SUMS INVOLVING GIBONACCI POLYNOMIAL SQUARES

THOMAS KOSHY

ABSTRACT. We explore four sums involving gibonacci polynomial squares and their numeric
versions, and extract their Pell versions.

1. INTRODUCTION

Extended gibonacci polynomials z,(x) are defined by the recurrence z,12(z) = a(z)zp4+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), zo(z), and z1(x) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = x and b(z) = 1. When zo(x) = 0 and zi(x) = 1, z,(z) = fu(x), the
nth Fibonacci polynomial; and when zy(x) = 2 and z1(z) = z, z,(x) = l,(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas. Clearly, f,,(1) = F,, the nth
Fibonacci number; and 1,,(1) = Ly, the nth Lucas number [1, 4].

Pell polynomials py(x) and Pell-Lucas polynomials g, (x) are defined by p,(z) = f,,(2z) and
qn(x) = 1,(2x), respectively [4].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(z). In addition, we let g, = f, or
ln, by = pn or qn, A = Va2 + 4, and F = a2 + 1. Gibonacci and Pell polynomials are linked
by the relationship b, (x) = g,(2x).

It follows by the Binet-like formulas that lim L - 0 [4, 5, 6].

m—=00 Jmtr

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following prop-
erties [4, 5]; they can be established using Binet-like formulas:

f2n = fnlm (1)
- A2 = A(-1) (2)
{fzkfzn, if gn = fo;

Gnis — 9
ntk n—k A2 forfon, otherwise;
2
In+kIn—k — 9n

{(_1)n+k+1f]§) if gn = fn;

(-1)"tkA2f2. otherwise.
1.2. Telescoping Gibonacci Sums. In [6], we investigated the following telescoping sums:
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1.3. Generalized Telescoping Gibonacci Sums. The proofs of the above sums depend
only on the subscripts of the polynomials g,, and not on the power of g,. Consequently, they
can be extended to any positive integer power A of g, as the next four lemmas feature; in the
interest of brevity, we omit their proofs.

Lemma 1.
i 1 1 1
XA - Z )
n=(k+1)/2 Jon—k Jon+k r=1 Yor—1
k>1, odd
Lemma 2.
k
i": 1 1 1
A = 2 :T
n=k/2+1 9on—k Jon+k r=1 Yor
k>2, even
Lemma 3.
k
> 1 1 1
Z A A - Z e
n=(k+1)/2 an—i—l—k an-}-l-‘,—k r—=1 9o
k>1, odd
Lemma 4.
k
> 1 1 1
Z Py SN - Z -
n=k/2 Jon+1-k 9on+1+k r=1 or—1
k>2, even

These lemmas with A = 2, coupled with identities (1) through (4), play a major role in our
explorations of sums involving squares of gibonacci polynomials.

2. SUMS INVOLVING GIBONACCI POLYNOMIAL SQUARES
We begin our discourse with the following result.

Theorem 1. Let k be a positive integer; 1 < r < k;

) (k+1)/2,k>1, if kis odd; and s — 2r — 1, if k is odd;
B k/24+1,k>2, otherwise; - 2r, otherwise.

Then,

i forfan _ zk: 1

2 (_1\kf212 2
n="L [on ( 1) fk] r=1
Proof. With identities (3) and (4), we have

Jok fan _ f22n+k B f22n—k
[f22n - (_1)kf]ﬂ2 f22n+kf22n7k
1 1

r2 T 2
f2n—k f2n+k
Suppose k is odd. By Lemma 1, we then get
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On the other hand, let k be even. Then, by Lemma 2, equation (5) yields

oo

Z f2kf4n Z -

n=k/2+1 (an
k>2, even

Combining equations (6) and (7), we get the desired result.

