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Abstract. For each positive integer k, denote the metallic mean
(
k +

√
k2 + 4

)
/2 by αk.

In this article, we give some new identities involving the k-Fibonacci numbers, the k-Lucas
numbers, metallic means, the floor function, and fractional parts. We also provide some
properties of the Beatty sequence B (αn

k ) generated by αn
k , where n is any positive integer.

Then these properties are used to show connections between k-Fibonacci and k-Lucas numbers
and the sequence B (αn

k ).

1. Introduction

For each x ∈ R, let ⌊x⌋ be the largest integer not exceeding x, {x} = x− ⌊x⌋ the fractional
part of x, and B(x) := (⌊bx⌋)b≥1 the Beatty sequence generated by x. Depending on the
context, we also write B(x) to denote the Beatty set {⌊bx⌋ | b ∈ N}. A famous theorem, called
Beatty’s theorem [2, 3], states that if x, y are positive irrational numbers and 1/x+ 1/y = 1,
then B(x) and B(y) form a partition of N, that is, B(x) ∪B(y) = N and B(x) ∩B(y) = ∅.

Two well-known Beatty sequences B(ϕ) and B(ϕ2), where ϕ = 1+
√
5

2 is the golden ratio,
are called lower and upper Wythoff sequences, respectively, and their combinatorial properties
have been extensively studied; see for example in [1, 6, 7, 12]. However, there are only a
few arithmetic results concerning sumsets associated with B(ϕ) and B(ϕ2). Pongsriiam and
his coauthors [10, 14, 15] have recently started the investigation on sumsets associated with
Beatty sequences. To do so, they studied relations between Fibonacci numbers and the sets
B(ϕ) and B(ϕ2) and used these relations to obtain their main results. Dekking [4] and Shallit
[16, 17] also extended some of the results in their articles [10, 14, 15].

Our purpose is to extend the results on the Fibonacci numbers, B(ϕ), and B(ϕ2) to the case
of Lucas sequences (Un(a, b))n≥1 and (Vn(a, b))n≥1 of the first and second kinds, respectively.
Recall that these sequences are defined by the recurrence relations

U0 = 0, U1 = 1, Un = aUn−1 + bUn−2 for n ≥ 2,

V0 = 2, V1 = a, Vn = aVn−1 + bVn−2 for n ≥ 2,

where a and b are arbitrary but fixed relatively prime integers.
We find that it is possible to extend many identities for the Fibonacci numbers to the case of

Un and Vn, and then obtain some connections between Un, Vn, and B(α), where α is a certain
root of the characteristic polynomial x2−ax−b of (Un(a, b))n≥1 and (Vn(a, b))n≥1. The positive
quadratic irrational numbers that are the positive solutions of quadratic equations of the form
x2 − ax− b = 0 are called metallic means [18, 19]. Nevertheless, this possibility occurs when
b = 1, whereas the general case seems complicated. So, we focus only on the simpler case where
a = k is any positive integer and b = 1, and we postpone the general case for future research.
Therefore, we let Fk,n = Un(k, 1) and Lk,n = Vn(k, 1) for all n ≥ 0, and let αk and βk be positive
and negative roots of the characteristic polynomial x2 − kx − 1 of the sequences (Fk,n)n≥1

and (Lk,n)n≥1. We call Fk,n, Lk,n, and αk the k-Fibonacci numbers, k-Lucas numbers, and
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a metallic mean, respectively. In particular, the sequences (F1,n)n≥1, (F2,n)n≥1, (F3,n)n≥1,
(L1,n)n≥1, (L2,n)n≥1, and (L3,n)n≥1 are the sequences A000045, A000129, A006190, A000032,
A002203, and A006497, respectively, in the On-Line Encyclopedia of Integer Sequences (OEIS)
[13]. We give various identities for Fk,n and Lk,n, show some properties of B(αm

k ), where m is
any positive integer, and then we provide some connections between Fk,n, Lk,n, and B(αm

k ).

