INFINITE SUMS INVOLVING GIBONACCI POLYNOMIALS REVISITED:
GENERALIZATIONS

THOMAS KOSHY

ABSTRACT. We explore the generalizations of four infinite sums involving gibonacci polyno-
mials, and their alternate and Pell versions.

1. INTRODUCTION

Ezxtended gibonacci polynomials z,(x) are defined by the recurrence z,,12(z) = a(x)zp4+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), zo(z), and z;(z) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = x and b(z) = 1. When zo(x) = 0 and zi(x) = 1, z,(z) = fu(x), the
nth Fibonacci polynomial; and when zp(x) = 2 and z1(z) = z, z,(x) = l,(x), the nth Lucas
polynomial. They can also be defined by Binet-like formulas. Clearly, f,(1) = F,, the nth
Fibonacci number; and 1,,(1) = L,,, the nth Lucas number [1, 4].

Pell polynomials py(x) and Pell-Lucas polynomials g, (x) are defined by p,(z) = f,,(2z) and
qn(x) = 1,(2x), respectively. In particular, the Pell numbers P, and Pell-Lucas numbers Q,
are given by P, = p,(1) = fn(2) and 2Q, = ¢, (1) = 1,,(2), respectively [4].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, Will mean z,(z). In addition, we let g, = f, or

ln, by =pn or gn, A =22 +4,and E = V22 +

It follows by the Binet-like formulas that lim

m— 00 gm—i-r

=0.

1.1. Some Fundamental Identities. Gibonacci polynomials g, satisfy the following funda-
mental properties [4]:

= Af2 = 4(-1)"; [p.36] (1)
bntklnr = B+ ()" A% f2; [p. 13] (2)
Gog—liy = A%fonfor. [p.57] (3)

These three identities play a major role in our discourse.

2. GIBONACCI POLYNOMIAL SUMS
With the above background, we now begin our explorations of gibonacci sums.

Theorem 1. Let k be a positive integer. Then
> A2‘7‘121~cbl‘?2(2n+1)1c 1

_ L (4)
ot [l%2n+1)k +AR 1,
Proof. Using recursion [4, 5], we will first establish that
i A for fa@n+1)k 1 (5)
=l (2n+1)k +AP 1, l%2m+2)k
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To achieve this goal, we let A,, = LHS of this equation and B,, its RHS. It then follows by
identities (2) and (3) that

1 1
Bm - Bm—l 12 - l2
2mk (2m+2)k
l%2m+2) l%mk

l?2m+2)k312mk’

_ A? for, foamt1)k
[lémmk +A% ’3} 2
= Apn—An_1.
With recursion, this implies
Apn—By, = Apw1—Bp_1=--=A4; —
_ A%fen (1 B 1>
B+ 227 \B, 1%
_ By <1_1>
Gelo  \Byp Uy
= 0.
Thus, A,, = B, as claimed.
Because lim = 0, equation (5) yields the desired result. O
M= Im+r
It follows from equation (4) that
Foonyry 1 5 o Fient _ 1
— (L3411 +5)? 45 = L9 0y + 51 735’
Foont1) S = Fyont1) _ 1
2L ) + 201 12,960’ 2Ly A5 231,945°

An Alternate Version. With identity (1), we can rewrite equation (4) in terms of Fibonacci
polynomials alone:

i A? for fa@nt1)k _ 1 (©)
2 T S —ACDRE T AZfR 4
This implies
Faan41) _ 1 i Fiyent1) _
L (5F3,., +9)? 45 < [5E 5y + 1 735’
Foan+1) 1 = F8(2n+1) _ 1
25 Fg ot 242 T 12,960 2 5F,, o+ 4P T 231,045

The following result involves even-numbered gibonacci polynomials.

