularity: vertical runs of 1’s of length
1,2,3,4,5,6, and 7 do occur. This is completely different for the canonical expansion: see
Theorem 6.2. Part of the proof of this theorem is provided by the following lemma, which
compares digits of the numbers at the end and the beginning of canonical Lucas intervals.
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Lemma 6.1. Let N have canonical expansion γ(N) = cL(N) . . . cR(N), where we add 0’s
when comparing two expansions, for example c2n+1(L2n) = 0. Then for all n ≥ 1:

[OE] ci(L2n) = 1 and ci(L2n + 1) = 1 happens if and only if i = 0 or i = −2n,
[EO] ci(L2n+1) = 1 and ci(L2n+1 + 1) = 1 does not happen for any i = −2n− 2, . . . , 2n+ 2.

Proof. This follows directly from Lemma 4.1. See, e.g., equation (4.1) and equation (4.3) for
[OE]. □

In Lemma 6.1, [OE] refers to the indices of the two successive Lucas intervals Γ2n−1, Γ2n,
[EO] to the indices of the two successive Lucas intervals Γ2n, Γ2n+1.

Theorem 6.2. In the canonical base phi expansion of the natural numbers, only vertical runs
of 1’s with length a Lucas number occur, and all Lucas numbers occur as a run length. More
precisely: in digit position i, only runs of length Li−1 occur when i ≥ 1, and only runs of
length L−i occur when i ≤ 0.

Proof. The proof will be divided into five parts: i = 0, i = −1, i > 0, i < −1 and i even, and
i < −1 and i odd. In the last three cases, we partition the natural numbers in canonical Lucas
intervals, and use the Recursive Structure Theorem 5.2. For i < −1, the situation is more
complicated than for i > 1, which forces us to consider i even and i odd separately.

Part1: i = 0. Then L−i = L0 = 2. We remark here that we did not mention in the statement
of the theorem that for i = 0 the first run deviates from the pattern: it has length 1, and this
does not change if we would add N = 0 to the table.

According to Theorem 5.1 in [4], one has d0(N) = 1 if and only if N = ⌊nφ⌋ + 2n + 1 for
some natural number n. According to Lemma 3.1, γ(N) ̸= β(N) if and only if there exists a
natural number n such that N = ⌊nφ⌋+ 2n. If we combine these two statements, we see that
all the runs of 1’s (except the first one) have length 2 = L0 in digit position i = 0.

Part 2: i = −1. From Remark 5.1 from [4], we have that for the Bergman representation,
d−1(N) = 1 if and only ifN = 3⌊nφ⌋+n+1 for some natural number n. Because by Proposition
3.3, γ(N) ̸= β(N) if and only if N is of type B, which has d1d0 ·d−1(N) = 00 ·0, we can deduce
that also for the canonical representation, c−1(N) = 1 if and only if N = 3⌊nφ⌋ + n + 1 for
some natural number n. This obviously implies that the runs of 1’s at digit position i = −1
have length L1 = 1.

The proofs of Parts 3, 4, and 5 are based on the Recursive Structure Theorem. When we
perform the induction, we have to prove that runs of 1’s do not extend beyond the intervals
that are produced by the induction. In the following, we will show that this holds for all digit
positions with the exception of i = 0 and certain positions at the left end and right end of
the expansion. Note that we can ignore the case i = 0, because it has already been addressed
in Part 1 of the proof. For canonical Lucas intervals Γ2n+2, this “isolated run property” is
considered in [*], for canonical Lucas intervals Γ2n+1 in [**].

[*] For the Recursive Structure Theorem, Part I, we use that the runs of 1’s in column i in
the interval Γ2n+2 are a copy of the runs of 1’s in the interval [1, L2n+1], except for the left
most column, which corresponds to digit position L = 2n + 2, and the right most column,
corresponding to digit position R = −2n− 2.

