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Abstract. We explore four sums involving gibonacci polynomial squares and their numeric
versions, and extract their Pell versions.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas. Clearly, fn(1) = Fn, the nth
Fibonacci number; and ln(1) = Ln, the nth Lucas number [1, 4].

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively [4].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or

ln, bn = pn or qn, ∆ =
√
x2 + 4, and E =

√
x2 + 1. Gibonacci and Pell polynomials are linked

by the relationship bn(x) = gn(2x).

It follows by the Binet-like formulas that lim
m→∞

1

gm+r
= 0 [4, 5, 6].

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following prop-
erties [4, 5]; they can be established using Binet-like formulas:

f2n = fnln; (1)

l2n −∆2f2
n = 4(−1)n; (2)

g2n+k − g2n−k =

{
f2kf2n, if gn = fn;

∆2f2kf2n, otherwise;
(3)

gn+kgn−k − g2n =

{
(−1)n+k+1f2

k , if gn = fn;

(−1)n+k∆2f2
k , otherwise.

(4)

1.2. Telescoping Gibonacci Sums. In [6], we investigated the following telescoping sums:

∞∑
n=(k+1)/2
k≥1, odd

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r−1
;

∞∑
n=k/2+ 1
k≥2, even

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r
;

∞∑
n=(k+1)/2
k≥1, odd

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r
;

∞∑
n=k/2

k≥2, even

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r−1
.
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1.3. Generalized Telescoping Gibonacci Sums. The proofs of the above sums depend
only on the subscripts of the polynomials gn, and not on the power of gn. Consequently, they
can be extended to any positive integer power λ of gn, as the next four lemmas feature; in the
interest of brevity, we omit their proofs.

Lemma 1.
∞∑

n=(k+1)/2
k≥1, odd

(
1

gλ2n−k

− 1

gλ2n+k

)
=

k∑
r=1

1

gλ2r−1

.

Lemma 2.
∞∑

n=k/2+ 1
k≥2, even

(
1

gλ2n−k

− 1

gλ2n+k

)
=

k∑
r=1

1

gλ2r
.

Lemma 3.
∞∑

n=(k+1)/2
k≥1, odd

(
1

gλ2n+1−k

− 1

gλ2n+1+k

)
=

k∑
r=1

1

gλ2r
.

Lemma 4.
∞∑

n=k/2
k≥2, even

(
1

gλ2n+1−k

− 1

gλ2n+1+k

)
=

k∑
r=1

1

gλ2r−1

.

These lemmas with λ = 2, coupled with identities (1) through (4), play a major role in our
explorations of sums involving squares of gibonacci polynomials.

2. Sums Involving Gibonacci Polynomial Squares

We begin our discourse with the following result.

Theorem 1. Let k be a positive integer; 1 ≤ r ≤ k;

L =

{
(k + 1)/2, k ≥ 1, if k is odd;

k/2 + 1, k ≥ 2, otherwise;
and s =

{
2r − 1, if k is odd;

2r, otherwise.

Then,
∞∑

n=L

f2kf4n[
f2
2n − (−1)kf2

k

]2 =

k∑
r=1

1

f2
s

.

Proof. With identities (3) and (4), we have

f2kf4n[
f2
2n − (−1)kf2

k

]2 =
f2
2n+k − f2

2n−k

f2
2n+kf

2
2n−k

=
1

f2
2n−k

− 1

f2
2n+k

. (5)

Suppose k is odd. By Lemma 1, we then get

∞∑
n=(k+1)/2
k≥1, odd

f2kf4n(
f2
2n + f2

k

)2 =

k∑
r=1

1

f2
2r−1

. (6)
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On the other hand, let k be even. Then, by Lemma 2, equation (5) yields

∞∑
n=k/2+1
k≥2, even

f2kf4n(
f2
2n − f2

k

)2 =
k∑

r=1

1

f2
2r

. (7)

Combining equations (6) and (7), we get the desired result. □

In particular, they yield
∞∑
n=1

f2f4n(
f2
2n + 1

)2 = 1;
∞∑
n=1

F4n(
F 2
2n + 1

)2 = 1;

∞∑
n=2

f4f4n(
f2
2n − x2

)2 =
f2
2 + f2

4

f2
2 f

2
4

;
∞∑
n=2

F4n(
F 2
2n − 1

)2 =
10

27
.

With identity (2), Theorem 1 yields

∞∑
n=L

∆4f2kf4n[
l22n − (−1)k∆2f2

k − 4
]2 =

k∑
r=1

1

f2
s

.

Consequently, we have
∞∑
n=1

f4n(
l22n + x2

)2 =
1

∆4f2
;

∞∑
n=1

F4n(
L2
2n + 1

)2 =
1

25
;

∞∑
n=2

f4n[
l22n − (x2 + 2)2

]2 =
f2
2 + f2

4

∆4f2
2 f

3
4

;
∞∑
n=2

F4n(
L2
2n − 9

)2 =
2

135
.