2. Notations and Preliminary Results

Before proceeding further, let us recall the well-known Binet formula, which holds in the
general case of Lucas sequences of the first and second kinds. Therefore, it also holds for Fk,n

and Lk,n. That is

Fk,n =
αn
k − βn

k

αk − βk
and Lk,n = αn

k + βn
k for all n ∈ N ∪ {0} ,

where αk =
(
k +

√
k2 + 4

)
/2 and βk =

(
k −

√
k2 + 4

)
/2 are the roots of the characteristic

polynomial x2− kx− 1 = 0. Because k is a fixed positive integer, we sometimes write α = αk,
β = βk, Fk,n = Fn, and Lk,n = Ln if no confusion arises. Let us also provide some remarks on
properties of α and β. Note that, because k is positive, we obtain −1 < β < 0 < α and |β| < α.
Thus, if m ≤ n are positive even integers, then 0 < βn ≤ βm, and if m ≤ n are positive odd
integers, then βm ≤ βn < 0. Moreover, one can check that α = αk and β = βk are increasing
functions of k. So −0.5 < β for all k ≥ 2. Furthermore, α2 = kα + 1, α3 = k2α + k + α,

β2 = kβ+1, α = − 1

β
, α+β = k, αβ = −1, and α−β =

√
k2 + 4. These results will be applied

throughout this paper sometimes without further reference.

Lemma 2.1. Let n be an integer and let x and y be real numbers. Then, the following
statements hold.

(i) ⌊n+ x⌋ = n+ ⌊x⌋.
(ii) {n+ x} = {x}.
(iii) 0 ≤ {x} < 1.

(iv) ⌊x+ y⌋ =

{
⌊x⌋+ ⌊y⌋, if {x}+ {y} < 1;

⌊x⌋+ ⌊y⌋+ 1, if {x}+ {y} ≥ 1.

(v) ⌊−x⌋ = −⌊x⌋ − 1 if x is not an integer.
(vi) {−x} = 1− {x} if x is not an integer.
(vii) {{x+ y}} = {{x}+ {y}} .

Proof. The results in (i) to (vi) are well known, and their details can be found in [8, Chapter
3]. For (vii), recall the identity in [10, Lemma 2.4] that

{x1 + x2 + · · ·+ xn} = {{x1}+ {x2}+ · · ·+ {xn}} .

Therefore, {{x+ y}} = {{x}+ {y}}. □

Lemma 2.2. Let n be a positive integer. Then, the following statements hold.

(i) Lk,n = Fk,n+1 + Fk,n−1.
(ii) αn

k = αkFk,n + Fk,n−1 and βn
k = βkFk,n + Fk,n−1.

(iii)
√
k2 + 4αn

k = αkLk,n + Lk,n−1 and −
√
k2 + 4βn

k = βkLk,n + Lk,n−1.

(iv) Fk,n = αkFk,n−1 + βn−1
k .

(v) Lk,n = αkLk,n−1 −
√
k2 + 4βn−1

k .
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Proof. For convenience, we write Fn, Ln, α, and β instead of Fk,n, Lk,n, αk, and βk, re-
spectively. By Binet’s formula and noting that αβ = −1, we see that the right side of (i)
is

αn

(
α+

1

α

)
− βn

(
β +

1

β

)
α− β

=
αn (α− β) + βn (α− β)

α− β
= Ln.

For (ii), we obtain

αFn + Fn−1 = α (kFn−1 + Fn−2) + Fn−1

= (kα+ 1)Fn−1 + αFn−2

= α2Fn−1 + αFn−2

= α2

(
αn−1 − βn−1

α− β

)
+ α

(
αn−2 − βn−2

α− β

)
=

αn+1 + αn−1

α− β

=

αn

(
α+

1

α

)
α− β

= αn.

Then, αn − (βFn + Fn−1) = (αFn + Fn−1) − (βFn + Fn−1) = (α− β)Fn = αn − βn, which
implies βn = βFn + Fn−1.

For (iii), we see that αLn + Ln−1 is equal to

α (αn + βn) +
(
αn−1 + βn−1

)
= αn+1 − βn−1 + αn−1 + βn−1 = αn (α− β) =

√
k2 + 4αn.

Similarly, βLk,n + Lk,n−1 is equal to

β (αn + βn) +
(
αn−1 + βn−1

)
= −αn−1 + βn+1 + αn−1 + βn−1 = −βn (α− β) = −

√
k2 + 4βn.

Multiplying each side of the second identity in (ii) and (iii) by α, we obtain (iv) and (v),
respectively. □

Lemma 2.3. For positive integers m and n with m ≥ n, the following equalities hold.

(i) Fk,m+n = Fk,m−1Fk,n + Fk,mFk,n+1.
(ii) Lk,n+m = Fk,m−1Lk,n + Fk,mLk,n+1.