We still have to check that no new runs are created at the beginning or the end of the
interval Γ2n+2. This is obvious for the beginning, because ci(1) = 0 for i ̸= 0, and for the end,
it follows from Lemma 6.1 [EO].
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[**] For the Recursive Structure Theorem, Part II, we use that the runs of 1’s in column
i in the interval Γ2n+1 are a copy of the column of digit i lying in the intervals In, Jn, and
Kn, except for the three leftmost columns, and the five right most columns. These exceptions
correspond to digit positions L = 2n+ 1, L− 1 = 2n, and L− 3 = 2n− 1, at the left, and at
the right to positions with indices R+3 = −2n+1, R+2 = −2n, R+1 = −2n−1, R = −2n−2
when N is from In or Kn, and to positions with indices R + 4, R + 3, R + 2, R + 1, R when
N is from Jn. Here you use computations like 1000(10)−1 = 1001−1.

This time, we still have to check that no new runs are created at the beginning or the end
of the intervals In, Jn, and Kn.

For the beginning and the end of Γ2n+1 = In ∪ Jn ∪Kn, this follows again from Lemma 6.1
[EO], respectively Lemma 6.1 [OE], except for i = −2n− 2.

By Remark 5.1, the digits in column i of In, Jn, and Kn are equal to the corresponding
digits in column i of the intervals Γ2n−1, Γ2n−2, and Γ2n−1.

There will be no new run created on the boundary between In and Jn. We have that Γ2n−1

(the shift of In) ends with N = L2n, and ci(L2n) = 0 by equation (4.1), when ci is not the
digit of one of the last four columns.

Finally, there will be no new run created on the boundary between Jn and Kn, which are
shifts of the two successive intervals Γ2n−2 and Γ2n−1, by Lemma 6.1 [EO].

Part 3: i ≥ 1.
We first illustrate how this works for the case i = 1. The column of digit position 1 starts

with a run of length Li−1 = L0 = 2 in Γ1 = [2, 3]. Then a 0 follows in Γ2 = {4}, followed
by another run of length 2 in Γ3 = [5, 6, 7]. Suppose one has proved that only runs of length
2 occur in the Lucas intervals Γ1, . . . ,Γm for some natural number m. We then proceed by
induction, distinguishing the cases m = 2n and m = 2n+ 1.

We start with the case m = 2n + 1. Then, the next interval is Γ2n+2. By the Recursive
Structure Theorem Part I, the column of digit position 1 lying in this interval is a copy of the
column of digit 1 lying in the interval [1, L2n+1]. Therefore, by the induction hypothesis and
[**], there will be only runs of length 2 in this part of the column.

For the case m = 2n, the next interval is Γ2n+1. By the Recursive Structure Theorem Part
II, the column of digit position 1 lying in this interval is a copy of the column of digit 1 lying
in the intervals In, Jn, and Kn. Therefore, by the induction hypothesis and [*], there will be
only runs of length 2 in this part of the column. This ends the proof of the case i = 1.

We next consider the case i for arbitrary i ≥ 2. The proof is similar to the proof of the case
i = 1. The main complication is the change in the digits occurring at the left most part of the
expansion in the Recursive Structure Theorem. This is solved by giving the induction more
attention at the start.

The first run of 1’s in digit column i starts at the number N = Li + 1 in Γi, because all
ci(N) = 1 for N ∈ Γi (see i = 2n and i = 2n + 1 in Proposition 4.3). This run has length
Li−1, because |Γi| = Li−1 and by Lemma 6.1.

Next, for all N in Γi+1, one has ci(N) = 0, simply because ci+1(N) = 1. So, no runs of 1’s
occur in Γi+1.

We then pass to Γi+2.
Suppose i is even. Then, by the Recursive Structure Theorem Part I, the column of digit

position i lying in the interval Γi+2 is a copy of the column of digit i lying in the interval
[1, Li+1]. But we know already that this part only contains runs of 1’s of length Li−1 (actually
there is a single run, lying in Γi). Then also, Γi+2 will only have a run of 1’s of length Li−1.
Moreover, this is the length of that run by Lemma 6.1 [EO].
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Suppose i is odd. Then, by the Recursive Structure Theorem Part II, the column of digit
position i lying in the interval Γi+2 can be obtained from the column of digit i lying in the
intervals Γi, Γi−1, and Γi. In the first case, all the Li−1 1’s turn into 0’s, in the second case,
we obtain only 0’s, simply because the right most 1 of the expansions in Γi−1 is in column
i− 1, and in the third case, all the Li−1 1’s turn into 1’s. Moreover, in this last case, this is a
run of length Li−1 by an application of Lemma 6.1 [OE]. Conclusion: also Γi+2 will only have
a run of 1’s of length Li−1.

