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Abstract. In this paper, we show how to use Pythagorean triples whose entries can be ex-
pressed using Fibonacci numbers to construct Pythagorean triple preserving matrices with
entries that can also be expressed using Fibonacci numbers. We conclude with another
Pythagorean triple preserving matrix whose powers contain Fibonacci numbers.

1. Introduction and Preliminaries

Many interesting connections exist between Pythagorean triples and Fibonacci numbers, as
well as between triples and generalized Fibonacci sequences [2, 4, 7, 8, 9]. In this paper, we
present new connections between Fibonacci numbers and Pythagorean triples, specifically to
Pythagorean triple preserving matrices. We need a few definitions, which are given below with
some additional details.

Definition 1.1. A Pythagorean triple (PT) is an ordered triple of positive integers, (a, b, c),
such that a2 + b2 = c2. A PT is called primitive provided gcd(a, b, c) = 1.

Two known formulations of PTs that we will need are (m2 − n2, 2mn,m2 + n2) for positive
integers m and n with m > n (see, e.g., [5, p. 248]) and (r+ t, s+ t, r+ s+ t), where r, s, and
t are positive integers with t2 = 2rs ([6, p. 169]).

Definition 1.2. A generalized Pythagorean triple (gPT) is an ordered triple of real numbers,
(x, y, z) such that x2 + y2 = z2.

Definition 1.3. A Pythagorean triple preserving matrix (PTPM) is a 3 × 3 matrix that
transforms any given PT into another.

Palmer and colleagues [10, 11] explored PTPMs at length and provided the general form of
a PTPM. As an example, consider the following:1 8 4

8 1 4
4 4 9

34
5

 =

5548
73

 .

The given matrix is a PTPM, and not only transforms the PT in the example to another PT,
but does so for any PT given as a column vector. This may be checked using the general form
for PTPMs that can be found in [1], [10], and [11].

Definition 1.4. A generalized Pythagorean triple preserving matrix (gPTPM) is a 3×3 matrix
that transforms any given gPT into another.

It is worth noting that a gPTPM may not transform every PT into a PT and therefore may
not be a PTPM.
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We will first show how to construct families of PTPMs that contain Fibonacci numbers,
then how these families can be used to build a gPTPM that transforms a given Fibonacci-
generated PT into another. We conclude with another PTPM whose powers contain Fibonacci
numbers.

2. Families of PTPMs Containing Fibonacci Numbers

It is already known that certain PTPMs and their powers contain Fibonacci numbers or
terms from generalized Fibonacci sequences [2]. There are several known forms of Fibonacci-
generated PTs: i.e., PTs with m and n values that can be expressed in terms of Fk [4]. We
will use these PTs to construct PTPMs that also contain Fibonacci numbers.

For any PT (m2 − n2, 2mn,m2 + n2), we can set m2 − n2 = r + t, 2mn = s + t, and
m2+n2 = r+s+ t to obtain r = (m−n)2, s = 2n2, and t = 2n(m−n). The r, s, and t values
from the PTs given in [4] specifically will be used to construct our matrices and are shown in
Table 1. The values of k for which each form produces a PT are also shown in the table.

r s t k
F 2
k−1 2F 2

k 2FkFk−1 k ≥ 2

F 2
k 2F 2

k−1 2FkFk−1 k ≥ 2

(Fk − 1)2 2 2(Fk − 1) k ≥ 3
(F6k − 2)2

4
2 F6k − 2 k ≥ 1

1
(F3k+1 − 1)2

2
F3k+1 − 1 k ≥ 1

1
(F3k−1 − 1)2

2
F3k−1 − 1 k ≥ 2

TABLE 1. r, s, and t values for Fibonacci-generated PTs.

Austin and Austin [1] showed how the rst-form of a PT can be used to construct a PTPM
and proved the following theorem.

Theorem 2.1. Let (r + t, s+ t, r + s+ t) be a PT. Then,

r s t
s r t
t t r + s

 is a PTPM.

This theorem can be used to build PTPMs containing Fibonacci numbers. For example,
because F3k is even for any positive integer k, we can choose t = F3k with appropriately chosen
r and s. For example, suppose t = 8 (i.e., F6). By choosing r = 16, s = 2 or r = 1, s = 32, we
obtain the PTPMs 16 2 8

2 16 8
8 8 18

 and

 1 32 8
32 1 8
8 8 33

 .

For another example, choose t = 34 (i.e., F9); we can then choose r = 289, s = 2 or r = 1,
s = 578 to obtain 289 2 34

2 289 34
34 34 291

 and

 1 578 34
578 1 34
34 34 579

 .

