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Abstract. We give a combinatorial proof of a formula giving the partial sums of the k-
bonacci sequence as alternating sums of powers of two multiplied by binomial coefficients. As
a corollary, we obtain a formula for the k-bonacci numbers.

1. Introduction

For k ≥ 1, define k-bonacci numbers f
(k)
n by the initial values and recursion1

f (k)
n =


0, if n < 0;

1, if n = 0;∑k
i=1 f

(k)
n−i, if n ≥ 1.

(1.1)

The k-bonacci numbers were introduced under the name k-generalized Fibonacci numbers
by Miles [8] in 1960. According to [6], the Miles paper may be the earliest paper on the topic
to have appeared in a widely available journal.2 It appears that the terminology “k-bonacci”
was in use as early as 1973 by V. E. Hoggatt, Jr. and Marjorie Bicknell [3]. That terminology
has continued to be used since then, although not universally.

This paper is about the following formula for the partial sums of the sequence of k-bonacci
numbers: For k ≥ 1 and n ≥ 0, the sum of the first n+ 1 k-bonacci numbers is given by3

n∑
i=0

f
(k)
i =

⌊n/(k+1)⌋∑
j=0

(−1)j
(
n− jk

j

)
2n−j(k+1) . (1.2)

We obtained formula (1.2) in the process of developing growth estimates for sums of k-
bonacci numbers, which we had hoped to apply to another problem. Because this formula
seemed to be new, we put aside the original problem to more fully understand the formula.
We found an algebraic proof for (1.2), but we wondered if the formula could be understood at
a deeper level—or at least be proved in another way—by using a combinatorial approach.

Thanks to an anonymous referee (who used [10] to track down the reference), we have
learned that formula (1.2) should be credited to a 1925 paper by Otto Dunkel. In Dunkel’s
paper [4], if one compares the equation for P2(n) in Section 6 to the equation for P2(n) in
Section 10, then one sees that (1.2) holds.

1Note that the k = 2 case gives the usual Fibonacci numbers with the index shifted by 1. The combinatorial
approach to the Fibonacci numbers in [2] employs this shift. Extending that combinatorial approach to all
k ≥ 2, we have shifted onto the negative indices the beginning k− 1 zeros that usually appear in the k-bonacci

sequence. Details are given in Theorem 2.1. Also, note that f
(1)
n = 1 for all n ≥ 0.

2The 3-bonacci numbers were mentioned by Agronomof in a note that appeared in 1914 in [1].
3We use the notation ⌊·⌋ for the floor function, so ⌊x⌋ equals the largest integer less than or equal to x.
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Although Dunkel’s paper was concerned with various probability problems in coin tossing,
his method was to proceed via a difference equation and the roots of that equation, so that at
its heart, Dunkel’s proof of (1.2) is algebraic.

In this paper, we give a combinatorial proof of (1.2). Also, because one can obtain the
k-bonacci numbers from the differences of their partial sums, we obtain a corollary formula
(3.2) for the k-bonacci numbers. Our formula for the k-bonacci numbers is similar to equation
(12) in Corollary 1 of [6] and the formula in Theorem 2.4 of [5]. It is not related to the formulas
for the k-bonacci numbers appearing in [7] and [8]. It also does not occur in Dunkel’s paper.

2. Combinatorics

In [2], Benjamin and Quinn begin with the observation that the number of ordered sums
of 1s and 2s that add to n is the (n + 1)th Fibonacci number. They then introduce a visual
representation that many, if not most, people will find easier to think about than sums of 1s
and 2s. They suggest thinking of the 1s as squares and the 2s as dominoes, so that the number
of ordered sums of 1s and 2s that add to n is the number of ways to tile a ruler of length n
with squares and dominoes (see Figure 1).

When we generalize to the k-bonacci numbers, we need to consider the number of ordered
sums of 1s, 2s, . . . , ks that add to n. We will use the metaphor of covering a ruler of length
n by tiles of lengths 1 through k (see Figure 2). This metaphorical ruler will run from left to
right. The numbers obtained in this way are k-bonacci numbers.

1 1 1 1 2 1 1 1 2 1 1 1 2 2 2

Figure 1. The f
(2)
4 = 5 ways of tiling a ruler of length 4 with squares and

dominoes.