Suppose one has proved that only runs of length Li−1 occur in the Lucas intervals Γi, Γi+1,
. . . , Γm for some natural number m ≥ i + 2. We then proceed by induction, distinguishing
again the cases m = 2n and m = 2n+ 1.

We start with the case m = 2n + 1. Then, the next interval is Γ2n+2. By the Recursive
Structure Theorem Part I, the column of digit position i lying in this interval is a copy of
the column of digit i lying in the interval [1, L2n+1] = [1, Lm], except for the leftmost column.
This column has digit position 2n + 2. But i + 2 ≤ m = 2n + 1, therefore, by the induction
hypothesis and [*], there will be only runs of length Li−1 in this part of column i.

For the case m = 2n, the next interval is Γ2n+1. By the Recursive Structure Theorem Part
II, the column of digit position i > 0 lying in this interval is a copy of the column of digit i
lying in the intervals In, Jn, and Kn, except for the three leftmost columns. These three have
indices L = 2n + 1, L − 1 = 2n, and L − 3 = 2n − 1. But 2n = m ≥ i + 2, i.e., i ≤ 2n − 2.
Therefore, by the induction hypothesis and [**], there will be only runs of length Li−1 in this
part of the column.

Part 4: i < −1, i even.
Suppose −i = 2j is even. From Proposition 4.3, we obtain that the first run of numbers N

with digit c−2j equal to 1 starts with all numbers N in the interval Γ2j−1, and then continues
in the interval Γ2j . The run will not continue in the next interval Γ2j+1 by Lemma 6.1.
Conclusion: the first run of 1’s in column −2j has length

|Γ2j−1|+ |Γ2j | = L2j−2 + L2j−1 = L2j = L−i.

Next, we consider the interval Γ2j+1. By the Recursive Structure Theorem Part II, because
for In and Kn, the last three digits in the replacement equation are 001, there will be 0’s in the
corresponding parts of column i. The same is true for the part corresponding to the interval
Jn. So, no runs of 1’s occur in Γ2j+1. We then pass to Γ2j+2.

Here, by the Recursive Structure Theorem Part I, the column of digit position i lying in the
interval Γ2j+2 is a copy of the column of digit i lying in the interval [1, L2j+1]. But we know
already that this part only contains runs of 1’s of length L−i (actually there is a single run,
lying in the union of Γ2j−1 and Γ2j). Then also, Γ2j+2 will only have a run of 1’s of length
L−i. Moreover, this is the length of that run by Lemma 6.1 [EO].

Suppose one has proved that only runs of length L−i occur in the Lucas intervals Γ−i+2,
. . . , Γm for some natural number m ≥ 2j + 2. We then proceed by induction, distinguishing
again the cases m = 2n and m = 2n+ 1.

We start with the case m = 2n + 1. Then, the next interval is Γ2n+2. By the Recursive
Structure Theorem Part I, the column of digit position i lying in this interval is a copy of the
column of digit i lying in the interval [1, L2n+1], except for the rightmost column. This column
has digit position −i = 2n + 2. But, −i = 2j ≤ m − 2 = 2n − 1. Therefore, by the induction
hypothesis and [**], there will be only runs of length L−i in this part of the column.

For the case m = 2n, the next interval is Γ2n+1. By the Recursive Structure Theorem Part
II, the column of digit position i lying in this interval is a copy of the column of digit i lying
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in the intervals In, Jn, and Kn, except for the four rightmost columns for In and Kn, and the
five rightmost columns for Jn. But −i ≤ R − 5 = 2n− 3, because 2n = m ≥ 2j + 2 = −i+ 2.
Therefore, by the induction hypothesis, and [*], there will be only runs of length L−i in this
part of the column. Here we need i ̸= −(2n+ 2). This is satisfied because −i < 2n.

Part 5: i < −1, i odd.
Suppose −i = 2j + 1 is odd. Where does the first run of 1’s at digit position i = −2j − 1

occur? This is more complicated than in all previous cases where this happened at position L
(for i > 0) or position R (for i < 0, i even).