We can also choose our r, s, and t values from Table 1. As two examples, we use row 1 with
k = 2 and k = 6 to obtain 1 2 2

2 1 2
2 2 3

 and

 25 128 80
128 25 80
80 80 153

 .
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The following example does not provide an exhaustive list but illustrates how one can more
generally apply Theorem 2.1 to the values in Table 1.

Example 2.2. For any positive integer k, each of the following is a PTPM.

(1)


1

F 2
3k
2 F3k

F 2
3k
2 1 F3k

F3k F3k
F 2
3k
2 + 1



(2)


F 2
k−1 2F 2

k 2FkFk−1

2F 2
k F 2

k−1 2FkFk−1

2FkFk−1 2FkFk−1 F 2
k−1 + 2F 2

k



(3)


(Fk − 1)2 2 2(Fk − 1)

2 (Fk − 1)2 2(Fk − 1)

2(Fk − 1) 2(Fk − 1) (Fk − 1)2 + 2



(4)


(F6k−2)2

4 2 F6k − 2

2 (F6k−2)2

4 F6k − 2

F6k − 2 F6k − 2 (F6k−2)2

4 + 2



(5)


1

(F3k+1−1)2

2 F3k+1 − 1

(F3k+1−1)2

2 1 F3k+1 − 1

F3k+1 − 1 F3k+1 − 1
(F3k+1−1)2

2 + 1


The reader may notice that Example 2.2 does not strictly follow the restrictions on k in

Table 1, but it is easy to verify that it still holds for the few additional cases. One may also
note that a single PTPM might appear in several of the listed families. For example, the
PTPM 1 2 2

2 1 2
2 2 3

 (2.1)

appears in multiple families, including (1) and (5) when k = 1.
Although these families of PTPMs may be interesting in their own right, we can also use

these matrices to construct a gPTPM to transform a given PT generated by Fibonacci numbers
into another. Palmer and colleagues presented an algorithm for constructing a gPTPM that
transforms a given PT into another [11], but we will use Theorem 2.1 to accomplish this same
task differently. For a given Pythagorean triple, (a, b, c), where b is even, let M(a,b,c) denote
the corresponding matrix from Theorem 2.1 (where r = c − b, s = c − a, and t = a + b − c).
The proof of the following theorem is straightforward so we have omitted it here.
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Theorem 2.3. Let (x1, y1, z1) and (x2, y2, z2) be PTs, where y1 and y2 are even. Then,

(1) M(x2,y2,z2)M
−1
(x1,y1,z1)

x1y1
z1

 =

x2y2
z2

.
(2) M(x2,y2,z2)M

−1
(x1,y1,z1)

is a gPTPM.

Theorem 2.3 allows us to make use of the families of PTPMs we constructed earlier. As
an example, consider the PTs (21, 20, 29), generated by row 2 of Table 1 when k = 2, and
(63, 16, 65), generated by row 3 of Table 1 when k = 6. Then,

M(63,16,65)M
−1
(21,20,29) =

49 2 14
2 49 14
14 14 16

 9 8 12
8 9 12
12 12 17

−1

=

 289 242 −374
242 289 −374
−374 −374 531


transforms (21, 20, 29) into (63, 16, 65) when these PTs are expressed as column vectors. It
should be noted that this matrix is a gPTPM but not a PTPM. For example, 289 242 −374

242 289 −374
−374 −374 531

34
5

 =

−35
12
37

 .

3. Another PTPM That Contains Fibonacci Numbers

Another interesting matrix is

B =

6 2 6
2 3 3
6 3 7

 .

One may easily verify that B is a PTPM, and therefore, so is each power of B. More Fibonacci
numbers, 21, 144, and 987, appear in the first few powers of B;

B2 = 2

38 18 42
18 11 21
42 21 47

 , B3 = 4

258 128 288
128 66 144
288 144 322

 , and B4 = 8

1766 882 1974
882 443 987
1974 987 2207

 .

These powers of B suggest the following result.

Theorem 3.1. Let B =

6 2 6
2 3 3
6 3 7

. Then, for any positive integer n,

Bn = 2n−1


4F 2

2n + 2 2F 2
2n 2F4n

2F 2
2n F 2

2n + 2 F4n

2F4n F4n 5F 2
2n + 2

 .

Lemma 3.2. Let n be a positive integer. Then, 7F 2
2n + 3F4n + 2 = 2F 2

2n+2.

Proof. The lemma follows from Catalan’s identity and the identity F4n = F2n(2F2n+1 − F2n)
(see [3, p. 20]). □

Lemma 3.3. Let n be a positive integer. Then, 15F 2
2n + 7F4n + 6 = 2F4n+4.