Proof. These identities can be proved by applying Binet’s formula to the right side of each
equation, and then doing a straightforward algebraic manipulation. The details are left to the
reader. □

To simplify statements and notations that will appear from now on, we will use the Iverson
notation [P ], defined by

[P ] =

{
1, if P holds;

0, otherwise,

where P is a mathematical statement.

Lemma 2.4. For each positive integer n,

Lk,n = ⌊αn
k⌋+ [n ≡ 0 (mod 2)].
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Proof. Let n be a positive integer. We denote Lk,n, αk, and βk by Ln, α, and β, respectively.
If n is even, then

Ln − 1 = αn + βn − 1 < αn < αn + βn = Ln

because 0 < βn < 1. On the other hand, if n is odd, then

Ln = αn + βn < αn < αn + βn + 1 = Ln + 1

because −1 < βn < 0. Therefore, Ln = ⌊αn⌋+ [n ≡ 0 (mod 2)]. □

Corollary 2.5. For each positive integer n,

⌊Lk,nα
n
k⌋ = Lk,2n − 2[n ≡ 1 (mod 2)].

Proof. Let n be a positive integer. Again, we denote Lk,n, αk, and βk by Ln, α, and β,
respectively. By Lemma 2.4, we immediately obtain that

⌊Lnα
n⌋ = ⌊(αn + βn)αn⌋ =

⌊
α2n + (−1)n

⌋
=

⌊
α2n

⌋
+ (−1)n = L2n − 1 + (−1)n .

Thus, ⌊Lnα
n⌋ = L2n − 2[n ≡ 1 (mod 2)] as required. □

Lemma 2.6. Let m and n be positive integers. Then, the following statements are valid.

(i) If n ≥ m, then ⌊Fk,nα
m
k ⌋ = Fk,n+m − [n ≡ 0 (mod 2)].

(ii) If n ≥ m+ 1, then ⌊Lk,nα
m
k ⌋ = Lk,n+m − [n ≡ 1 (mod 2)].

Proof. For convenience, we write Fn, Ln, α, and β instead of Fk,n, Lk,n, αk, and βk, respec-
tively. For (i), assume that n ≥ m. By Lemma 2.1 and Lemma 2.3, we have

⌊Fnα
m⌋ = ⌊Fn (αFm + Fm−1)⌋

= ⌊αFmFn⌋+ Fm−1Fn

= ⌊(Fn+1 − βn)Fm⌋+ Fm−1Fn

= ⌊−βnFm⌋+ FmFn+1 + Fm−1Fn

= ⌊−βnFm⌋+ Fn+m

= −⌊βnFm⌋ − 1 + Fn+m.

Thus, it suffices to show that ⌊βnFm⌋ = [n ≡ 0 (mod 2)]− 1 = −[n ≡ 1 (mod 2)]. To do so, we
apply the Binet’s formula throughout the following cases.

Case 1. n is even. In this case, we will show that ⌊βnFm⌋ = 0, i.e., 0 < βnFm < 1.
Case 1.1. m is even. Then,

0 < βnFm ≤ βmFm = βm

(
αm − βm

α− β

)
=

1− β2m

α− β
=

1− β2m

√
k2 + 4

<
1√

k2 + 4
< 1.

Case 1.2. m is odd. Then, n ≥ m+ 1 and

0 < βnFm ≤ βm+1Fm = βm+1

(
αm − βm

α− β

)
=

−β − β2m+1

α− β
≤ −β − β3

α− β
= β2 < 1.

Case 2. n is odd. In this case, we will show that ⌊βnFm⌋ = −1, i.e., −1 < βnFm < 0.
Case 2.1. m is even. Then, n ≥ m+ 1 and

0 > βnFm ≥ βm+1Fm = βm+1

(
αm − βm

α− β

)
=

β − β2m+1

α− β
>

β

α− β
> β > −1.

Case 2.2. m is odd. Then,

0 > βnFm ≥ βmFm = βm

(
αm − βm

α− β

)
=

−1− β2m

α− β
≥ −1− β2

α− β
= β > −1.
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For (ii), assume that n ≥ m+1. By Lemma 2.1, Lemma 2.2, and Lemma 2.3, we have that

⌊Lnα
m⌋ = ⌊Ln (αFm + Fm−1)⌋

= ⌊αFmLn⌋+ Fm−1Ln

= ⌊
(
Ln+1 + βn

√
k2 + 4

)
Fm⌋+ Fm−1Ln

= ⌊βn
√
k2 + 4Fm⌋+ FmLn+1 + Fm−1Ln

= ⌊βn
√
k2 + 4Fm⌋+ Ln+m.