CLAIM: The first run of 1’s occurs in column R + 3 in Γ2j+3, where all numbers have R =
−2j − 4, as given in Proposition 4.3.

Indeed, note that Γ2j+1 and Γ2j+2 would be the first two candidates for the occurrence of
1’s at position −(2j+1), but that both intervals have numbers N with R(N) = −(2j+2), and
so there will be 0’s at position −(2j + 1), because 11 does not occur. The next candidate is
the interval Γ2j+3. Here we use Lemma 5.3, Part b), with n = j + 1. This lemma gives that
c−2j−1(N) = 1 for the first L2j+1 = L−i numbers N from Γ2j+3, and c−2j−1(N) = 0 for the
remaining numbers N . This proves the claim above.

Next, consider the interval Γ2j+4. By the Recursive Structure Theorem Part I, the column
of digit position i lying in this interval is a copy of the column of digit i lying in the interval
[1, L2j+3] = Γ0 ∪ · · · ∪Γ2j+2 (except for the rightmost column). But the first run of 1’s occurs
in column R+ 3 in Γ2j+3, so there are no 1’s at all in column R+ 3 in Γ2j+4.

Next, suppose one has proved that only runs of length L−i occur in the canonical Lucas
intervals Γ−i+2, Γ−i+1, . . . , Γm for some natural number m ≥ 2j + 4. We then proceed by
induction, distinguishing again the cases m = 2n and m = 2n+ 1.

We start with the case m = 2n + 1. Then, the next interval is Γ2n+2. By the Recursive
Structure Theorem Part I, the column of digit position i lying in this interval is a copy of the
column of digit i lying in the interval [1, L2n+1] = [1, Lm], except for the rightmost column
with index R = −2n − 2. So, we need that −i < −R = 2n + 2, which holds if and only if
2j + 1 < m. This is certainly satisfied.

Therefore, by the induction hypothesis and [*], there will be only runs of length L−i in this
part of the column of digit i.

For the case m = 2n, the next interval is Γ2n+1, with R = −2n − 2. By the Recursive
Structure Theorem Part II, the column of digit position i lying in this interval is a copy of the
column of digit position i lying in the intervals In, Jn, and Kn, except for the columns with
indices R+3, R+2, R+1, R, when N is from In or Kn, and except for the columns with indices
R+4, R+3, R+2, R+1, R, whenN is from Jn. So we need that −i < −R−4 = 2n+2−4 = m−2,
which holds if and only if 2j + 1 < m− 2, which is satisfied because m ≥ 2j + 4.

Therefore, by the induction hypothesis and [**], there will be only runs of length L−i in
this part of the column. □

7. Final Remarks

7.1. Two-dimensional Characteristic. There is a third characteristic of representations
of the natural numbers, which might be labelled as ‘two-dimensional’. For the canonical
expansion, this amounts to the observation that the lengths of the runs of 1’s spread over the
table of expansions in chains of consecutive Lucas numbers, cf. Figure 1 for the left-most chain
in the positive part, and the third chain in the negative part of the table of expansions. These
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chains are finite, except the first one, which starts at N = 2, and consists of the runs of the
cL digits.

The pattern consists of two kinds of chains:

(1) At the left side, i.e., i > 0, the lengths of the links in the chains follow (Ln)n≥0 =
2, 1, 3, 4, 7, 11, . . . .

(2) At the right side, i.e., i ≤ 0, the lengths of the links in the chains follow (Ln)n≤0 =
2,−1, 3,−4, 7,−11, . . . .

Here the sign of the length indicates the direction in which the link goes.

(Ln) c5 c4 c3 c2 c1 c0 c−1 c−2 c−3 c−4 c−5 (Ln)

2▼ 1 1 7▼
1 1

1▼ 1 1
3▼ 1 1

1 1 1 3▼
1 1 1 1 2▼

4▼ 1 1 1 1
1 1 1 1 −1▲
1 1 1
1 1 1

7▼ 1 1 1 −4▲
1 1
1 1
1 1
1 1
1 1
1 1

1 −11▲

Figure 1. Two typical chains. Leftmost column: Ln, n ≥ 0, rightmost column: Ln, n ≤ 0.

