A NOTE ON THE FIBONACCI SEQUENCE AND SCHREIER-TYPE SETS
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ABSTRACT. A set A of positive integers is said to be Schreier if either A = () or min A > |A|.
We give a bijective map to prove the recurrence of the sequence (|KCp pq|)ne1 (for fixed p > 1
and g > 2), where

Knpqa = {AC{l,...,n} : either A=0 or (max A — méeLxA =pand minA > |A| > q)}
and maxz A is the second largest integer in A, given that |A| > 2. When p =1 and ¢ = 2, we

have that (|KCy,1,2|)n1 is the Fibonacci sequence. As a corollary, we obtain a new combina-
torial interpretation for the sequence (F,, + n)sz;.

A. Bird [2] showed that for each n > 1, if we let
A, = {AcC{l,....,n} : n€ Aand min A > |A|},

then |A,| = F,,. The condition min A > |A| is called the Schreier condition, and a set that
satisfies the Schreier condition is called a Schreier set. (The empty set satisfies the Schreier
condition vacuously.) Schreier sets appeared in a paper by Schreier [9] who used them to
solve a problem in Banach space theory. The Schreier condition is also the central concept
in a celebrated theorem by Odell [8]. Moreover, Schreier sets were independently discovered
in combinatorics and appeared in Ramsey-type theorems for subsets of N. Following the
discovery by A. Bird, there has been research on various recurrences produced by counting
Schreier-type sets (see [1, 3, 4, 5, 6, 7]). In this short note, we retrieve the Fibonacci sequence
from a different counting problem than the one by A. Bird. In particular, for n > 1, define
the set

K, := {AC|n] : either A=0or (maxA—1¢€ A and min A > |A|)},

where [n] = {1,...,n}. Although we fix the maximum element of sets in A,,, we do not fix
the maximum of sets in /C,,. Instead, we fix the distance between the largest and the second
largest elements of sets in /C,,.

Theorem A. Forn >1, |K,| = F,.

Let us briefly discuss the proof of Theorem A. It is easy to check that [Ki]| = || = 1.
We need only to show that |Cpi1| — |Ky| = [Kp—1] for all n > 2. Fix n > 2. By definition,
K, C ’Cn+1 and

Knii\Kn = {ACn+1] : n,n+1€ A and min A > |A|}.
We define a bijection 7 : K;,—1 — K1 \ICpp: for A € Kpp—q,
(A) (A\{max A} + 1) U{n,n+1}, if A#;
™ =
{n,n+ 1}, if A=10.

Interested readers may verify that 7 is indeed a bijection or may look at the proof of the more
general Theorem C below.

The author thanks an anonymous referee’s suggestions that helped improve the exposition of the note.
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We have the following immediate corollary, which gives the sequence (Fj, + n)22; (see
https://oeis.org/A002062).

Corollary B. Let
K, = {AC|n] : either |A] <1 or (maxA—1€ A and min A > |A|)}.
Then, |K]| = F,, +n for alln > 1.
Proof. Clearly, |K!| — |, = n for all n > 1. Using Theorem A, the result follows. O

We shall prove a more general result. Let maxs A be the second largest number in A if
|A| > 2. For n,p > 1 and ¢ > 2, define

Knpg = {AC|[n] : either A= 0 or (max A — manA =pand min A > |A| > ¢)}.
Note that ;12 = Ky,
Theorem C. Fixn,p > 1 and q¢ > 2. We have

1, if1<n<p+2q-—3;
| n,p,q| =

+ K2 pal + (",257) =1, fn>p+20-3.

‘Kn—l,p,q

Proof. We prove Theorem C by recalling that K,,—1 4 C Ky, p g, then writing
Knpa\Kn-1pq = SUT

for certain disjoint sets S and 7, and finally verifying that |S| = |K,—2,4| — 1, whereas
7] = ("759).

q—2
Fix p > 1 and ¢ > 2. First, we check that for 1 <n <p+2¢—3, |K, 4| = 1. Recall that

Knpq = {AC[n] : either A =0 or (max A — m2axA =pand min A > |A| > ¢)}.

Suppose A is nonempty and A € I, 4. Write A = {a1,...,ax}. Then, a1 > ¢, a, < p+2¢—3,
and ai_1 < 2q — 3. Hence,

{a1,...,ap-1} < ¢—2
and so, |A| < ¢ — 1, which contradicts the requirement that |A| > g. Therefore, for 1 < n <
p+2q—3, Knpg={0}.

For n > p+ 2q — 2, we show that [Knpel = [Kno1pgl + [Kn—2pgl + (7,257 — 1. Let
S={AeKnp\Kn-1pq: 1Al >q+1}and T ={A € Ky, ¢\Kn-1pq : |A| = ¢}. We define a
bijection 7 : KCp—25 ¢\{0} — S for a nonempty set A € K;,_2, 4 by

w(A) = (A\{max A} + 1)U {n —p,n}.

First, 7 is well-defined. Because n € w(A), m(A) ¢ Kp—1p,4. That max A < n — 2 implies
that maxo A <n —2 —p, so m(A) does not contain any number strictly between n — p and n.
Hence,

max m(A) — mQaXTr(A) =n—(n—p) = p
Also, [7(A)| =]A|+1>¢g+1 and
minm(A) = minA+1 > [A]+1=|7(4)|.

Therefore, 7(A) € S.
Next, 7 is one-to-one. Let A, Ay € K,,—2, 4 \{0} such that m(A;) = w(Az). Note that

max(A4;\{maxA4;} +1) < (n—2—-p)+1 = n—-1—pfori=1,2.
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Hence, (A1) = m(A2) implies that A;\{max 4;} = As\{max As}. So, maxy A; = maxg As,
which, combined with max A; — maxo A; = p for i = 1,2 gives A1 = As. We conclude that =
is one-to-one.

Next, 7 is onto. Take A € S. Then n,n—p € A and |A| > g+ 1. Let B=A\{n—p,n} —1
and ¢ = max B. Let C = BU {¢+ p}. We claim that C € K,_2, 4. Indeed,

maxC = maxB+p < n—p—-1—-14+p = n—2,
minC = minA—-1 > |A|-1 = |B|+1 = |C|, and
ICl = [B]+1 = [A[-1 = (¢+1)-1 = ¢

It is clear from how we define C' that max C'—maxs C' = p. Finally, 7(C) = A by construction.
We have shown that |S| = |K;—2,.4\{0}| = [Kn—2,p,q| — 1. It remains to show that

_ (n-p—q
7l = ( q—2 )

A set Aisin T if and only if min A > |A| = ¢, max A = n, and maxy A = n — p. Hence, we
can write aset Ain 7 as A= DU{n —p,n}, where D C {q,...,n—p—1} and |D| = ¢ — 2.

Therefore, |T| = (";f 57). This completes our proof as
(Knpal = [Kn-1p.q] + 1Knpa\Kn-1p.4]

= |ICn—1,p,q| + |S’ + |T|

n—p—4q
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