d-EXPANSIONS OF RATIONALS
KING SHUN LEUNG

ABSTRACT. Let ¢ denote the golden ratio (v/5 + 1)/2 and 2 be a positive rational number.
We study how the ¢-expansion of x can be found using some known results on Fibonacci
numbers. We characterize those numbers in (0,1) with finite ¢-expansions. If z € QN(0, 1),
we give a precise expression for its ¢-expansion. In this case, the computation involves only
simple operations on integers.

1. INTRODUCTION

Let ¢ denote the golden ratio (/5 + 1)/2 = 1.6180339887.... We see that ¢ satisfies

¢* =+ 1. (1.1)

It follows that
¢n—|—2 — ¢)n+1 + ¢n (12)
for all integers n. It is known (|7, 8]) that any positive real number x can be expressed in the

form
0

x = Z aip”", (1.3)
i=—h
where a; € D := {0,1}. A shorthand for (1.3) is

T =0_p0_p41-..-0-100-0410A2 .. .p . (14)

This is not the usual notation (positive (negative) powers of ¢ with positive (negative)
indices, see, e.g., [6]), but it is convenient in this paper because we consider mainly numbers
in (0,1). The subscript ¢ is omitted in the rest of this note. We may think of this notion
of number representation as a number system with the irrational base ¢ and the digit set D.
Repeating digits are overbarred as in 10.0001 = 10.0001001001001001 . ... The expression (1.3)
(or (1.4)), called a ¢-expansion of z, is unique if we impose two conditions on the expression.
The first one is that

a;Qi41 = 0 (15)
for all 4. In other words, two consecutive 1s will not appear in a ¢-expansion. We can see from
(1.2) that ...100... = ...011.... Because of (1.5) we accept only the former. The second
condition is that a tail of 01 is replaced by a 1 followed by a tail of (hidden) Os. For example,
by repeated application of (1.2), we have 0.1 = 0.011 = 0.01011 = 0.0101011 = --- = 0.01. We
can also prove this result by summing a geometric series: 0.01 = ¢ 24+ ¢ 4+ S+ 8+... =
61— D) =1/(p* —1) = 1/¢= ¢~ 1 =0.1.

Indeed the representations of numbers in noninteger bases are also studied in the setting
of B-expansions (|7, 8]), of which the notion of ¢-expansions is a special case. Although in
this note, we confine our study to the ¢-expansions of numbers, some of the techniques used
here can be adapted to find their S-expansions, especially when 3 satisfies 52 = n + 1, where
n(> 1) is an integer.
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Definition 1. We define the sequence of Fibonacci numbers {Fy, },cz as follows. For all n € Z,
F, =F,_ 1+ F,_o with Fp =0 and F; = 1. When n is negative, F}, is called a negaFibonacci
number.

Table 1 lists the F,s for n = -9,-8,...,9,10.

n -9 -8 -7 -6 -5 -4 -3 -2 -1 0
F, 34 -21 13 -8 5 -3 2 -1 1 O
n 1 2 3 4 5 6 7 8 9 10
F, 1 1 2 3 5 8 13 21 34 55
TABLE 1. A list of Fibonacci numbers

It can be shown that F5p,—1 = F_om41 and Fyy, = —F_9,, for all integers m.
We list below a number of results on Fibonacci numbers which will be used to find the
¢-expansions of numbers in the subsequent sections. The first one is:

" = Fpd+ Fy1 (1.6)

for all integers n. It can be proved by applying induction twice.
Then, we have two theorems on the representations of integers as a sum of Fibonacci num-
bers.

Theorem 2. (Zeckendorf’s Theorem [3]) Let N be a positive integer. Then, there exist positive
integers 1; > 2 with i1 > i + 1 such that N = Z;nzl Fi;. This representation (called the
Zeckendorf representation) of N is unique.

For example, the Zeckendorf representation of 99 can be found by the Greedy algorithm as
follows: 99 =89+ 10 =89+ 8 +2 = Fy1 + Fg + F3.

Theorem 3. (Representations of integers by negaFibonacci numbers [4]) Let N be a nonzero
integer. Then, there exist positive integers i; > 1 with i;11 > 1; + 1 such that N = 27:1 F_i,.
This representation of N is unique.

For example, the negaFibonacci representation of 99 can be obtained by Bunder’s algorithm
[4] as follows: 99 =89+ 10=89+13 -3 =F_11 + F_7+ F_4.

Similarly, the negaFibonacci representation of —99 is given by

-99 = -144 445 = -144 4+ 34+ 11 = -1444+34+13 -2 = -1444+34+13 -3+ 1 =
Fio+F o+ F 7+ F 4+ F 1.