Next, we investigate the Lucas counterpart of Theorem 1.

Theorem 2. Let k be a positive integer; 1 ≤ r ≤ k;

L =

{
(k + 1)/2, k ≥ 1, if k is odd;

k/2 + 1, k ≥ 2, otherwise;
and s =

{
2r − 1, if k is odd;

2r, otherwise.

Then,
∞∑

n=L

∆2f2kf4n[
l22n + (−1)k∆2f2

k

]2 =
k∑

r=1

1

l2s
.

Proof. With equations (3) and (4), we get

∆2f2kf4n[
l22n + (−1)k∆2f2

k

]2 =
l22n+k − l22n−k

l22n+kl
2
2n−k

=
1

l22n−k

− 1

l22n+k

. (8)

Let k be odd. Using Lemma 1, we then get

∞∑
n=(k+1)/2
k≥1, odd

∆2f2kf4n(
l22n −∆2f2

k

)2 =

k∑
r=1

1

l22r−1

. (9)

Suppose k is even. With Lemma 2, equation (8) yields

∞∑
n=k/2+1
k≥2, even

∆2f2kf4n(
l22n +∆2f2

k

)2 =

k∑
r=1

1

l22r
. (10)
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By combining the two cases, we get the desired result. □

It follows from equations (9) and (10) that
∞∑
n=1

∆2f2f4n(
l22n −∆2

)2 =
1

f2
2

;
∞∑
n=1

F4n(
L2
2n − 5

)2 =
1

5
;

∞∑
n=2

∆2f4f4n(
l22n +∆2x2

)2 =
l22 + l24
l22l

2
4

;

∞∑
n=2

F4n(
L2
2n + 5

)2 =
58

6, 615
. [7]

Using identity (3), Theorem 2 yields

∞∑
n=L

∆2f2kf4n[
∆2f2

2n + (−1)k∆2f2
k + 4

]2 =

k∑
r=1

1

l2s
.

This implies
∞∑
n=2

∆2f2f4n(
∆2f2

2n − x2
)2 =

1

l21
;

∞∑
n=2

F4n

(5F 2
2n − 1)2

=
1

5
;

∞∑
n=2

∆2f4f4n[
∆2f2

2n + (x2 + 2)2
]2 =

l22 + l24
l22l

2
4

;
∞∑
n=2

F4n(
5F 2

2n + 9
)2 =

58

6, 615
.

The next result is also an application of identity (3).

Theorem 3. Let k be a positive integer; 1 ≤ r ≤ k;

M =

{
(k + 1)/2, k ≥ 1, if k is odd;

k/2, k ≥ 2, otherwise;
and t =

{
2r, if k is odd;

2r − 1, otherwise.

Then,
∞∑

n=M

f2kf4n+2[
f2
2n+1 + (−1)kf2

k

]2 =
k∑

r=1

1

f2
t

.

Proof. Using identity (3), we have

f2kf4n+2[
f2
2n+1 + (−1)kf2

k

]2 =
f2
2n+1+k − f2

2n+1−k

f2
2n+1+kf

2
2n+1−k

=
1

f2
2n+1−k

− 1

f2
2n+1+k

. (11)

Suppose k is odd. With Lemma 3, this yields

∞∑
n=(k+1)/2
k≥1, odd

f2kf4n+2(
f2
2n+1 − f2

k

)2 =

k∑
r=1

1

f2
2r

. (12)

On the other hand, let k be even. By Lemma 4, equation (11) yields

∞∑
n=k/2

k≥2, even

f2kf4n+2(
f2
2n+1 + f2

k

)2 =

k∑
r=1

1

f2
2r−1

. (13)

By combining equations (12) and (13), we get the desired result. □

It follows from this theorem that
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∞∑
n=1

f2f4n+2(
f2
2n+1 − 1

)2 =
1

f2
2

;
∞∑
n=1

F4n+2

(F 2
2n+1 − 1)2

= 1;

∞∑
n=1

f4f4n+2(
f2
2n+1 + x2

)2 =
f2
1 + f2

3

f2
3

;
∞∑
n=1

F4n+2(
F 2
2n+1 + 1

)2 =
5

12
.

A Fibonacci Delight. It follows by Theorems 1 and 3 that

∞∑
n=3

F2n

(F 2
n − 1)2

=

∞∑
n=1

F2(2n+1)

(F 2
2n+1 − 1)2

+

∞∑
n=1

F2(2n)

(F 2
2n − 1)2

= 1 +
10

27

=
37

27
.

Using identity (3), Theorem 3 yields

∞∑
n=M

∆4f2kf4n+2[
l22n+1 + (−1)k∆2f2

k + 4
]2 =

k∑
r=1

1

f2
t

.

