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Abstract. We explore the Jacobsthal versions of four infinite sums involving gibonacci poly-
nomial squares.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 5].

On the other hand, let a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) =
Jn(x), the nth Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the
nth Jacobsthal-Lucas polynomial. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth
Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn; and jn(1) = Ln

[2, 5].

Gibonacci and Jacobsthal polynomials are linked by the relationships Jn(x) = x(n−1)/2fn(1/
√
x)

and jn(x) = xn/2ln(1/
√
x) [3, 4, 5].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or

ln, cn = Jn or jn, ∆ =
√
x2 + 4, and D =

√
4x+ 1, where cn = cn(x).

1.1. Sums Involving Gibonacci Squares. We studied the following sums involving gibonacci
polynomial squares in Theorems 1–4 of [6]:

∞∑
n=L

f4kf8n − 4(−1)kf2kf4n[
f2
2n − (−1)kf2

k

]4 = ∆2
k∑

r=1

1

f4
s

; (1)

∞∑
n=L

f4kf8n + 4(−1)kf2kf4n[
l22n + (−1)k∆2f2

k

]4 =
1

∆2

k∑
r=1

1

l4s
; (2)

∞∑
n=M

f4kf8n+4 + 4(−1)kf2kf4n+2[
f2
2n+1 + (−1)kf2

k

]4 = ∆2
k∑

r=1

1

f4
t

; (3)

∞∑
n=M

f4kf8n+4 − 4(−1)kf2kf4n+2[
l22n+1 − (−1)k∆2f2

k

]4 =
1

∆2

k∑
r=1

1

l4t
, (4)

where k is a positive integer; 1 ≤ r ≤ k;
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L =

{
(k + 1)/2, k ≥ 1, if k is odd;

k/2 + 1, k ≥ 2, otherwise;
s =

{
2r − 1, if k is odd;

2r, otherwise;

M =

{
(k + 1)/2, k ≥ 1, if k is odd;

k/2, k ≥ 2, otherwise;
and t =

{
2r, if k is odd;

2r − 1, otherwise.

2. Jacobsthal Consequences

Our objective is to explore the Jacobsthal versions of the gibonacci sums (1)–(4); we will
extract them from the above sums using the Jacobsthal-gibonacci relationships in Section 1.

To this end, in the interest of brevity and clarity, we let A denote the left-hand side (LHS) of
each equation and B its right-hand side (RHS), and LHS and RHS those of the corresponding
Jacobsthal equation, respectively.

2.1. Jacobsthal Version of Equation (1).

Proof. LetA =
f4kf8n − 4(−1)kf2kf4n[

f2
2n − (−1)kf2

k

]4 . Replacing x with 1/
√
x, and multiplying the numerator

and denominator of the resulting expression with x8n−4, we get

A =
x4n−2k−3

[
x(4k−1)/2f4k

] [
x(8n−1)/2f8n

]
− 4(−1)kx6n−k−3

[
x(2k−1)/2f2k

] [
x(4n−1)/2f4n

]{
[x(2n−1)/2f2n]2 − (−1)kx2n−k[x(k−1)/2fk]2

}4

=
x4n−2k−3J4kJ8n − 4(−1)kx6n−k−3J2kJ4n[

J2
2n − (−1)kx2n−kJ2

k

]4 ;

LHS =
∞∑

n=L

x4n−2k−3J4kJ8n − 4(−1)kx6n−k−3J2kJ4n[
J2
2n − (−1)kx2n−kJ2

k

]4 , (5)

where gn = gn(1/
√
x) and cn = cn(x).

Now, let B = ∆2
k∑

r=1

1

f4
s

.

Case 1. Suppose k is odd. Replace x with 1/
√
x, and then multiply the numerator and

denominator with x4r−4; this yields

B =
D2

x

k∑
r=1

1

f4
2r−1

=
D2

x

k∑
r=1

x4r−4

(xr−1f2r−1)
4 ;

RHS = D2
k∑

r=1

x4r−5

J4
2r−1

,

where gn = gn(1/
√
x) and cn = cn(x).

This, coupled with equation (5) and k odd, yields

∞∑
n=(k+1)/2
k≥1, odd

x4n−2k−3J4kJ8n + 4x6n−k−3J2kJ4n(
J2
2n + x2n−kJ2

k

)4 = D2
k∑

r=1

x4r−5

J4
2r−1

. (6)
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Case 2. Suppose k is even. Replacing x with 1/
√
x in B, and then multiplying the numerator

and denominator with x4r−2, we get

B =
D2

x

k∑
r=1

1

f4
2r

=
D2

x

k∑
r=1

x4r−2[
x(2r−1)/2f2r

]4 ;
RHS = D2

k∑
r=1

x4r−3

J4
2r

,

where gn = gn(1/
√
x) and cn = cn(x).

