SUMS INVOLVING GIBONACCI POLYNOMIAL SQUARES:
GRAPH-THEORETIC CONFIRMATIONS

THOMAS KOSHY

ABSTRACT. We confirm eight sums involving gibonacci polynomial squares using graph-
theoretic techniques.

1. INTRODUCTION

Extended gibonacci polynomials z,(x) are defined by the recurrence z,12(z) = a(z)zp4+1(x)+
b(x)zn,(x), where x is an arbitrary integer variable; a(x), b(x), zo(x), and z1(z) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = z and b(z) = 1. When zp(x) = 0 and z1(x) = 1, z,(z) = fu(z), the
nth Fibonacci polynomial; and when zo(z) = 2 and z1(z) = z, zp(z) = l,(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas. Clearly, f,,(1) = F,, the nth
Fibonacci number; and 1,,(1) = L,,, the nth Lucas number [1, 2].

Pell polynomials py,(x) and Pell-Lucas polynomials g, (x) are defined by p,(z) = f,(2z) and
qn(x) = 1,(2x), respectively [2].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(z). In addition, we let g, = f, or

ln, by = pp O qp, and A = V/x2 + 4.
It follows by the Binet-like formulas that lim

Mm—=00 Gm+r

—=012,5,6].

1.1. Fundamental Gibonacci Identities. Using Binet-like formulas, we can establish the
following gibonacci properties [2, 5]:

2 2
In+k — In—k

forfon, if g, = fu; (1)
A2 for. fon, otherwise;

(2)

In+-kIn—k — g?L

{(_1)n+k+1f]§’ if gn = fn;

(-1)"tkA2f2. otherwise.

1.2. Telescoping Gibonacci Sums. In [6], we investigated the following four telescoping
sums:

SRR R I W B Y
el e \G2n—k Gtk g1 S \Gmk Gontk — g’
k>1, odd k>2, even

koo

k
> (i —) -, > (i —) - X
netirny2 \J2ntl-k  G2n+1+k — 92 nery2  \P2ntl-k  Yontl+k — 92r-1
k>1, odd k>2, even

Their proofs depend only on the subscripts of the polynomials g,, and not on the power of
gn. Consequently, we can extend them to any positive integer power A\ of g,. The next four
lemmas feature their proofs for the case A = 2. Coupled with the above identities, they play
a pivotal role in our investigations.
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Lemma 1. Let k be an odd positive integer. Then,

00 k
1 1 1
Z 2 ) = E 2 . (3)
n=(k+1)/2 <g2nk 92n+k> =1 92r—1

k>1, odd

Proof. With recursion [2], we will first confirm that

m k k—1
1 1 1 1
Z < 2 T2 ) = Z 2 Z 2 :
n=(k+1)/2 Jon—k g2n+k: r=1 92r—1 r=0 92m72r+k
k>1, odd

To this end, we let A,, denote the left-hand side (LHS) of this equation and B, its right-hand
side (RHS). Then,

k—1 1 1
Bm - Bm—l = Z [ 2 ) ]
0 [ 92m—2

—2(r+1)+k g2m—2’r+k

r=0
1 1
= 2
9om—k  92m+k
= An— An-1.
By recursion, it then follows that
Am —Bm = Am—1—Bm-1="=Au41)2 — Bt1),2
k k—1
1 1 1 1
= |27 72 - 2 2
<gl 92k+1 ) [; 9or—1 g g2k—(2r—l)]
= 0.
Thus, A,, = By,.
Because lim = 0, this yields the desired result. ([

m—r0o0 gm—H"
Lemma 2. Let k be an even positive integer. Then,
00 k
1 1 1
> (2 T ) = = (4)

n=k/2+1 Iom—k Yotk —1 92r
k>2, even

Proof. Invoking recursion [2], we will first establish that

k k—1
= 1 1
PO s =D -
n=k/2+1 Jon—k g?n—‘rk: r=1 Yor r=0 g2m 2r+k‘
k>2, even

Letting A,, = LHS of this equation and B,, its RHS, we then get

k—1 1 1
R e et
2m—2

r=0 —2(r+1)+k Jom—2r+k
1 1

2 2
Yom—t  Yomtk
= A, — A1
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Recursively, we then have

Ap —Bm = Apm1—Bpm-1=- =441~ Brpi
k k-1
1 1 1 1
(93 9§k+2> [rzl 9ar ; 9§k2(r1>]
= 0.