Thus, it suffices to show that ⌊βn
√
k2 + 4Fk,m⌋ = −[n ≡ 1 (mod 2)]. To do so, we investigate

through the following cases.
Case 1. n is even. In this case, we will show that ⌊βn

√
k2 + 4Fm⌋ = 0, i.e., 0 <

βn
√
k2 + 4Fm < 1.
Case 1.1. m is even. Then,

0 < βn
√
k2 + 4Fm ≤ βm

√
k2 + 4Fm = βm

√
k2 + 4

(
αm − βm

α− β

)
= 1− β2m < 1.

Case 1.2. m is odd. Then,

0 < βn
√
k2 + 4Fm ≤ βm+1

√
k2 + 4Fm = βm+1

√
k2 + 4

(
αm − βm

α− β

)
= −β − β2m+1 ≤ −β − β3.

If k = 1, it is straightforward to check that −β − β3 < 1. If k ≥ 2, then −β − β3 < −2β =√
k2 + 4− k <

√
k2 + 2k + 1− k = 1.

Case 2. n is odd. In this case, we will show that ⌊βn
√
k2 + 4Fm⌋ = −1, i.e., −1 <

βn
√
k2 + 4Fm < 0.
Case 2.1. m is even. Then,

0 > βn
√

k2 + 4Fm ≥ βm+1
√

k2 + 4Fm = βm+1
√
k2 + 4

(
αm − βm

α− β

)
= β − β2m+1 > β > −1.

Case 2.2. m is odd. Then, n ≥ m + 2. Using the same argument as in Case 1.2, we
obtain

0 > βn
√
k2 + 4Fm ≥ βm+2

√
k2 + 4Fm = βm+2

√
k2 + 4

(
αm − βm

α− β

)
= −β2 − β2m+2 ≥ −β2 − β4

> β + β3 > −1.

This completes the proof. □

Corollary 2.7. Let m and n be positive integers. Then, the following statements are valid.

(i) {αn
k} = −βn

k + [n ≡ 0 (mod 2)].

(ii) If n ≥ m, then {Fk,nα
m
k } =

βn−m
k√
k2 + 4

(
β2m
k − (−1)m

)
+ [n ≡ 0 (mod 2)].

(iii) {Lk,nα
n
k} = 1− β2n

k .

(iv) If n > m, then {Lk,nα
m
k } = βn−m

k

(
(−1)m − β2m

k

)
+ [n ≡ 1 (mod 2)].
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Proof. Again, for simplicity, we write Fn, Ln, α, and β to denote Fk,n, Lk,n, αk, and βk,
respectively.

(i) By Lemma 2.4, we obtain

{αn} = αn − ⌊αn⌋
= αn − Ln + [n ≡ 0 (mod 2)]

= αn − αn − βn + [n ≡ 0 (mod 2)]

= −βn + [n ≡ 0 (mod 2)].

(ii) By Lemma 2.6 (i), we obtain

{Fnα
m} = Fnα

m − ⌊Fnα
m⌋

=
αn − βn

α− β
αm − Fn+m + [n ≡ 0 (mod 2)]

=
αn+m − (−1)m βn−m

α− β
− αn+m − βn+m

α− β
+ [n ≡ 0 (mod 2)]

=
βn−m

√
k2 + 4

(
β2m − (−1)m

)
+ [n ≡ 0 (mod 2)].

(iii) By Corollary 2.5, we obtain

{Lnα
n} = Lnα

n − ⌊Lnα
n⌋

= (αn + βn)αn − L2n + 2[n ≡ 1 (mod 2)]

= α2n + (−1)n − α2n − β2n + 2[n ≡ 1 (mod 2)]

= (−1)n − β2n + 2[n ≡ 1 (mod 2)]

= 1− β2n.

(iv) By Lemma 2.6 (ii), we obtain

{Lnα
m} = Lnα

m − ⌊Lnα
m⌋

= (αn + βn)αm − Ln+m + [n ≡ 1 (mod 2)]

= αn+m + (−1)m βn−m − αn+m − βn+m + [n ≡ 1 (mod 2)]

= βn−m
(
(−1)m − β2m

)
+ [n ≡ 1 (mod 2)].