Together with equation (5) and k even, this yields

∞∑
n=k/2

k≥2, even

x4n−2k−3J4kJ8n − 4x6n−k−3J2kJ4n(
J2
2n − x2n−kJ2

k

)4 = D2
k∑

r=1

x4r−3

J4
2r

. (7)

Merging equations (6) and (7), we get the desired Jacobsthal version:

∞∑
n=L

x4nJ4kJ8n − 4(−1)kx6nJ2kJ4n[
J2
2n − (−1)kx2n−kJ2

k

]4 = D2x2k
k∑

r=1

x2s

J4
s

. (8)

□

This yields

∞∑
n=L

F4kF8n − 4(−1)kF2kF4n[
F 2
2n − (−1)kF 2

k

]4 = 5

k∑
r=1

1

F 4
s

;

∞∑
n=L

16nJ4kJ8n − 43n+1(−1)kJ2kJ4n[
J2
2n − (−1)k22n−kJ2

k

]4 = 9 · 4k
k∑

r=1

4s

J4
s

.

Consequently, we have [6]
∞∑
n=1

3F8n + 4F4n(
F 2
2n + 1

)4 = 5;
∞∑
n=2

7F8n − 4F4n(
F 2
2n − 1

)4 =
410

243
;

∞∑
n=1

5 · 16nJ8n + 43n+1J4n(
J2
2n + 22n−1

)4 = 144;
∞∑
n=2

17 · 16nJ8n − 43n+1J4n(
J2
2n − 4n−1

)4 =
1, 476, 864

3, 125
.

2.2. Jacobsthal Version of Equation (2).

Proof. Let A =
f4kf8n + 4(−1)kf2kf4n[

l22n + (−1)k∆2f2
k

]4 . Replacing x with 1/
√
x, and then multiplying the

numerator and denominator of the resulting expression with x8n−4, we get

224 VOLUME 61, NUMBER 3



SUMS INVOLVING JACOBSTHAL POLYNOMIAL SQUARES

A =
x4

[
f4kf8n + 4(−1)kf2kf4n

][
xl22n + (−1)kD2f2

k

]4
=

x4n−2k+1
[
x(4k−1)/2f4k

] [
x(8n−1)/2f8n

]
+ 4(−1)kx6n−k+1

[
x(2k−1)/2f2k

] [
x(4n−1)/2f4n

]{
(x2n/2l2n)2 + (−1)kD2x2n−k[x(k−1)/2fk]2

}4

=
x4n−2k+1

[
x2nJ4nJ8n + 4(−1)kx2n+kJ2kJ4n

][
j22n + (−1)kD2x2n−kJ2

k

]4 ;

LHS =
∞∑

n=L

x4n−2k+1
[
x2nJ4nJ8n + 4(−1)kx2n+kJ2kJ4n

][
j22n + (−1)kD2x2n−kJ2

k

]4 , (9)

where gn = gn(1/
√
x) and cn = cn(x).

Let B =
1

∆2

k∑
r=1

1

l4s
. With k odd, replace x with 1/

√
x, and then multiply the numerator

and denominator with x4r−2. Then

B =
x

D2

k∑
r=1

1

l42r−1

=
1

D2

k∑
r=1

x4r−1[
x(2r−1)/2l2r−1

]4 ;
RHS =

1

D2

k∑
r=1

x4r−1

j42r−1

,

where gn = gn(1/
√
x) and cn = cn(x).

Using equation (9) with k odd, this yields

∞∑
n=(k+1)/2
k≥1, odd

x4nJ4kJ8n − 4x2n+kJ2kJ4n(
j22n −D2x2n−kJ2

k

)4 =
x2k

D2

k∑
r=1

x4r−2

j42r−1

. (10)

On the other hand, let k be even. Replacing x with 1/
√
x, and then multiplying the

numerator and denominator with x4r yield

B =
x

D2

k∑
r=1

1

l42r

=
1

D2

k∑
r=1

x4r+1(
x2r/2l2r

)4 ;
RHS =

1

D2

k∑
r=1

x4r+1

j42r
,

where gn = gn(1/
√
x) and cn = cn(x).
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Using equation (9) with k even, this yields

∞∑
n=k/2+1
k≥2, even

x4n
(
J4kJ8n + 4x2n+kJ2kJ4n

)(
j22n +D2x2n−kJ2

k

)4 =
x2k

D2

k∑
r=1

x4r

j42r
. (11)

By combining the equations (10) and (11), we get the Jacobsthal version of equation (2):

∞∑
n=L

x4n
[
J4kJ8n + 4(−1)kx2n+kJ2kJ4n

][
j22n + (−1)kD2x2n−kJ2

k

]4 =
x2k

D2

k∑
r=1

x2s

j4s
. (12)

□

It then follows that

∞∑
n=L

F4kF8n + 4(−1)kF2kF4n[
L2
2n + 5(−1)kF 2

k

]4 =
1

5

k∑
r=1

1

L4
s

;

∞∑
n=L

16n[J4kJ8n + (−1)k22n+k+2J2kJ4n][
j22n + 9(−1)k22n−kJ2

k

]4 =
4k

9

k∑
r=1

4s

j4s
.