Consequently, A,, = By,.
The given result follows from this formula, as desired. O

Lemma 3. Let k be an odd positive integer. Then,

9] k
1 1 1
> - =3 o)
n=(k+1)/2 (ggn—l-l—k ggn—l—l—l—k) r=1 ggr
1, odd

k>
Proof. Using recursion [2], we will first establish the formula

m k k—1
1 1 1 1

2 : 2 ~ 2 = § :T - E ,27
netirny2 \92n+1-k  Yon+ti+4k =1 920 50 Pm—2r—1)+k
k>1, 0dd

Letting A,, = LHS of this equation and B,, its RHS, we get

k—1 1 1
Bm - Bm—l = Z 2 ) ]
=0 L%2m—@r+1)+k  D2m—(2r—1)+k
1 1
9§m+1—k 9§m+1+k
= A —An_1.
This yields,
Am = Bm = Am-1—Bm—1="=Ars1)2 — Bui1))2
B ( 1 1 ) [2’“: 1 =2 ]
- 2 2 | 2 2
92 92p+42 =1 J2r 120 Y2k—2(r-1)
= 0.
Consequently, A,, = By,.
The given result now follows from this formula. O

Lemma 4. Let k be an even positive integer. Then,

0o k

1 1 1
> (2 - )ZZ — (6)
nerrz \92n+1-k  Jon+1+k = 921

k>2, even
Proof. To establish this formula, using recursion [2] we will first confirm that

m 1 1 G| 1
Z 2 - 2 = Z 2 - 2 — .
nerrz \I2n+1-k  9onyi+4k — P2r-1 150 Y2m—(2r—1)+k

k>2, even
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With A,, = LHS and B,, = RHS of this equation, we then get

By, —

k—1

1

2
[ng—(2r+1)+k

2
9om—(2r—1)+k
1

With recursion, this implies

Am — By

- (3-2)-2

= 0.

1
Bay = Y
r=0
_ 1
- 2 T2
9omt1—k  Yomt1+k
= A, — A1
= Ap-1—Bp1=""

= Agj2 — B2
k

2
—1 J2r—1

Thus, A,, = By, yielding in the validity of the given formula.

|

R
-y

=0 926—(2r-1)

|

O

1.3. Sums Involving Gibonacci Polynomial Squares. In [7], we investigated the follow-
ing sums involving gibonacci polynomial squares:

122

o0

>

f2kf4n

2 2)2
netornsz (fon + f7) =1 7J2r—1
k>1, odd
00 k
Z Jok fan . Z 1
2 22 2
n=k/2+1 (on - fk) r=1 f2r
k>2, even
00 k
S A forfan 3 I
2 2\ 2 - 2 )
n=(k+1)/2 (l2n - Asz) r=1 l3r—1
k>1, odd

i A2 for, fan

2 2)2
n=k/2+1 (l2n + Aka) r=1 47T
k>2, even
00 k
Z Jok fan+2 B Z 1
9 2n2 2
n=(k+1)/2 (f2n+1 - fk) r=1 far
k>1, odd
00 k
3 _ fafanir 1
2 2\2 2
n=k/2 (f2n+1+fk) r=1 7 2r—1
k>2, even
[e’e) 2 k
Z A% for fant2 Z 1
2 22 27
n—tirnsz (Bpgr +A2f7) = b
k>1, odd
00 k
Z A2 for, fanto B Z 1
2 2 2 - 2 :
k;;k/Q (12n+1 B A2fk) r=1 l27’*1

(7)

(10)

(11)

(12)

(13)

(14)
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Our objective is to confirm these gibonacci sums using graph-theoretic techniques. To
achieve this goal, we now present the essential graph-theoretic tools.

2. GRAPH-THEORETIC TOOLS

Consider the Fibonacci digraph in Figure 1 with vertices v; and vy, where a weight is assigned
to each edge [2, 3, 4].

v
Vi 2

1

FicURE 1. Weighted Fibonacci Digraph

x 1
1 0

no__ fn+1 fn
Q"= |: fn fn—1:| ’

where n > 1 [2, 3, 4]. We extend the exponent n to 0, which is consistent with the Cassini-like
formula foi1fo1— fr=(-1)" [2].

A walk from vertex v; to vertex v; is a sequence v-€;-v;41-- - - -v;j—1-€;_1-v; of vertices vy,
and edges ey, where edge ey, is incident with vertices v, and vp11. The walk is closed if v; = vj;
and open, otherwise. The length of a walk is the number of edges in the walk. The weight of
a walk is the product of the weights of the edges along the walk.

The 7jth entry of Q™ gives the sum of the weights of all walks of length n from v; to v; in
the weighted digraph, where 1 < i,57 < n [2, 3, 4]. Consequently, the sum of the weights of
closed walks of length n originating at v; in the digraph is f,,+1 and that of those originating
at vy is fp—1. So, the sum of the weights of all closed walks of length n in the digraph is
fn+1 + fn—l = Ip.