□

3. The Difference Between Consecutive Terms in B (αn
k)

In [10], Kawsumarng, et al. studied the pattern of the difference between two consecutive
terms in B (α1) and B

(
α2
1

)
. Later, Pongsriiam [15] did the same for the sequence B (αn

1 ),
where n ≥ 3. They also provided some properties of a certain segment in these sequences.
Recall that a segment of a sequence (xn)n≥1 as a finite subsequence (xm, xm+1, . . . , xm+t),
where both m and t are some positive integers. In this section, we further investigate the
difference between two consecutive terms in B (αn

k) for arbitrary positive integers k and n.
Although, the idea used in [10] and [15] can be applied to obtain the results, we want to
explore an alternative method. To do so, we considered (⌊(b+ 1)αn

k⌋ − ⌊bαn
k⌋)b≥0 as Sturmian

languages in integers.
Before proceeding further, let us introduce all notations and theorems that will be used

throughout this section. For each real number θ, let a0 = ⌊θ⌋, θ0 = θ − a0, an = ⌊1/θn−1⌋,
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and θn = (1/θn−1) − an for all positive integers n. Then, the continued fraction expansion
of θ is denoted by [a0, a1, a2, . . .]. A real number θ ∈ (0, 1) is called a Sturm number if it is
a quadratic irrational number with algebraic conjugate θ̄ /∈ (0, 1). The Sturmian sequence
generated by a real number θ ∈ (0, 1) is the sequence

cθ := (⌊(n+ 1) θ⌋ − ⌊nθ⌋)n≥1 .

The Sturmian sequence can be considered as the sequence of the differences between consecu-
tive elements in B (θ). Clearly, cθ is a sequence of zeros and ones. The sequence cθ was studied
by Komatsu and Poorten. They showed the following theorem.

Theorem 3.1. [11] Let θ be an irrational number in the interval (0, 1). Then, there
exists a morphism σθ on the alphabet {0, 1} such that σθ (cα) = cα if and only if (a)
θ = [0, 1, a2, a3, . . . , an] > 1/2 and an ≥ a2, when

σθ : 0 7→ T an−a2
n−1 Tn−2, 1 7→ Tn−1,

or (b) θ = [0, a1, a2, . . . , an] < 1/2 and an + 1 ≥ a1 ≥ 2, when

σθ : 0 7→ Tn−1, 1 7→ T an+1−a1
n−1 Tn−2,

where T0 = 0, T1 = 0a1−11, and Tk = T ak
k−1Tk−2 for all positive integer k ≥ 2.

Later, Allouche and Dekking extended this result to a generalized Beatty sequence as shown
in the following theorem.

Theorem 3.2. [1] Let θ be a Sturm number. Let V (θ) := (p (⌊nθ⌋) + qn+ r)n≥1 and fθ :=

(p (⌊(n+ 1) θ⌋ − ⌊nθ⌋) + q)n≥1, where p, q, and r are integers. Then, fθ is the fixed point of

σα on the alphabet {q, p+ q}.

Notice that fθ is actually the sequence of the differences between consecutive elements in
V (θ). From now on, let k be a positive integer.

Theorem 3.3. Let n be an odd positive integer and let b be a nonnegative integer. Then,

(⌊(b+ 1)αn
k⌋ − ⌊bαn

k⌋)b≥1 = lim
ℓ→∞

uℓ,

where uℓ is the finite word σℓ (Ln) when σ is the morphism on {Lk,n, Lk,n + 1} defined by

σ : Lk,n 7→ (Lk,n)
Lk,n−1 (Lk,n + 1) , Lk,n + 1 7→ (Lk,n)

Lk,n−1 (Lk,n + 1) (Ln) .

Moreover, the following statements hold.

(i) ⌊(b+ 1)αn
k⌋ − ⌊bαn

k⌋ is equal to Lk,n or Lk,n + 1.
(ii) If ⌊(b+ 1)αn

k⌋ − ⌊bαn
k⌋ = Lk,n + 1, then ⌊(b+ 2)αn

k⌋ − ⌊(b+ 1)αn
k⌋ = Lk,n.

