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Abstract. We explore the Jacobsthal versions of four infinite sums involving gibonacci poly-
nomials.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 4].

On the other hand, let a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) =
Jn(x), the nth Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the
nth Jacobsthal-Lucas polynomial. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth
Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn; and jn(1) = Ln

[2, 4].

Gibonacci and Jacobsthal polynomials are linked by the relationships Jn(x) = x(n−1)/2fn(1/
√
x)

and jn(x) = xn/2ln(1/
√
x) [3, 4].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or

ln, cn = Jn or jn, ∆ =
√
x2 + 4, and D =

√
4x+ 1.

2. Gibonacci Polynomial Sums

We studied the following sums involving gibonacci polynomials in Theorems 1–4 of [5]:

∞∑
n=1

∆2f2kf2(2n+1)k[
l2(2n+1)k +∆2f2

k

]2 =
1

l22k
; (1)

∞∑
n=1

∆2f4kf2(2n+2)k[
l2(2n+2)k +∆2f2

2k

]2 =
1

l22k
+

1

l24k
; (2)

∞∑
n=1

∆2f4kf2(2n+1)k[
l2(2n+1)k −∆2f2

2k

]2 =
1

l2k
+

1

l23k
; (3)

∞∑
n=1

∆2f2kf2(2n+2)k[
l2(2n+2)k + (−1)k∆2f2

k

]2 =
1

l23k
, (4)
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where k is a positive integer.
Our objective is to explore the Jacobsthal versions of these four sums.

3. Jacobsthal Polynomial Sums

To accomplish our goal, we will employ the gibonacci-Jacobsthal relationships in Section 1.
To this end, in the interest of brevity and clarity, we let A denote the left side of the given
gibonacci equation and B its right side, and LHS and RHS the left-hand side and right-hand
side of the corresponding Jacobthal equation.

With this brief background, we begin our exploration with sum (1).

3.1. Jacobsthal Version of Equation (1).

Proof. We have
∆2f2kf2(2n+1)k[
l2(2n+1)k +∆2f2

k

]2 . Replacing x with 1/
√
x, and multiplying the numerator

and denominator with x2(2n+1)k, we get

A =
D2f2kf2(2n+1)k

x
[
l2(2n+1)k +

D2

x f2
k

]2
=

D2
[
x(2k−1)/2f2k

]
{x[2(2n+1)k−1]/2f2(2n+1)k}{[

x(2n+1)k/2l(2n+1)k

]2
+D2x2nk

[
x(k−1)/2fk

]2}2

=
D2J2kJ2(2n+1)k[

j2(2n+1)k +D2x2nkJ2
k

]2 ;
LHS =

∞∑
n=1

D2J2kJ2(2n+1)k[
j2(2n+1)k +D2x2nkJ2

k

]2 ,
where gn = gn(1/

√
x) and cn = cn(x).

Next, we turn toB =
1

l22k
. Replace x with 1/

√
x, and multiply the numerator and denominator

with x2k. This yields

B =
x2k

(x2k/2l2k)2
;

RHS =
x2k

j22k
,

where gn = gn(1/
√
x) and cn = cn(x).

Equating the two sides yields the desired Jacobsthal version:

∞∑
n=1

D2J2kJ2(2n+1)k[
j2(2n+1)k +D2x2nkJ2

k

]2 =
x2k

j22k
, (5)

where cn = cn(x). □

This implies
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∞∑
n=1

F2(2n+1)

L2
2n+1 + 5

=
1

45
; [5]

∞∑
n=1

J2(2n+1)(
j22n+1 + 9 · 4n

)2 =
4

225
.

Next, we pursue the Jacobsthal consequence of sum (2).