Let A and B denote sets of walks of varying lengths originating at a vertex v. Then, the
sum of the weights of the elements (a,b) in the product set A x B is defined as the product
of the sums of weights from each component [3, 4]. This definition can be extended to any
finite number of component sets. In particular, let A, B, C, and D denote the sets of walks
of varying lengths originating at a vertex v, respectively. Then, the sum of the weights of the
elements (a,b,c,d) in the product set A x B x C' x D is the product of the sums of weights
from each component [3, 4].

We now make an interesting observation. Let A = {u} and B = {v}, where u denotes
the closed walk v1-v1 and v denotes the closed walk vi-ve-v1. The weight of the element
in A x Ais 2% and that in B x B is 1. So, the sum w of the weights of the elements in
C*=(Ax A)U(BxB)U(Bx B)U (B x B)U (B x B) is given by w = 22 + 4 = A2

These tools play a pivotal role in the graph-theoretic proofs. With them at our finger tips,
we are now ready for the proofs.

It follows from its weighted adjacency matriz QQ = [ ] that
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3. GRAPH-THEORETIC CONFIRMATIONS

Let T denote the set of closed walks of length n in the digraph originating at v, and U}
the set of all closed walks of length n in the digraph. Correspondingly, let T,, denote the
sum of the weights of elements in 7, and U, that of those in U}. Clearly, T;, = f,4+1 and
Up, = fo+1 + fn—1 = ln [2]. With this brief background, we now begin our discourse with the
gibonacci sums (7) and (8). Throughout, k& denotes a positive integer.

3.1. Confirmations of Equations (7) and (8).
Proof. The sum of the weights of the elements in the product set T, | x T, 1 is Top_1Tan—1 =
for fan; the sum of those in (T3, ¢ x T ) U (Ty_, x T¢_,) is Tg,_ + T, = f32, + [#; and
the sum of those in (T, 1 X Tg,_1) — (T3 x Ty ) is T4,y —T7 | = f2, — f2.
Combining the two cases, we let
Tog—1Tan—1

T - o] )

where k is odd or even.
Suppose k is odd. Using identities (1) and (2), and Lemma 1, this yields

s, fok fan
(f3a + 12)?
Finik = Fnin
Foninlonn
i forfan i (1 B 1)
n=(k+1)/2 (f22” + f}?)Q n=(k+1)/2 f22n—k f22n+k
k>1, odd k>1, 0dd
LA
2 1
confirming equation (7), as desired.
On the other hand, let k£ be even. With identities (1) and (2), and Lemma 2, we get
s, fok fan
(f3n = 12
_ Sonin = Fonn
Fonionn
i forfan i (1 B 1>
wme U =002 S ok S
k>2, even k>1, even
"1
= ; 7z (17)
This gives the desired sum in equation (). O

It follows from equations (16) and (17) that [7]

124 VOLUME 61, NUMBER 2



SUMS INVOLVING GIBONACCI POLYNOMIAL SQUARES

oo o0

St st Yt t o

n=1 (F22n + 1) n=2 (F22n - 1) 27

> Fun 129 ad Fun, 31, 865
2 2 TR0 > > _ o\ 592,704

n=2 (FQn + 4) n=3 (F2n 9) ’

Next, we focus on the graph-theoretic proofs of sums (9) and (10).

3.2. Confirmations of Equations (9) and (10).
Proof. Let T, Uy, T),, and U, be as before. U, denotes the set of all closed walks of length
2n in the digraph and Us, = loy,; so U22n gives the sum of the weights of the elements in the
product set Us, x Us;, . With the set C* as in Section 2, the sum of the weight of weight of
the elements in the set C* x T} | x T} | is wT? = A2TI3.

The sum of the elements in the set U, x Uz, — C* x T} x T}t equals U3, —wT? | = 13, — A% f2;
and that of those in the set U, x Us, U C* x Ty x T} equals U3, +wTZ | =13, + A% f? .