1 1 1 1 2 1 1 1 2 1 1 1 2 2 2

3 1 1 3 4

Figure 2. The f
(4)
4 = 8 ways of tiling a ruler of length 4 with tiles of

lengths 1, 2, 3, 4.

Theorem 2.1. For k ≥ 1 and n ≥ 0, each f
(k)
n equals the number of ways to cover a length n

ruler using tiles of lengths 1 through k, where by definition there are 0 ways to cover a ruler
of negative length.

Proof. Fix k ≥ 1.
Because there is exactly one way to tile a ruler of length 0 (and that is to use no tiles), and

because there are 0 ways to tile a ruler of negative length, we see that the number of ways to
tile a ruler of length n using tiles of lengths 1 through k satisfies the initial values of (1.1) for
n ≤ 0.

To complete the proof, we will show that for n ≥ 1, the number of ways to tile a ruler of
length n using tiles of lengths 1 through k satisfies the recurrence relation of (1.1). We argue
inductively as follows: For each tiling of the ruler of length n, there must be a rightmost tile.
That rightmost tile has a length ℓ ∈ {1, 2, . . . , k}, and in case n < k, we also know that that
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rightmost tile has length ℓ ≤ n. The part of the ruler to the left of the last tile can be tiled

f
(k)
n−ℓ ways and we have f

(k)
n−ℓ = 0 in case ℓ > n. Thus, it holds that

f (k)
n =

k∑
ℓ=1

f
(k)
n−ℓ .

□

Theorem 2.2. For k ≥ 1 and n ≥ 0, we have

n∑
i=0

f
(k)
i =

⌊n/(k+1)⌋∑
i=0

(−1)i
(
n− ik

i

)
2n−i(k+1) . (2.1)

Proof. Observe that
∑n

i=0 f
(k)
i is the number of ways to place tiles of lengths 1 through k end-

to-end with total length not exceeding n. To prove the theorem, we will count the number of
ways that this can be done.

Let U be the set of tilings of length not exceeding n, where there is no restriction on the
sizes of the tiles that are used. The cardinality of U is easily obtained as follows: On a ruler
of length n, place a hash mark at the 0 position and at each of the integer positions 1 to n,
either do or do not place a hash mark. Then, between any two hash marks, place a tile that
fills the space. The last tile ends at the last hash mark. Because there are 2n ways to place or
not place the hash marks, we have

#(U ) = 2n .

In case k ≥ n, no tile has length exceeding k, so this value, 2n, equals the left side of (2.1).
Also, when k ≥ n, the summation on the right side of (2.1) reduces to the single term when
i = 0, that is, to 2n. Thus, we see that (2.1) holds. From here on, we assume that n > k.

To obtain the value on the left side of (2.1), we must subtract from 2n the number of tilings
in U that include at least one tile of length greater than k. To this end, define Uj to be the
set of tilings in U for which a tile that has length greater than k has its right end at integer
position j. Note that this tile does not need to be the rightmost tile with length greater than
k. We need to evaluate

#

 ⋃
1≤j≤n

Uj

 .

The Principle of Inclusion-Exclusion (see for example [9] or [11]) tells us that

#

 ⋃
1≤j≤n

Uj

 =
∑

1≤j≤n

#
(
Uj

)
−

∑
1≤j1<j2≤n

#
(
Uj1 ∩ Uj2

)
+ · · · . (2.2)

To evaluate the right side of (2.2), we will need to compute∑
1≤j1<j2<···<ji≤n

#
(
Uj1 ∩ Uj2 ∩ · · · ∩ Uji

)
. (2.3)

Note that the set Uj1 ∩ Uj2 ∩ · · · ∩ Uji will be empty unless

k < j1 and jℓ + k < jℓ+1 for ℓ = 1, 2, . . . , i− 1 , (2.4)

because no two tiles are allowed to overlap. Note that (2.4) tells us that i(k+ 1) ≤ n, so only
when i ≤ ⌊n/(k + 1)⌋ will any of the summands in (2.3) be nonzero.
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Working with a ruler of length n−ik, we will show how to evaluate (2.3). (The construction
we are about to describe is illustrated in Figure 3.) Choose i numbers from {1, 2, . . . , n− ik}.
This can be done in

(
n−ik

i

)
ways. Label the chosen numbers r1, r2, . . . , ri so that

0 < r1 and rℓ < rℓ+1 for ℓ = 1, 2, . . . , i− 1 . (2.5)

For ℓ = 1, 2, . . . , i, put a dashed hash mark at integer position rℓ.
Next, place a normal hash mark at 0. There remain n− i(k+1) unmarked positive integer

positions between 1 and n − ik. At each of these remaining unmarked positions, either do
or do not place a normal hash mark. This can be done in 2n−i(k+1) ways. Between any two
hash marks (dashed and dashed, normal and normal, or dashed and normal), place a tile that
fills the space. The last tile ends at the last hash mark, and the tiling has total length not
exceeding n− ik.