Let ¢ be a positive integer greater than one. It can be shown that the sequence {F,mod ¢}
is periodic (|11, 12]). The (shortest) period is called the gth Pisano period [13] and written
7(q). Table 2 shows that 7(7) = 16.

n 0 1 2 3 4 5 6 7 8 9 10
F,mod7 0 1 1 2 3 5 1 6 0 6 6

n 11 12 13 14 15 16 17 18 19 20 21
F,mod7 5 4 2 6 1 0 1 1 2 3 5
TABLE 2. A table of F,, mod 7

It can be deduced from the periodicity of {F,mod ¢}, that
Fy_1 = Fyy1 = Fryo = 1lmodg, (1.7)
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where k := 7(q).
The following result is a particular case of Theorem 3.4 in [10].

Theorem 4. Let x = p/q € QN (0,1) where p and q are posilive integers and (p,q) = 1.
Then the ¢-expansion of x is strictly periodic with period k = w(q), i.e., it takes the form
z=0.a1az...a; .

Remark 5. The converse of Theorem 4 is not true in the sense that some numbers with strictly
periodic ¢-expansions are not rationals. For example, 0.100 = ¢! /(1 — ¢73) = ¢? /(¢ - 1) =
P/(F3p+F—1)=¢*/20+1-1)=¢/2¢ Q.

The rest of this note is organized as follows. Section 2 following this introductory section
gives a characterization of numbers in (0, 1) with finite ¢-expansions. The main result of this
paper, a precise description of the ¢-expansion of a rational in (0,1) (Theorem 10) is given in
Section 3. In this section, we will also illustrate with examples how we can apply the previous
results to find the ¢-expasions of positive rationals.

2. NUMBERS IN (0,1) WiTH FINITE ¢-EXPANSIONS

It is known [6] that all positive real numbers that have a finite expansion are given by the
positive numbers in Z[¢~1]. We characterize the numbers in (0, 1) with finite expansions below.

Theorem 6. The ¢-expansion of a number x € (0, 1) is finite if and only if x = Ap+B for some
integers A and B with negaFibonacci representations A = Z;”Zl F_Z-j and B = ZTzl F_ij_l

for some increasing sequence {i; ;”Zl of positive integers satisfying ij41 > i; + 1.

Proof. If. @ = Ap+B = (5L Friy)¢+ 3000 Frijr = Y5y (Foyy ot o) = YL, 670 <
Py ¢~%=1) < 0.10 = 1. Tt follows from Theorem 3 that (1.5) is satisfied in the expression
T = Z;n:1 ¢_ij~

Only if. Let m be the number of 1s in the ¢-expansion of z. Then, there exists an increasing
sequence of positive integers {i;}7"; such that i;11 > i;+1and x = Z;”zl PN = Z;-”:l(F,ijgb—i—
Fojn) = Q0 Fuiy)o+ 300, g1 Here, 3770 FLyand 3070, Foy—y are integers. [

Remark 7. Anderson [1] studies the representations of integers A and B in A¢p + B > 0 as
sums of Fibonacci numbers with no restriction on the signs of the subscripts.

The following simpler characterization of the numbers in (0, 1) was suggested by the referee.
Let w(A) := [pA]| for A € Z*, the famous Wythoff sequence.

Theorem 8. (Referee) The ¢-expansion of a number x € (0,1) is finite if and only if x =
A¢p — w(A) for some positive integer A, or x = Ap + w(-A) + 1 for some negative integer A.

Proof. Only if. Because x € (0,1), the ¢-expansion of x can only have nonzero digits with
negative indices (because the geometric series starting at 1/¢ and multiplier ¢ =2 sums to 1).
Now, because ¢! = ¢ — 1, = can be written as x = A¢ + B for some integers A and B. The
condition x € (0, 1) then forces B = ~w(A) or B = w(-A) + 1, according to the sign of A.

If. According to Theorem 2 in [6], the set of numbers that possess a finite ¢-expansion are
the positive elements of Z[¢p~1]. Because ¢~ = ¢ — 1, these are the positive elements of the
ring Z(¢), so the numbers A¢p — w(A), and Ap + w(-A) + 1 have finite expansions. O

To find the ¢-expansion of z = 10¢p—16, we see that the negaFibonacci representation of 10 is
10 = -3+13 = F_4+ F_7, whereas that of -16is =16 = 5—21 = F_5+ F_g. By Theorem 6, we
got @ = (F_y+ F_q)¢+ (Fs+ F_g) = (F_a¢+ Fs5) + (F_r¢+ F_g5) = ¢~ +¢~7 = 0.0001001.
O
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Remark 9. We can deduce from Theorem 6 that the ¢-expansion of any positive integer is finite
(see |9] for a different proof). Let N be a positive integer. The assertion is obviously true if
N =1. If N > 2, then there exists a positive integer n(> 2) for which M := N¢~" < 1. Using
(1.6), we can express M in the form M = A¢+ B, where A and B are integers. As M € (0,1),
it follows from Theorem 6 that the ¢-expansion of M is finite. As a result, the ¢-expansion of
N is also finite as it can be obtained by shifting the decimal point in the ¢-expansion of M n
places to the right.

3. ¢-EXPANSIONS OF RATIONALS

3.1. ¢-expansions of Rationals in (0,1). [2] gives the ¢-expansions of %, %, i, %, and %.