This yields [6]

∞∑
n=1

3F8n − 4F4n(
L2
2n − 5

)4 =
1

5
;

∞∑
n=2

7F8n + 4F4n(
L2
2n + 5

)4 =
2, 482

2, 917, 215
;

∞∑
n=1

16n(5J8n − 22n+3J4n)(
j22n − 9 · 22n−1

)4 =
16

9
;

∞∑
n=2

16n(17J8n + 4n+3J4n)(
j22n + 9 · 4n−1

)4 =
23, 941, 376

2, 349, 028, 125
.

Next, we investigate the Jacobsthal implication of equation (3).

2.3. Jacobsthal Version of Equation (3).

Proof. Let A =
f4kf8n+4 + 4(−1)kf2kf4n+2[

f2
2n+1 + (−1)kf2

k

]4 . Replace x with 1/
√
x, and then multiply the

numerator and denominator of the resulting expression with x8n. We then get

A =
x4n−2k−1

[
x(4k−1)/2f4k

] [
x(8n+3)/2f8n+4

]
+ 4(−1)kx6n−k

[
x(2k−1)/2f2k

] [
x(4n+1)/2f4n+2

]{(
x2n/2f2n+1

)2
+ (−1)kx2n−k+1

[
x(k−1)/2fk]

]2}4

=
x4n−2k−1

[
J4kJ8n+4 + 4(−1)kx2n+k+1J2kJ4n+2

][
J2
2n+1 + (−1)kx2n−k+1J2

k

]4 ;

LHS =
∞∑

n=M

x4n−2k−1
[
J4kJ8n+4 + 4(−1)kx2n+k+1J2kJ4n+2

][
J2
2n+1 + (−1)kx2n−k+1J2

k

]4 , (13)

where gn = gn(1/
√
x) and cn = cn(x).
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Now, let B = ∆2
k∑

r=1

1

f4
t

. Suppose, k is odd. Replace x with 1/
√
x, and then multiply the

numerator and denominator with x4r−2. This yields

B =
D2

x

k∑
r=1

1

f4
2r

=
D2

x

k∑
r=1

x4r−2[
x(2r−1)/2f2r

]4 ;
RHS = D2

k∑
r=1

x4r−3

J4
2r

,

where gn = gn(1/
√
x) and cn = cn(x).

Together with equation (13) and k odd, this yields

∞∑
n=(k+1)/2
k≥1, odd

x4n
(
J4kJ8n+4 − 4x2n+k+1J2kJ4n+2

)(
J2
2n+1 − x2n−k+1J2

k

)4 = D2x2k+1
k∑

r=1

x4r−3

J4
2r

. (14)

With k even, we have B = ∆2
k∑

r=1

1

f4
2r−1

. Replacing x with 1/
√
x, and then multiplying the

numerator and denominator with x4r−4, we get

B =
D2

x

k∑
r=1

1

f4
2r−1

= D2
k∑

r=1

x4r−5

(xr−1f2r−1)
4 ;

RHS = D2
k∑

r=1

x4r−5

J4
2r−1

,

where gn = gn(1/
√
x) and cn = cn(x).

Coupled with equation (13) and k even, this yields

∞∑
n=k/2

k≥2, even

x4n
(
J4kJ8n+4 + 4x2n+k+1J2kJ4n+2

)(
J2
2n+1 + x2n−k+1J2

k

)4 = D2x2k+1
k∑

r=1

x4r−5

J4
2r−1

.

Combining this with equation (14), we get the desired Jacobsthal version:

∞∑
n=M

x4n
[
J4kJ8n+4 + 4(−1)kx2n+k+1J2kJ4n+2

][
J2
2n+1 + (−1)kx2n−k+1J2

k

]4 = D2x2k−2
k∑

r=1

x2t

J4
t

. (15)

□
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This implies

∞∑
n=M

F4kF8n+4 + 4(−1)kF2kF4n+2[
F 2
2n+1 + (−1)kF 2

k

]4 = 5

k∑
r=1

1

F 4
t

;

∞∑
n=M

16n[J4kJ8n+4 + (−1)k22n+k+3J2kJ4n+2][
J2
2n+1 + (−1)k22n−k+1J2

k

]4 = 9 · 4k−1
k∑

r=1

4t

J4
t

.