Place i = 2

dashed hash

marks.

Insert a normal

hash mark at

0 and up to

n− i(k+1) = 3

more.

Place tiles be-

tween the hash

marks.

k k

Replace tiles that have a dashed

hash mark on their right end

with tiles k units longer.

Figure 3. Example of the construction with n = 11, k = 3, i = 2. One of
three possible normal hash marks is inserted.

Finally, each tile that has its right end at a dashed hash mark is replaced with a tile that
is k units longer, whereas the tiles to its right are moved along k units to accommodate the
longer tile. Thus, we have created a tiling the length of which does not exceed n and that for
each ℓ = 1, 2, . . . , i has a tile of length greater than or equal to k + 1 with its right end at
integer position jℓ := rℓ + ℓk. The jℓ satisfy (2.4) if and only if the rℓ satisfy condition (2.5).
Thus, we see that ∑

1≤j1<j2<···<ji≤n

#
(
Uj1 ∩ Uj2 ∩ · · · ∩ Uji

)
=

(
n− ik

i

)
2n−i(k+1) .

□

3. Corollaries

Corollary 3.1. For k ≥ 1, n ≥ 0, and m with ⌊n/k⌋ ≥ m ≥ ⌊n/(k + 1)⌋, it holds that
n∑

i=0

f
(k)
i =

m∑
j=0

(−1)j
(
n− jk

j

)
2n−j(k+1) . (3.1)

Proof. The summands that are on the right side of (3.1), but not on the right side of (1.2),
are those for which

⌊n/(k + 1)⌋ < j ≤ ⌊n/k⌋
holds. Note that the left side inequality is equivalent to n−jk < j and the right side inequality
is equivalent to n− jk ≥ 0, so that for such a j, the binomial coefficient

(
n−jk

j

)
equals 0. □
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As a second corollary, we obtain a formula for the k-bonacci numbers in terms of binomial
coefficients and powers of 2.

Corollary 3.2. For k ≥ 1 and n ≥ 0, we have4

f (k)
n =

⌊n/(k+1)⌋∑
j=0

(−1)j
(n− jk) + j + δn,0
2(n− jk) + δn,0

(
n− jk

j

)
2n−j(k+1) . (3.2)

Proof. For n = 0, the summation on the right side of (3.2) consist of only the j = 0 term, so
the result is confirmed by (1.1).

For k ≥ 1 and n ≥ 1, using (1.2), we have:

f (k)
n =

n∑
i=0

f
(k)
i −

n−1∑
i=1

f
(k)
i

and we will use (3.1) to replace the partial sums of k-bonacci numbers in this equation. We
will need to examine the upper limits in the summations that occur in (3.1).

Set q = ⌊n/(k + 1)⌋. Then n = q(k + 1) + r, where r is an integer with 0 ≤ r < k + 1. We
see that

n− 1

k
= q +

q + r − 1

k
.

Because n ≥ 1, one or both of q and r must be positive. We conclude that ⌊(n− 1)/k⌋ ≥ q, so
when (3.1) is applied with n replaced by n−1, we may use q as the upper limit of summation.

We have

f (k)
n =

q∑
j=0

(−1)j
(
n− jk

j

)
2n−j(k+1) −

q∑
j=0

(−1)j
(
(n− 1)− jk

j

)
2(n−1)−j(k+1)

=

q∑
j=0

(−1)j
[
2

(
n− jk

j

)
−
(
n− jk − 1

j

)]
1

2
2n−j(k+1)

=

q∑
j=0

(−1)j
1

2

[
2(n− jk)

n− jk
− n− jk − j

n− jk

](
n− jk

j

)
2n−j(k+1)

=

q∑
j=0

(−1)j
(n− jk) + j

2(n− jk)

(
n− jk

j

)
2n−j(k+1).

□
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