Combining the two cases, we now let

Top—1Tan—1
2
U3, + (-D)FwT? ]
forfan

13, + (C1rA2f]

Sn =

where k is odd or even.
Suppose k is odd. With identities (1) and (2), and Lemma 1, we have
A2f2kf4n . l§n+k B l§n+k

(l%n - A2f2)2 B l%nJrklgnfk ,

i A% fopfan i 11
(12 _ A2f2)2 - 12 12
n=(k+1)/2 \'2n k n=(k+1)/2 \'2n—k  “2n+k

k>1, 0dd k>1, odd

k
1
= > Z (19)
r=1 47—

as in equation (9).
On the flip side, let k be even. Using identities (1) and (2), and Lemma 2, it follows from
equation (18) that
f2kf4n
(B, +a217)"
2 .. -1
AQSn — 2n+k 2n+k

2 2 )
l2n+k12nfk

ZOO _ Aforfan ZOO ( 1 1 )

2 2 2
n=k/2+1 (l%n—i—Azf,?) n=k/2+1 l2n—k l2n+k
k>2, even k>2, even

k

- Zl;, (20)

as in equation (10). O

MAY 2023 125



THE FIBONACCI QUARTERLY

Equations (19) and (20) yield [7]

> Fu 1 i 58
n=1 (L%n - 5) g L%n + 5) 6,615
i Fiy, 2,073 Z 4,736,509
o (L%n _ 20)2 77,440’ — L%n + 45 3,682,358,820°
3.3. Confirmations of Equations (11) and (12).
Proof. With Ty, Uy, T, and U, as before, we have
Tog—1Tan+1 _ Jok fan+2 (21)

(13, + (CDFT2_ )7 £ + (CDRSEY

where k is odd or even.
Suppose k is odd. Using identities (1) and (2), and Lemma 3, we have

2 2
AN’forfante  _ Songrgk — Fansrk
2 2\2 2 2 ’
(fons1 — J3) Sons1oufoni1—k
S A% for fanta - 1 1
Z (f2—_f2)2 - Z 12 - 12
n=(k+1)/2 ‘Y 2n+1 k n=(k+1)/2 2n+1-k 2n+1+k
k>1, odd k>1, odd
k
1
r=1"72r

confirming equation (11) as desired.
On the other hand, let k be even. With identities (1) and (2), and Lemma 4, we get

2 2
Jok fan+o _ Jons1ek = fant1—k

)

2 272 2 2
(o1 + F5) Sanv1enfon—k

o fafme L
nZk/Q (f22n+1+fl?)2 B Z (2 > )

f2n+1fk f2n+1+k

n==k/2
k>2, even k>2, even
= (23)
Z f2'r 1
This confirms equation (12), as expected. O

It follows from equations (22) and (23) that [7]

F4n+2 1 > Fupio 649
Z S Z > 2 7 8,640’
n=1 2n+1 1) n=2 (F2n+1 4) ’
Z F4n+2 _ 5. Z Finyo _ 21,901
~ (F2, 1) 12° < (F2,, 1+ 9)° 354,900

Finally, we turn to the confirmations of sums (13) and (14).
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3.4. Confirmations of Equations (13) and (14).
Proof. Using the product sets T3, | x T, ., U3, 1 x U3, 1, C* x C*, and T}, | x T}, we
get

Tog—1Tan+1 . Jok fan+2 (24)
U2 _ _1k T2 2 12 1kA2 2127
[ on+1 (-1)Fw k;—l] [2n+1 (-1) fk]
where k is odd or even.
Suppose k is odd. Then,

Top 1Tin1  forfanto
27 2 2 r2)2° (25)
(Uhsr + 0T y) (1311 + A2fF)
With identities (1) and (2), and Lemma 4, we have

A2 for fant2 Boiior = Boiii
3 3 3 )
(B30 +A2f2) l ¢

In1+k 2n+1—k
3 A fopfanve i 11
( %n—i—l + Azf]?)Q ; 5

f2n+1—k f2n+1+k

n=(k+1)/2 n=(k+1)/2
k>1, odd k>1, odd
k
1
- 2z (26)
r=1 27

confirming equation (13).
When £ is even, we get similarly from equation (24) that

A2!)02/7<:f4n+2 o l%n—i—l—i—k l%n—f—l k
(i1 — A2f;§)2 BB
i A’ fopfanve i ( 11 )
n—=k/2 (l%n—&-l - AQf;?)Q n=k/2 l§n+1fk l§n+1+k
k>2, cven k>2, cven
k
_ % (27)
—1 '2r—1
This confirms equation (14), as desired. O
It follows by equations (26) and (27) that [7]
St L > s 1
it (Ldpgn + 5) 45 =1 (Lng1 — 5)2 240
- Finio 2,137 = Finio 1,745,329
;2 L3, +20)° 238,140 Z 3,457  170,958,480°

4. PELL CONSEQUENCES

With the gibonacci-Pell relationship b, (z) = g,(2x), we can construct the graph-theoretic
proofs of the Pell versions of equations (7) — (14) independently by changing the weight of the
loop at v1 from = to 2z. We encourage the gibonacci enthusiasts to pursue them.
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