(iii) (⌊(b+ 1)αn
k⌋ − ⌊bαn

k⌋)b≥1 does not contain the segment (Lk,n, Lk,n, . . . , Lk,n︸ ︷︷ ︸
(Lk,n+1)−terms

).

Proof. For convenience, we denote Fk,n, Lk,n, αk, and βk by Fn, Ln, α, and β, respectively. If
k = 1 and n = 1, then it was shown in [1] that (⌊(b+ 1)αn

k⌋ − ⌊bαn
k⌋)b≥1 is the fixed point of

the morphism σθ on {Ln, Ln + 1} defined by

σθ : Ln 7→ (Ln)
Ln−1 (Ln + 1) , Ln + 1 7→ (Ln)

Ln−1 (Ln + 1) (Ln) .

Assume that k > 1 or n > 1. Then, Ln ≥ 2. Let θ := αn−Ln = −βn ∈ (0, 1/2). Then, one can
easily check that θ̄ = −

(
β̄
)n

= −αn < −1. Thus, θ is a Sturm number. Moreover, B (αn) =

(⌊nθ⌋+ nLn)n≥1. According to Lemma 2.4 and Corollary 2.7 (i), we have that

⌊
− 1

βn

⌋
=
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⌊αn⌋ = Ln and

{
− 1

βn

}
= {αn} = −βn. Thus, the continued expansion of θ is

[
0, Ln, Ln

]
. As

Ln + 1 ≥ Ln ≥ 2 for all k ≥ 2, Theorem 3.1 and 3.2 imply that (⌊(b+ 1)αn
k⌋ − ⌊bαn

k⌋)b≥1 is

the fixed point of the morphism σθ on {Ln, Ln + 1} defined by

σθ : Ln 7→ (Ln)
Ln−1 (Ln + 1) , Ln + 1 7→ (Ln)

Ln−1 (Ln + 1) (Ln) .

As the first letters of σθ (Ln) and σθ (Ln + 1) are the same, the morphism σθ has a
unique fixed point (see [5] for details) that is lim

ℓ→∞
uℓ, where uℓ = σℓ

θ (Ln). Therefore,

(⌊(b+ 1)αn
k⌋ − ⌊bαn

k⌋)b≥1 = lim
ℓ→∞

uℓ. Consequently, (i), (ii), and (iii) hold. □

Theorem 3.4. Let n be an even positive integer and let b be a nonnegative integer. Then,

(⌊(b+ 1)αn
k⌋ − ⌊bαn

k⌋)b≥1 = lim
ℓ→∞

uℓ,

where uℓ is the finite word σℓ (Lk,n − 1) when σ is the morphism on {Lk,n − 1, Lk,n} defined
by

σ : (Lk,n − 1) 7→ (Lk,n)
Lk,n−2 (Lk,n − 1) , Lk,n 7→ (Lk,n)

Lk,n−2 (Lk,n − 1) (Lk,n) .

Moreover, the following statements hold.

(i) ⌊(b+ 1)αn
k⌋ − ⌊bαn

k⌋ is equal to Lk,n − 1 or Lk,n.
(ii) If ⌊(b+ 1)αn

k⌋ − ⌊bαn
k⌋ = Lk,n − 1, then ⌊(b+ 2)αn

k⌋ − ⌊(b+ 1)αn
k⌋ = Lk,n.

(iii) (⌊(b+ 1)αn
k⌋ − ⌊bαn

k⌋)b≥0 does not contain the segment (Lk,n, Lk,n, . . . , Lk,n︸ ︷︷ ︸
Lk,n−terms

).

Proof. Again, we write Fn, Ln, α, and β for Fk,n, Lk,n, αk, and βk, respectively. Let θ :=

1− Ln + αn = 1− βn ∈ (1/2, 1). Then, one can easily check that θ̄ = 1−
(
β̄
)n

= 1− αn < 0.
Thus, θ is a Sturm number. Moreover, B (αn) = (⌊nθ⌋+ (Ln)n− 1)n≥1. According to Lemma

2.4 and Corollary 2.7 (i), we have that

⌊
1

1− βn

⌋
= 1,

{
1

1− βn

}
=

βn

1− βn
,

⌊
1− βn

βn

⌋
=

⌊αn − 1⌋ = Ln − 2, and

{
1− βn

βn

}
= {αn − 1} = {αn} = 1 − βn. Thus, the continued

expansion of θ is
[
0, 1, Ln − 2, 1, Ln − 2

]
. As Ln−2 ≥ Ln−2, Theorem 3.1 and 3.2 imply that

(⌊(b+ 1)αn
k⌋ − ⌊bαn

k⌋)b≥1 is the fixed point of the morphism σθ on {Ln − 1, Ln} defined by

σθ : (Ln − 1) 7→ (Ln)
Ln−2 (Ln − 1) , Ln 7→ (Ln)

Ln−2 (Ln − 1) (Ln) .