The main result (Theorem 10) of this note is a precise description of the ¢-expansion of a
rational number z € (0, 1).

Theorem 10. Let v = p/q € (0,1) and k = w(q) be defined as in Theorem 4. Then the
o-expansion of x is given by x = 0.a1az...ax if and only if the a;s satisfy the Zeckendorf
representation of (Fyio — 1)z, i.e., (Fppo — 1)z = a1 Fqq + aoFy + - - - + ap Fo.

Proof. Only if. Theorem 4 states that the ¢-expansion of x takes the form x = 0.a1as ... ak.
Then, we have qﬁkx = @1a3...a4.0103 . ..ag. This implies that

z=¢"r — a1 —ahE — - — .
Using (1.6), we get
r=Fr1z —a1Fy_p —aoFy_3 — - —apF_1) + (Fpw — a1 Fy—1 — a2Fy—9 — -+~ — apFp) ¢
It follows that
(Fr—1 — Dz —a1Fp_9 —agFy_3—--- —apF_1 =0, (3.1)
Foe —a1Fr_1 —askFy_o— - —apFy=0. (3.2)

To determine the a;s, we can proceed as follows.
Adding (3.1) and (3.2) gives

(Fk+1 — 1).56 — CLle - ang_l — akFl =0. (33)
Adding (3.2) and (3.3) gives
(Fgyo — Dz — a1 Fppq — agFy — - - — apFy = 0. (3.4)

Because (Fgio — 1)z is a positive integer, Theorem 2 gives that aj;Fypiq + -+ + apFs is
the Zeckendorf representation of (Fjii1o — 1) (where we use (1.5) because 0.ajaz...ay is a
¢-expansion).

If. Suppose (Fipio — 1)z = a1Fj1 + aoFy + - -+ + apFy and the ¢-expansion of z is z =
0.b1by ... bg. Then by the “only if” part of this theorem, the b;s satisty (Fyyo — 1)z = b1 Fiq1 +
boFy + - -+ + bpFa. As the Zeckendorf representation of (Fjio — 1)x is unique, b; = a; for
i=1,2,... k. O

To find the ¢-expansion of 2/7, we have seen from Table 2 that 7(7) = 16. By Theorem 10,
we have

(Fig—1)(2/7) = a1 Fir+asFi6+- - -+ai6F2. Applying Theorem 2, we obtain (Fig—1)(2/7) =
2583(2/7) = 738 = 6104+89+34+5 = Fi5+ F11 + Fo+ F5. That means a3 = ay = ag = ajz = 1
and all other a;s are equal to zero. Hence, 2/7 = 0.0010001010001000.

We can verify our result as follows.

0.0010001010001000 = (¢ 3+ ¢ "+ 24+ ¢ 13) /(1 — ¢716) = (¢ + ¢ + ¢ + ¢°) /(¢"6 —
1) = [(Fi3¢ + Fi2) + (Fo¢ + Fg) + (Fro + Fo) + (F39 + I2)]/(Fi6¢ + Fi5s — 1) = [(233¢ +
144) + (34¢ + 21) + (1390 + 8) + (20 + 1)]/(987¢ + 610 — 1) = (282¢ + 174)/(987¢ + 609) =
[2(141¢ + 87)]/[7(141¢ + 87)] = 2/7. O
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3.2. ¢-expansions of Rationals Greater Than One. We can use the idea of Remark 9 to
find the ¢-expansion of an integer greater than one. We illustrate the idea explicitly with the
examples below.

To find the ¢-expansion of 23, we can proceed as follows. Because 23 = 154+ 8 < 13¢ +
8 = Fy¢ + Fs = ¢ (by (1.6)), we let M := 23¢~". Using (1.6) and Theorem 3, we have
M = 23(F_7¢ + F_g) = 23 - 13¢ + 23(—21) = 299¢ — 483 = (F_1 + F_4 + F_g + F_11 +
F_13)p+(Fo+F 5+F g+ F 194+ F_14) = (F_1¢0+F o)+ (F_4p+ F_5)+ (Fg¢p+ F_g)+
(F 19+ F 19) + (F 130+ F 14) = ¢ P+ 072+ 84+ ¢+ ¢ 13, Then, 23 = M¢" =
5+ P+ p 1 4+ ¢~ 4+ ¢% = 1001000.100101.

We end this note with an example on how to find the ¢-expansion of a nonintegral rational
greater than one.

To find the ¢-expansion of g, the first step is to write % = 5%. It is easy to see that 5 has
¢-expansion 1000.1001, and an application of Theorem 10 gives that the ¢-expansion of 2/3 is
0.10000010 = 0.100000101000. Then, we have 5% = 1000.1001+0.1000+0.000000101000. The
sum of the first two terms can be obtained by repeated use of (1.2) as follows: 1000.1001 +
0.1000 = 1000.0111 + 0.1000 = 1000.1111 = 1001.0011 = 1001.0100. Finally, we have 5% =
1001.0100 + 0.000000101000 = 1001.010000101000 = 1001.0100001010.
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