3.2. Jacobsthal Version of Equation (2).

Proof. We have
∆2f4kf2(2n+2)k[

l2(2n+2)k +∆2f2
2k

]2 . Now, replace x with 1/
√
x, and multiply the numerator

and denominator with x4(n+1)k. This yields

A =
D2f4kf2(2n+2)k

x

[
l2(2n+2)k +

D2

x
f2
2k

]2
=

D2x2nk
[
x(4k−1)/2f4k

]
{x[2(2n+2)k−1]/2f2(2n+2)k}{[

x(2n+2)k/2l(2n+2)k

]2
+D2x(2nk−1)/2

[
x(2k−1)/2f2k

]2}2

=
D2x2nkJ4kJ2(2n+2)k[

j2(2n+2)k +D2x(2nk−1)/2J2
2k

]2 ;
LHS =

∞∑
n=1

D2x2nkJ4kJ2(2n+2)k[
j2(2n+2)k +D2x(2nk−1)/2J2

2k

]2 ,
where gn = gn(1/

√
x) and cn = cn(x).

Next, we have B =
1

l22k
+

1

l24k
. Replacing x with 1/

√
x, and multiplying the numerator and

denominator with x4k yields

B =
x2k

(x2k/2l2k)2
+

x4k

(x4k/2l4k)2
;

RHS =
x2k

j22k
+

x4k

j24k
,

where gn = gn(1/
√
x) and cn = cn(x).

By combining the two sides, we get the desired Jacobsthal version:

∞∑
n=1

D2x2nkJ4kJ2(2n+2)k[
j2(2n+2)k +D2x(2nk−1)/2J2

2k

]2 =
x2k

j22k
+

x4k

j24k
, (6)

where cn = cn(x). □

This yields
∞∑
n=1

F2(2n+2)(
L2
2n+2 + 5

)2 =
58

6, 615
; [5]

∞∑
n=1

22nJ2(2n+2)[
j22n+2 + 9 · 2(2n−1)/2

]2 =
1, 556

325, 125
.
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A Gibonacci Delight. It follows from Subsections 3.1 and 3.2 that [5]

∞∑
n=3

F2n

(L2
n + 5)2

=

∞∑
n=1

F2(2n+1)(
L2
2n+1 + 5

)2 +

∞∑
n=1

F2(2n+2)(
L2
2n+2 + 5

)2
=

41

1, 323
;

∞∑
n=1

F2n

(L2
n + 5)2

=
2

27
.

Next, we explore the Jacobsthal implication of sum (3).

3.3. Jacobsthal Version of Equation (3).

Proof. We have A =
∆2f4kf2(2n+1)k[

l2(2n+1)k −∆2f2
2k

]2 . Replacing x with 1/
√
x, and multiplying the

numerator and denominator with x2(2n+1)k then yields

A =
D2f4kf2(2n+1)k

x

[
l2(2n+1)k −

D2

x
f2
2k

]2
=

D2x(2n−1)k
[
x(4k−1)/2f4k

]
{x[2(2n+1)k−1]/2f2(2n+1)k}{[

x(2n+1)k/2l(2n+1)k

]2 −D2x(2n−1)k
[
x(2k−1)/2f2k

]2}2

=
D2x(2n−1)kJ4kJ2(2n+1)k[

j2(2n+1)k −D2x(2n−1)kJ2
2k

]2 ;
LHS =

∞∑
n=1

D2x(2n−1)kJ4kJ2(2n+1)k[
j2(2n+1)k −D2x(2n−1)kJ2

2k

]2 ,
where gn = gn(1/

√
x) and cn = cn(x).

With B =
1

l2k
+

1

l23k
, we will now find the corresponding RHS. To this end, we replace x with

1/
√
x, and multiply the numerator and denominator with x3k. We then get

B =
xk

(xk/2l2k)2
+

x3k

(x3k/2l3k)2
;

RHS =
xk

j2k
+

x3k

j23k
,

where gn = gn(1/
√
x) and cn = cn(x).

Equating the two sides, we get the desired Jacobsthal version:

∞∑
n=1

D2x(2n−1)kJ4kJ2(2n+1)k[
j2(2n+1)k −D2x(2n−1)kJ2

2k

]2 =
xk

j2k
+

x3k

j23k
, (7)

where cn = cn(x). □
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∞∑
n=1

F2(2n+1)(
L2
2n+1 − 5

)2 =
17

240
; [5]

∞∑
n=1

22n−1J2(2n+1)[
j22n+1 − 9 · 2n−1

]2 =
106

2, 205
.

Finally, we explore the Jacobsthal implication of sum (4).