Consequently, we have
∞∑
n=1

∆4f2f4n+2(
l22n+1 − x2

)2 =
1

f2
2

;
∞∑
n=1

F4n+2

(L2
2n+1 − 1)2

=
1

25
;

∞∑
n=1

∆4f4f4n+2[
l22n+1 + (x2 + 2)2

]2 =
f2
1 + f2

3

f2
3

;

∞∑
n=1

F4n+2(
L2
2n+1 + 9

)2 =
1

60
.

The following result showcases the Lucas version of Theorem 3.

Theorem 4. Let k be a positive integer; 1 ≤ r ≤ k;

M =

{
(k + 1)/2, k ≥ 1, if k is odd;

k/2, k ≥ 2, otherwise;
and t =

{
2r, if k is odd;

2r − 1, otherwise.

Then,

∞∑
n=M

∆2f2kf4n+2[
l22n+1 − (−1)k∆2f2

k

]2 =
k∑

r=1

1

l2t
.

Proof. With identity (3), we have

∆2f2kf4n+2[
l22n+1 − (−1)k∆2f2

k

]2 =
l22n+1+k − l22n+1−k

l22n+1+kl
2
2n+1−k

=
1

l22n+1−k

− 1

l22n+1+k

. (14)

Suppose k is odd. Using Lemma 3, this yields

∞∑
n=(k+1)/2
k≥1, odd

∆2f2kf4n+2(
l22n+1 +∆2f2

k

)2 =

k∑
r=1

1

l22r
. (15)
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When k is even, by Lemma 4, equation (14) yields

∞∑
n=k/2

k≥2, even

∆2f2kf4n+2(
l22n+1 −∆2f2

k

)2 =
k∑

r=1

1

l22r−1

. (16)

Equation (15), coupled with equation (16), yields the desired result. □

With identity (1), this theorem yields
∞∑
n=1

∆2f2f4n+2(
l22n+1 +∆2

)2 =
1

l22
;

∞∑
n=1

F4n+2

(L2
2n+1 + 5)2

=
1

45
; [7]

∞∑
n=1

∆2f4f4n+2(
l22n+1 −∆2x2

)2 =
l21 + l23
l21l

2
3

;
∞∑
n=1

F4n+2(
L2
2n+1 − 5

)2 =
17

240
. [7]

Using identity (3), it follows from Theorem 4 that

∞∑
n=M

∆2f2kf4n+2[
∆2f2

2n+1 − (−1)k∆2f2
k − 4

]2 =

k∑
r=1

1

l2t
.

It then follows that
∞∑
n=1

∆2f2f4n+2(
∆2f2

2n+1 + x2
)2 =

1

l22
;

∞∑
n=1

F4n+2

(5F 2
2n+1 + 1)2

=
1

45
;

∞∑
n=1

∆2f4f4n+2[
∆2f2

2n+1 − (x2 + 2)2
]2 =

l21 + l23
l21l

2
3

;

∞∑
n=1

F4n+2(
5F 2

2n+1 − 9
)2 =

17

240
.

Next we explore the Pell versions of the theorems.

3. Pell Implications

With the relationship bn(x) = gn(2x), Theorems 1–4 yield the following Pell versions:
∞∑

n=L

p2kp4n[
p22n − (−1)kp2k

]2 =
k∑

r=1

1

p2s
;

∞∑
n=L

4E2p2kp4n[
q22n + 4(−1)kE2p2k

]2 =
k∑

r=1

1

q2s
;

∞∑
n=M

p2kp4n+2[
p22n+1 + (−1)kp2k

]2 =

k∑
r=1

1

p2t
;

∞∑
n=M

4E2p2kp4n+2[
q22n+1 − 4(−1)kE2p2k

]2 =

k∑
r=1

1

q2t
,

respectively. Consequently, we have
∞∑

n=L

P2kP4n[
P 2
2n − (−1)kP 2

k

]2 =

k∑
r=1

1

P 2
s

;
∞∑

n=L

2P2kP4n[
Q2

2n + 2(−1)kP 2
k

]2 =

k∑
r=1

1

Q2
s

;

∞∑
n=M

P2kP4n+2[
P 2
2n+1 + (−1)kP 2

k

]2 =
k∑

r=1

1

P 2
t

;
∞∑

n=M

2P2kP4n+2[
Q2

2n+1 − 2(−1)kP 2
k

]2 =
k∑

r=1

1

Q2
t

,

again respectively.

4. Chebyshev and Vieta Implications

Finally, Chebyshev polynomials Tn and Un, Vieta polynomials Vn and vn, and gibonacci
polynomials gn are linked by the relationships Vn(x) = in−1fn(−ix), vn(x) = inln(−ix),
Vn(x) = Un−1(x/2), and vn(x) = 2Tn(x/2), where i =

√
−1 [2, 3, 4]. They can be em-

ployed to find the Chebyshev and Vieta versions of Theorems 1–4. In the interest of brevity,
we omit them; but we encourage gibonacci enthusiasts to pursue them.
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