In particular, they yield

Z Jofan _ 1L

Mg

orél f2n+1) nO:OI F22n+1)
Z fafan B+ rE Z
2 272
n=2 (f22n - $2) f2 4 n:2 F22n )
With identity (2), Theorem 1 yields
00 k

A? for fan 1
ZU% b 222]02'

n=L - (_1)kA2f13 - 4] r=1
Consequently, we have

S 1 P
D T 2 Lgnm
S _ B+R i
n=2 [l%n - (%2 + 2)2]2 A4f22f2 L%n 9)

Next, we investigate the Lucas counterpart of Theorem 1.
Theorem 2. Let k be a positive integer; 1 < r < k;
I - (k+1)/2,k>1, ifkis.odd; and s — 2r—1
E/2+1,k>2, otherwise; 2r,
Then,

[e.9]

A2 for fan 1
Z[Z% 2k J4 22272'

+(-DRARE]T TG

Proof. With equations (3) an?i:(Lél), we get
A2 for, fan B 15,
(2, + (-1)kA2f2)? Bkl
1 1
- l%n k l%nJrk‘

Let k be odd. Using Lemma 1, we then get
- A for fan "
Z 2 Z l2 :

2 2 -
n=(k+1)/2 (l2n - Asz;) r=1

k>1, odd

Suppose k is even. With Lemma 2, equation (8) yields
[e%S) k
A2‘]Li2/cf4n 1
D T

n=k/2+1 (l%n + A2f]3) r=1 3,

k>2, even
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otherwise.
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By combining the two cases, we get the desired result.

It follows from equations (9) and (10) that

i Afofwm 1 i 1
2 29 - ’
= (13, - A?) f3 — Lgn 5) 5
N A%fyfan 3+13 = 58
Z Jafa = 22+24; Z _ N
n=2 (l%n + A2$2) l2l4 n=2 L%n + 5) 6’ 615
Using identity (3), Theorem 2 yields
o0 k
Z A? f2kf4n B Z 1
2 1)k A2 £2 2 12
= A f2 ) A fk + 4} r=1 9%
This implies
—  Afofun 1 - 1
Z 2 12 nZ T2 Z 5F2 T 5
n=2 (A f2n_$) 1 n= 2 2n
i A2 fy fan B+l i 58
S [A%f3, + (22427 B = 5F§n T
The next result is also an application of identity (3).
Theorem 3. Let k be a positive integer; 1 < r < k;
(k+1)/2,k>1, if kis odd, and t — 2r, if kis odd,;
k/2,k > 2, otherwise; B 2r — 1, otherwise.

Then,

00 k

Jok fan+2 1
Z 2 k212 - Z F
noat o + CORRR]T S
Proof. Using identity (3), we have

2 2
Jok fant2 ok — Joni—k
7 = ) 7
[fani1 + (DR f7] Stk Sk

1 1

f22n+1—k f22n+1+k'
Suppose k is odd. With Lemma 3, this yields

00 k

2 : f2kf4n+2 . Z 1

2 2\2 - 2"
n=(k+1)/2 (f2n+1 - fk) r=1 far
k>1, 0dd

On the other hand, let k£ be even. By Lemma 4, equation (11) yields
k

[o.¢]

forf 1
> w5l
n=k/2 (f2n+1+fk:) r=17/2r—1

k>2, even

By combining equations (12) and (13), we get the desired result.

It follows from this theorem that
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Z J2fan+o _ 1 i Funto _ 1
n=1 f2n+1 1) 22 n=1 (F22n+1 - 1)2
i Jafant2 B+ i Finto 5
5 = PR = '
=t (fonga +22) Is 1 (Fr + 1) 12
A Fibonacci Delight. 1t follows by Theorems 1 and 3 that
i Fay, B i Faeni1 N i Fyn)
— (F7 —1)° = (Fy — 1) & (F5, - 1)?
10
- 14—
+ 27
_
21

Using identity (3), Theorem 3 yields

o0

Z A for fanto Z

ot | Bray + (CLFRAZfZ + 4 —

Consequently, we have

i Afofiniz 1 i Finio _ 1
n=1 (l%n—l—l x2)2 3 - L2n+1 1) 25
i A fi fanio _ fi+ f32 i Finio _ 1
B (22 +2)2)° 72 (£3,.,+9) 60

The following result showcases the Lucas version of Theorem 3.
Theorem 4. Let k be a positive integer; 1 < r < k;

S . . ‘ . . _
{(k+1)/2,k_1, if k is odd; and t = {27", if kis odd,;

k/2,k > 2, otherwise; 2r — 1, otherwise.