Consequently, we have [6]
∞∑
n=1

3F8n+4 − 4F4n+2(
F 2
2n+1 − 1

)4 = 5;

∞∑
n=1

7F8n+4 + 4F4n+2(
F 2
2n+1 + 1

)4 =
85

48
;

∞∑
n=1

16n(5J8n+4 − 4n+2J4n+2)(
J2
2n+1 − 4n

)4 = 144;
∞∑
n=2

16n(17J8n+4 + 22n+5J4n+2)(
J2
2n+1 + 22n−1

)4 =
1, 552

45
.

Finally, we explore the Jacobsthal consequence of equation (4).

2.4. Jacobsthal Version of Equation (4).

Proof. Let A =
f4kf8n+4 − 4(−1)kf2kf4n+2[

l22n+1 − (−1)k∆2f2
k

]4 . Replacing x with 1/
√
x, and then multiplying

the numerator and denominator of the resulting expression with x8n, we get

A =
x4

[
f4kf8n+4 − 4(−1)kf2kf4n+2

][
xl22n+1 − (−1)kD2f2

k

]4
=

x4n−2k−1
[
x(4k−1)/2f4k

] [
x(8n+3)/2f8n+4

]
− 4(−1)kx6n−k

[
x(2k−1)/2f2k

] [
x(4n+1)/2f4n+2

]{[
x(2n+1)/2l2n+1

]2 − (−1)kD2x2n−k+1
[
x(k−1)/2fk]

]2}4

=
x4n−2k−1J4kJ8n+4 − 4(−1)kx6n−kJ2kJ4n+2[

j22n+1 − (−1)kD2x2n−k+1J2
k

]4 ;

LHS =
∞∑

n=M

x4n−2k−1J4kJ8n+4 − 4(−1)kx6n−kJ2kJ4n+2[
j22n+1 − (−1)kD2x2n−k+1J2

k

]4 , (16)

where gn = gn(1/
√
x) and cn = cn(x).

Next, we let B =
1

∆2

k∑
r=1

1

l4t
and k be odd. Now, replace x with 1/

√
x, and then multiply

the numerator and denominator with x4r. Then

B =
1

∆2

k∑
r=1

1

l42r

=
x

D2

k∑
r=1

x4r(
x2r/2l2r

)4 ;
RHS =

x

D2

k∑
r=1

x4r

j42r
,

where gn = gn(1/
√
x) and cn = cn(x).
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Coupled with equation (16) and k odd, this yields

∞∑
n=(k+1)/2
k≥1, odd

x4n−2k−1
(
J4kJ8n+4 + 4x2n+k+1J2kJ4n+2

)(
j22n+1 +D2x2n−k+1J2

k

)4 =
x

D2

k∑
r=1

x4r

j42r
. (17)

When k is even, B =
1

∆2

k∑
r=1

1

l42r−1

. Replacing x with 1/
√
x, and then multiplying the

numerator and denominator with x4r−2, we get

B =
x

D2

k∑
r=1

1

l42r−1

=
x

D2

k∑
r=1

x4r−2[
x(2r−1)/2l2r−1

]4 ;
RHS =

x

D2

k∑
r=1

x4r−2

j42r−1

,

where gn = gn(1/
√
x) and cn = cn(x).

Using equation (16) with k even, this gives

∞∑
n=k/2

k≥1, even

x4n−2k−1
(
J4kJ8n+4 − 4x2n+k+1J2kJ4n+2

)(
j22n+1 −D2x2n−k+1J2

k

)4 =
x

D2

k∑
r=1

x4r−2

j42r−1

.

Merging this with equation (17), we get the desired Jacobsthal version:

∞∑
n=M

x4n−2k−1
[
J4kJ8n+4 − 4(−1)kx2n+k+1J2kJ4n+2

][
j22n+1 − (−1)kD2x2n−k+1J2

k

]4 =
1

D2

k∑
r=1

x2t

j4t
. (18)

□

In particular, we then have

∞∑
n=M

F4kF8n+4 − 4(−1)kF2kF4n+2[
L2
2n+1 − 5(−1)kF 2

k

]4 =
1

5

k∑
r=1

1

L4
t

;

∞∑
n=M

42n−k−1[J4kJ8n+4 − (−1)k22n+k+1J2kJ4n+2][
j22n+1 − 9(−1)k22n−k+1J2

k

]4 =
1

9

k∑
r=1

4t

j4t
.

They yield [6]

∞∑
n=1

3F8n+4 + 4F4n+2(
L2
2n+1 + 5

)4 =
1

405
;

∞∑
n=1

7F8n+4 − 4F4n+2(
L2
2n+1 − 5

)4 =
257

3, 840
;

∞∑
n=1

16n(5J8n+4 + 4n+1J4n+2)(
j22n+1 + 9 · 4n

)4 =
256

225
;

∞∑
n=1

16n(17J8n+4 − 22n+3J4n+2)(
j22n+1 − 9 · 22n−1

)4 =
618, 752

108, 045
.
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