7.2. Positions. We conjecture that the positions at which the 1’s occur in the column of digit
i are given by unions of generalized Beatty sequences. Generalized Beatty sequences, defined
in [1], are sequences V (p, q, r) = (Vn) of the form Vn = p⌊nα⌋ + q n + r, n ≥ 1, where α is
a real number, and p, q, and r are integers. Note that this has been proved in our paper for
i = 0 and i = −1.

7.3. Generalizations. We believe that for irrational numbers other than the golden mean,
our approach makes sense.

A natural class of numbers to consider are the quadratic Pisot units that are the largest
root β of a polynomial of the form X2−aX−1, a > 1. It is known that every natural number
has a finite β-expansion. The sum of two expansions can have a right carry of length 2 at
most, see [3] and [9]. It is possible to define the analogue of Lucas numbers by Ln = βn + β̄n,
where β̄ is the algebraic conjugate of β.

These numbers are also known as the metallic means, and are contained in the class of
numbers given in Theorem 2 of [7]. We shortly discuss the case a = 2, which gives the silver
mean σ := 1 +

√
2.
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The standard representation of the natural numbers in base σ is given by

N =
∞∑

i=−∞
diσ

i,

with digits di = 0, 1 or 2, and where di+1di = 21 or 22 is not allowed.
The role of the Lucas numbers (Ln) is now taken over by the Pell-Lucas numbers (LP

n) =
2, 2, 6, 14, 34, . . . , defined by

LP
0 = 2, LP

1 = 2, LP
n+2 = 2LP

n+1 + LP
n for n = 0, 1, 2, . . .

We write βP(N) for the standard expansion of N in base σ, and γP(N) for the canonical
expansion of N in base σ. This time, canonical means that the digits are ci = 0, 1 or 2, and
that ci+1ci = 21 or 22 is not allowed, except that c1c0 = 21, as soon as this is possible.

The following table displays these two representations.

N βP(N) γP(N)
1 1·0 1·0
2 2·0 2·0
3 10·11 10·11
4 11·11 11·11
5 20·01 20·01
6 100·01 21·01

N βP(N) γP(N)
7 101·01 101·01
8 102·01 102·01
9 110·12 110·12
10 111·12 111·12
11 120·02 120·02
12 200·02 121·02

N βP(N) γP(N)
13 201·02 201·02
14 202·02 202·02
15 1000·2011 1000·2011
16 1001·2011 1001·2011
17 1010·1011 1010·1011
18 1011·1011 1011·1011

We conjecture that the sequence of natural numbers 6, 12, 20, 26, 34, . . . for which βP(N) ̸=
γP(N) is equal to the generalized Beatty sequence (with α = σ) V (2, 2, 0) = (2⌊n(σ + 1)⌋).

What are the intervals of constant expansion length for the two representations by powers
of σ?
In the same way as in Section 4, we define the Pell-Lucas intervals and the canonical Pell-Lucas
intervals:

ΛP
0 := {1, 2}, ΛP

2n := [LP
2n, L

P
2n+1] for n ≥ 1, ΛP

2n+1 := [LP
2n+1 + 1, LP

2n+2 − 1] for n ≥ 0

ΓP
0 := {1, 2}, ΓP

n := [LP
n + 1, LP

n+1] for n ≥ 1

We conjecture that the ΛP
n are the intervals of constant expansion length of the standard silver

mean representation, and that the ΓP
n are the intervals of constant expansion length of the

canonical silver mean representation.

We next consider vertical runs. Here there are runs of 1’s and runs of 2’s. We conjecture
that in the column of digit i > 0, there are only runs of 1’s of length LP

i , followed directly by
runs of 2’s of length LP

i−1.
We also conjecture that for i < 0, there are either runs of 1’s of length LP

−i or runs of 1’s
of length LP

−i directly followed by runs of 2’s of length LP
−i. In the odd columns, the order of

the runs of 1’s and runs of 2’s is reversed. So, for example, for i = −1 between 0’s, there are
only blocks 11 and 2211. Note that these reversals are in line with the changes of direction of
the base phi expansions observed at the end of Section 7.1.
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