3.4. Jacobsthal Version of Equation (4).

Proof. We have A =
∆2f2kf2(2n+2)k[

l2(2n+2)k + (−1)k∆2f2
k

]2 . Now, replace x with 1/
√
x, and multiply the

numerator and denominator with x2(2n+2)k. Then,

A =
D2f2kf2(2n+2)k

x
[
l2(2n+2)k + (−1)k D2

x f2
k

]2
=

D2x(2n+1)k
[
x(2k−1)/2f2k

]
{x[2(2n+2)k−1]/2f2(2n+2)k}{[

x(2n+2)k/2l(2n+2)k

]2
+ (−1)kD2x(2n+1)k

[
x(k−1)/2fk

]2}2

=
D2x(2n+1)kJ2kJ2(2n+2)k[

j2(2n+2)k + (−1)kD2x(2n+1)kJ2
k

]2 ;
LHS =

∞∑
n=1

D2x(2n+1)kJ2kJ2(2n+2)k[
j2(2n+2)k + (−1)kD2x(2n+1)kJ2

k

]2 ,
where gn = gn(1/

√
x) and cn = cn(x).

Next, replace x with 1/
√
x, and multiply the numerator and denominator with x3k in

B =
1

l23k
. We then get

B =
x3k

(x3k/2l3k)2
;

RHS =
x3k

j23k
,

where gn = gn(1/
√
x) and cn = cn(x).

Combining the two sides, we get the desired Jacobsthal version:

∞∑
n=1

D2x(2n+1)kJ2kJ2(2n+2)k[
j2(2n+2)k + (−1)kD2x(2n+1)kJ2

k

]2 =
x3k

j23k
, (8)

where cn = cn(x). □

In particular, we then get
∞∑
n=1

F2(2n+2)(
L2
2n+2 − 5

)2 =
1

80
; [5]

∞∑
n=1

22n+1J2(2n+2)(
j22n+2 − 9 · 22n+1

)2 =
8

441
.
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A Gibonacci Delight : Subsection 3.3, coupled with Subsection 3.4, yields

∞∑
n=3

F2n

(L2
n − 5)2

=

∞∑
n=1

F2(2n+1)(
L2
2n+1 − 5

)2 +

∞∑
n=1

F2(2n+2)(
L2
2n+2 − 5

)2
=

1

12
;

∞∑
n=1

F2n

(L2
n − 5)2

=
1

3
. [5]

4. Alternate Versions

Using the Jacobsthal counterpart j2n − D2J2
n = 4(−x)n [4] of the gibonacci identity l2n −

∆2f2
n = 4(−1)n [4], we can rewrite equations (5)–(8) in different ways:

∞∑
n=1

D2J2kJ2(2n+1)k{
D2

[
J2
(2n+1)k + x2nkJ2

k

]
+ 4(−x)(2n+1)k

}2 =
x2k

D2J2k + 4x2k
;

∞∑
n=1

D2J4kJ2(2n+2)k{
D2

[
J2
(2n+2)k + x(2nk−1)/2J2

2k

]
+ 4x(2n+2)k

}2 =
x2k

D2J2
2k + 4x2k

+
x4k

D2J2
4k + 4x4k

;

∞∑
n=1

D2x(2n−1)kJ4kJ2(2n+1)k{
D2

[
J2
(2n+1)k − x(2n−1)kJ2

2k

]
+ 4(−x)k

}2 =
xk

D2J2
k + 4(−x)k

+
x3k

D2J2
3k + 4(−x)3k

;

∞∑
n=1

D2x(2n+1)kJ2kJ2(2n+2)k{
D2

[
J2
(2n+2)k + (−1)kx(2n+1)kJ2

k

]
+ 4x(2n+2)k

}2 =
x3k

D2J2
3k + 4(−x)3k

,

respectively.
They yield

∞∑
n=1

F2(2n+1)(
5F 2

2n+1 + 1
)2 =

1

45
;

∞∑
n=1

F2(2n+2)(
5F 2

2n+2 + 9
)2 =

58

6, 615
;

∞∑
n=1

F2(2n+1)(
5F 2

2n+1 − 9
)2 =

17

240
;

∞∑
n=1

F2(2n+2)(
5F 2

2n+2 − 1
)2 =

1

80
,

again respectively.
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