324 VOLUME 61, NUMBER 4



PTPMS CONTAINING FIBONACCI NUMBERS

Proof. The lemma follows from d’Ocagne’s identity and the identities F4n+4 = F2n+2(F2n+2+
2F2n+1) and F4n = F2n(2F2n+1 − F2n) (see [3, p. 20]). □

Proof of Theorem 3.1. The proof is by induction. The statement is easily verified for n = 1.
Now, suppose

Bn = 2n−1


4F 2

2n + 2 2F 2
2n 2F4n

2F 2
2n F 2

2n + 2 F4n

2F4n F4n 5F 2
2n + 2

 .

Then,

Bn+1 = BBn =

6 2 6
2 3 3
6 3 7

 2n−1


4F 2

2n + 2 2F 2
2n 2F4n

2F 2
2n F 2

2n + 2 F4n

2F4n F4n 5F 2
2n + 2

 .

The first column of this product simplifies to

2n


14F 2

2n + 6F4n + 6

7F 2
2n + 3F4n + 2

15F 2
2n + 7F4n + 6

 .

The desired result is obtained by applying Lemmas 3.2 and 3.3. The second and third columns
of the product, respectively, simplify to

2n−1


14F 2

2n + 6F4n + 4

7F 2
2n + 3F4n + 6

15F 2
2n + 7F4n + 6

 and 2n−1


30F 2

2n + 14F4n + 12

15F 2
2n + 7F4n + 6

35F 2
2n + 15F4n + 14

 .

The desired results are again obtained by applying Lemmas 3.2 and 3.3. □

The form of the matrix B may be generalized tok(k + 1) k k(k + 1)
k k + 1 k + 1

k(k + 1) k + 1 k(k + 1) + 1

 ,

where B is the case when k = 2. When k = 1, if we interchange rows 1 and 2, we obtain the
PTPM (2.1) from the previous section; this matrix helps generate Hall’s tree of all primitive
PTs [7], and entries of the powers of the matrix can be expressed in terms of the Pell sequence
[2]. The interested reader may wish to explore whether other generalized Fibonacci sequences
appear in such matrices and their powers for larger integer values of k.

NOVEMBER 2023 325



THE FIBONACCI QUARTERLY

4. Acknowledgement

I thank the anonymous referee for the careful and prompt review. The referee’s comments
and suggestions helped improve the quality of this paper.

References

[1] H. W. Austin and J. W. Austin, On a special set of symmetric Pythagorean triple preserving matrices,
Advances and Applications in Mathematical Sciences, 12.2 (2012), 97–104.

[2] J. Austin and L. Schneider, Generalized Fibonacci numbers in Pythagorean triple preserving matrices, The
Fibonacci Quarterly, 58.4 (2020), 340–350.

[3] S. L. Basin and V. E. Hoggart, A primer on the Fibonacci sequence part II: A matrix which generates
Fibonacci identities, The Fibonacci Quarterly, 1.2 (1963), 61–68.

[4] M. Bicknell-Johnson, Pythagorean triples containing Fibonacci numbers: Solutions for F 2
n ±F 2

k = K2, The
Fibonacci Quarterly, 17.1 (1979), 1–12.

[5] D. M. Burton, Elementary Number Theory, Seventh Edition, McGraw Hill, New York, 2010.
[6] L. Dickson, History of the Theory of Numbers: Volume II, Carnegie Institute of Washington, 1920.
[7] A. Hall, Genealogy of Pythagorean triads, The Mathematical Gazette, 54.390 (1970), 377–379.
[8] A. F. Horadam, Fibonacci Number Triples, The American Mathematical Monthly, 68.8 (1961), 751–753.
[9] J. V. Leyendekkers and A. G. Shannon, Primitive Pythagorean triples and generalized Fibonacci sequences,

Notes on Number Theory and Discrete Mathematics, 23.1 (2017), 54–62.
[10] L. Palmer, M. Ahuja, and M. Tikoo, Constructing Pythagorean triple preserving matrices, Missouri Journal

of Mathematical Sciences, 10.3 (1998), 159–168.
[11] L. Palmer, M. Ahuja, and M. Tikoo, Finding Pythagorean triple preserving matrices, Missouri Journal of

Mathematical Sciences, 10.2 (1998), 99–105.

MSC2020: 11B39, 11C20

Department of Mathematical Sciences, Salisbury University, Salisbury, Maryland, 21801
Email address: jwaustin@salisbury.edu

326 VOLUME 61, NUMBER 4