Because the first letters of σθ (Ln − 1) and σθ (Ln) are the same, the morphism σθ has a unique
fixed point that is lim

ℓ→∞
uℓ, where uℓ = σℓ

θ (Ln − 1). Therefore, (⌊(b+ 1)αn
k⌋ − ⌊bαn

k⌋)b≥1 =

lim
ℓ→∞

uℓ. Consequently, (i), (ii), and (iii) hold. □

4. k-Fibonacci and k-Lucas Numbers in B (αn
k)

In this section, we give necessary and sufficient conditions for Fk,n and Lk,n to be in B (αm
k )

Theorem 4.1. Let m and n be positive integers such that n ≥ 2m. Then, the following
statements are true.

(i) If m is odd, then
(a) Fk,n ∈ B (αm

k ) if and only if n is even, and
(b) Fk,n − 1 ∈ B (αm

k ) if and only if n is odd.
(ii) If m is even, then
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(a) Fk,n ∈ B (αm
k ) if and only if n is odd, and

(b) Fk,n − 1 ∈ B (αm
k ) if and only if n is even.

Proof. For (i), assume that m is odd. If k = 1 and m = 1, then the statement is true as shown
in [10, Theorem 3.2]. Thus, assume that k ≥ 2 or m ≥ 3. By Lemma 2.6 (i), if n is even, then

Fn = ⌊Fn−mαm⌋+ [n−m ≡ 0 (mod 2)] = ⌊Fn−mαm⌋ ∈ B (αm) .

Suppose that n is odd and there is a positive integer b such that Fn = ⌊bαm⌋. Then by Lemma
2.6 (i), we obtain

⌊bαm⌋ = ⌊Fn−mαm⌋+ [n−m ≡ 0 (mod 2)] = ⌊Fn−mαm⌋+ 1.

By Theorem 3.3 (i), we obtain

1 = ⌊bαm⌋ − ⌊Fn−mαm⌋ ≥ ⌊(Fn−m + 1)αm⌋ − ⌊Fn−mαm⌋ ≥ Lm > 1,

which is a contradiction. So, (a) in (i) is proved.
Next, if n is odd, then Lemma 2.6 (i) implies that

Fn − 1 = ⌊Fn−mαm⌋+ [n−m ≡ 0 (mod 2)]− 1 = ⌊Fn−mαm⌋ ∈ B (αm) .

If n is even, then we obtain from (a) that Fn ∈ B (αm) and we also know that the difference
between distinct elements in B (αm) is at least Lm − [m ≡ 0 (mod 2)] = Lm > 1, and thus,
Fn − 1 /∈ B (αm).

For (ii), assume that m is even. If k = 1 and m = 2, then the statement is true as shown
in [10, Theorem 3.2]. Thus, assume that k ≥ 2 or m ≥ 4. By Lemma 2.6 (i), if n is odd, then

Fn = ⌊Fn−mαm⌋+ [n−m ≡ 0 (mod 2)] = ⌊Fn−mαm⌋ ∈ B (αm) .

Moreover, if n is even and there is a positive integer b such that Fn = ⌊bαm⌋, then by Lemma
2.6 (i), we obtain

⌊bαm⌋ = ⌊Fn−mαm⌋+ [n−m ≡ 0 (mod 2)] = ⌊Fn−mαm⌋+ 1,

which contradicts Theorem 3.3 (i) because

1 = ⌊bαm⌋ − ⌊Fn−mαm⌋ ≥ ⌊(Fn−m + 1)αm⌋ − ⌊Fn−mαm⌋ ≥ Lm − 1 > 1.

This proves (a) in (ii).
Next, if n is even, then

Fn − 1 = ⌊Fn−mαm⌋+ [n−m ≡ 0 (mod 2)]− 1 = ⌊Fn−mαm⌋ ∈ B (αm) .