Then,

) k
Z A2f2kf4n+2 . Z l

2 2°
= [l%n—i-l ( 1)kA2f]?] r=1 lt
Proof. With identity (3), we have

A2 for, fanto B B
7 = 2
(13,11 — (F1)FAZ 2] 1k bBnt1—k
1 1
= l2 l2 (14)
2n+1-k 2n+1+k

Suppose k is odd. Using Lemma 3, this yields

. A2 for, fant2 "1
Z 2 2+2 2 = Z ZT (15)
(k)2 (13,01 + A2f2) =1 2r
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When £ is even, by Lemma 4, equation (14) yields

00 k
Z A% fop fant2 Z 1 (16)
2 2
n=k/2 (l§n+1 A2f;§) l2r 1
k>2, even
Equation (15), coupled with equation (16), yields the desired result. O
With identity (1), this theorem yields
i Afafaz 1 —  Funpo _ 1 7]
(zgn+1 + A2)? 13 = (L34, +5)? 45’
< A fu 12413 —  Fui, 17
3 : f4f4;r222 _ 11;;23; Z : 2 _ i 7]
1 (1Bq1 — A%2?) 1°3 1 (L3nt1 — )
Using identity (3), it follows from Theorem 4 that
- A for fan+2 Zk: 1

2~ 72"
it (D25, 0 — (COFAZSE -4 (Sl

It then follows that

X A2 fy fano 1 i % 1
2 29 - )
n=1 (A2f22n+1 + $2) 12 n:l 2n+1 + 1)2 45
© o0
Z A2 fy fanyo B+ Z P 1T
2 272 5 = .
n=1 [A2f22n+1 - (.%'2 + 2)2] lllg n=1 5}7‘22714—1 9) 240

Next we explore the Pell versions of the theorems.

3. PELL IMPLICATIONS

With the relationship b, (z) = g,(2z), Theorems 14 yield the following Pell versions:
k 00 k

i D2k Pdn Z 1 Z AE?porpan Z 1

n=L [p%n - (_1)kpz]2 N 7‘;1 pg’ n=L [q%n + 4(_1)kE2p%]2 - 7‘ 1 q‘g’
i P2kP4n+2 _ 1 i AE®pokpan+t2 _ Z
n=M [p%n—‘rl + (_1)kp2]2 r=1 p%’ n=M [q%n—i—l - 4(_1)kE2pi]2 r=1 qtz,

respectively. Consequently, we have

o Py P 1 i 9Py P ko1
Z 2k 4n s = 2?827 Z 2k 4n ; _ 272;

n=L [P22n - (_1)kPkQ] 7'?1 n=L QQn + 2 )kPZ] r;l s
D x

Pog Pan 2 B 1 2Po Py 12 _ 1

Z [Pn+1+( )kPkQ]Z ;PE? zJ\:/f Q2n+1_2( )’“P;?}Q rz—:lQ%,

again respectlvely.

4. CHEBYSHEV AND VIETA IMPLICATIONS

Finally, Chebyshev polynomials T;, and U,, Vieta polynomials V,, and v,, and gibonacci
polynomials g, are linked by the relationships V,(z) = " !f,(~iz), vp(x) = i"l,(-iz),
Vo(z) = Up_1(x/2), and v,(z) = 2T, (z/2), where i = /=1 [2, 3, 4]. They can be em-
ployed to find the Chebyshev and Vieta versions of Theorems 1-4. In the interest of brevity,
we omit them; but we encourage gibonacci enthusiasts to pursue them.
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