If n is odd, then we obtain from (a) that Fn ∈ B (αm) and we also know that the difference
between distinct elements in B (αm) is at least Lm− [m ≡ 0 (mod 2)] = Lm− 1 > 1, and thus,
Fn − 1 /∈ B (αm). This completes the proof. □

Recall that Beatty’s theorem implies that B (α1) and B
(
α2
1

)
form a partition of N. By

applying Beatty’s theorem [2, 3] and using a similar argument as in [10, Theorem 3.2], we
obtain the following result for 1-Lucas numbers.

Proposition 4.2. Let n be a positive integer. Then, the following statements are true.

(i) For n ≥ 3, L1,n ∈ B (α1) if and only if n is odd.
(ii) For n ≥ 4, L1,n − 1 ∈ B (α1) if and only if n is even.
(iii) For n ≥ 6, L1,n ∈ B

(
α2
1

)
if and only if n is even.

(iv) For n ≥ 5, L1,n − 1 ∈ B
(
α2
1

)
if and only if n is odd.
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Proof. When n = 3 or 4, the results can be easily checked. So, assume throughout that n ≥ 5.
By Lemma 2.6 (ii), we obtain

L1,n − [n ≡ 0 (mod 2)] = ⌊L1,n−1α1⌋ ∈ B (α1) ,

L1,n − [n ≡ 1 (mod 2)] = ⌊L1,n−2α
2
1⌋ ∈ B

(
α2
1

)
.

If n is odd, then above equalities yield L1,n ∈ B (α1) and L1,n − 1 ∈ B
(
α2
1

)
. Thus, by

Beatty’s theorem, we have L1,n /∈ B
(
α2
1

)
and L1,n − 1 /∈ B (α1).

On the other hand, if n is even, then the above equalities yield L1,n − 1 ∈ B (α1) and
L1,n ∈ B

(
α2
1

)
. Again, by Beatty’s theorem, we have L1,n− 1 /∈ B

(
α2
1

)
and L1,n /∈ B (α1). □

Theorem 4.3. Let m and n be positive integers such that n ≥ 2m + 2. Then, the following
statements are true.

(i) If m is odd, then
(a) Lk,n ∈ B (αm

k ) if and only if n is odd, and
(b) Lk,n − 1 ∈ B (αm

k ) if and only if n is even.
(ii) If m is even, then

(a) Lk,n ∈ B (αm
k ) if and only if n is even, and

(b) Lk,n − 1 ∈ B (αm
k ) if and only if n is odd.

Proof. For (i), assume that m is odd. If k = 1 and m = 1, then the statement is valid by
Proposition 4.2. Thus, assume that k ≥ 2 or m ≥ 3. By Lemma 2.6 (ii), if n is odd, then

Ln = ⌊Ln−mαm⌋+ [n−m ≡ 1 (mod 2)] = ⌊Ln−mαm⌋ ∈ B (αm) .

Because Ln ∈ B (αm) and the difference between distinct elements of B (αm) is larger than 1,
we see that Ln − 1 /∈ B (αm).

On the other hand, if n is even, then Lemma 2.6 (ii) implies that

Ln − 1 = ⌊Ln−mαm⌋+ [n−m ≡ 1 (mod 2)]− 1 = ⌊Ln−mαm⌋ ∈ B (αm) .

Because Ln−1 ∈ B (αm) and the difference between distinct elements of B (αm) is larger than
1, we see that Ln /∈ B (αm). This proves (i).

For (ii), assume that m is even. If k = 1 and m = 2, then the statement is valid by
Proposition 4.2. Thus, assume that k ≥ 2 or m ≥ 4. By Lemma 2.6 (ii), if n is even, then

Ln = ⌊Ln−mαm⌋+ [n−m ≡ 1 (mod 2)] = ⌊Ln−mαm⌋ ∈ B (αm) .

Because Ln ∈ B (αm) and the difference between distinct elements of B (αm) is larger than 1,
we see that Ln − 1 /∈ B (αm). On the other hand, if n is odd, then

Ln − 1 = ⌊Ln−mαm⌋+ [n−m ≡ 1 (mod 2)]− 1 = ⌊Ln−mαm⌋ ∈ B (αm) .

Because Ln−1 ∈ B (αm) and the difference between distinct elements of B (αm) is larger than
1, we see that Ln /∈ B (αm). This proves (ii). □
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