Theorem 2. Let k be a positive integer. Then

i A2 far fa@nt2)k _ 1 N 1 )
-1 U%2n+2)k +AR B, 0,
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Proof. With recursion [4, 5], and identities (2) and (3), we will first confirm that

in: A’ fapfonio 1 1 1 1

- - . (8)
B T A5 By G oo Domran

n:l
Letting A,, = LHS and B,, = RHS of this equation, we get

1 1

Bm - Bm_l lgmk - l%2m+4)k
12 — 2
(2m+4)k 2mk
l(22m+4)kl2mk

A? figo fo2m+2)k
Uomyoyn T A2 f3)?
= A, — A1

Recursively, this yields

Ay —Bn = Ap1—Bp1=--=A4; —

_ S (1 1) (1 1)
(I3 + A%f35)? Br Gk e B

_ M_<1_1>
1203, 13, 1%

= 0.
Thus, A,, = B, as desired.
Now letting m — oo in equation (8), we get the given result. O
Equation (7) yields
Foenyz) 58 5) i;i 4(2n+2) _ 2,258
L (13,5 +5)? 6,615 — (L3 o) + 45 11, 365, 305’
Fs2nt2) B 13,001 i Fy(on+2) 4,873,058
ot [L§(2n+2) + 3202 3,023,425, 440’ n:1 L2 i2nt2) T2 ,205]2 103, 7292

An Alternate Version. Using identity (1), we can rewrite equation (7) with Fibonacci poly-
nomials alone:

i A? far. foonsapk _ 1 N 1 ©
2n+2k+fk}+4}2 AZf2 +4 A2f7 +4
Consequently, we have
Z Fyon+2) 98 i 4(2n+2) _ 2258
= (5F5, 0 +9)? 6,615’ 5F2 ) +49] 11,365,305

n:1 2(2n+1
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A Gibonacci Delight: Equations (4) and (7) yield

— = Fhong) = Fhong)
;(L3+5)2 B ;(L§n+l+5)2+;(L§n+2+5)2
a1
= T
. B, 2

The next result is interesting in its own right.
Theorem 3. Let k be a positive integer. Then
A% fap foomeye 1 1

=5+ 5. (10)
n=1 [Z%Qn—f—l) _A2f22k]2 li l§k
Proof. By invoking recursion [4, 5], we will first prove that
A farfoenine 11 I )
n=1 U%2n+1)k A2f2k] lk l%k l%2m+1)k l%2m+3)k
With A, = LHS and B,,, = RHS of this equation, it follows by identities (2) and (3) that
1 1
Bm - Bm,1 l2 - l2
Cm-Dk  ‘@m+3)k
12 — 2
_ "(2m43)k (2m—1)k
12 12
(2m+3)k"(2m—1)k
_ A? fage fo(om+1)k
U%Qm—f—l)k - A2f22k:]2
= An—An_1.
As before, this implies
A, —B, = An-1—Bn-1=...= 41— B
_ A fag for [(1 1) <1 1)]
(G — 221307 L\ By Be By
_ B (1_1>
E AN
= 0,
confirming the validity of formula (11).
Equation (10) follows from this result, as desired. O
Equation (10) yields
>0 F o2n41 17 > Fy 2n+1) 37
(L2 : )5)2 = 210° Z : 452 34,020
n=1 \"2n+1 n:l 2n+1) )
i F(ant1) _ 181 i Fyant1) _ 21
2Ly — 3202 2,079,360° 4= (L2, . —2205 511,680,540
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An Alternate Version. With identity (1), we can express equation (10) with Fibonacci
polynomials alone:

Z A2 fug foans 1)k _ 1 N 1 (12)
A2(fon iy — for] HACDRPE AR+ A(-DR  A2fL +A(-1)F
This implies
Faeni1) _ 17 i Fyon) _ 37
— (5F3, 4 —9)? 240’ [5F2(2n+1) 41]? 34,020
Finally, we explore one more gibonacci sum.
Theorem 4. Let k be a positive integer. Then
0 A? for, fa@nt2)k _ 1 (13)
n—=1 [l%2n+2)k +(-DRAZFE B
Proof. Using recursion [4, 5], and identities (2) and (3), we will first confirm that
m A2f2kf2(2n+2)k _ i B 1 (14)
n=1 [l(22n+2)k: + (71)’6A2fl?]2 l%k l%Qm-‘rS)k
With A,, = LHS and B,, = RHS of this equation, we get
1 1
Bm - Bmfl = l2 l2
2m+D)k  “(2m+3)k
l%2m+3)k l(22m+1)k
l(2m+3)kl(2m+1)k
_ A? for, foom-+2)k
Wom e + (F1FAZ SR
= An—An1.
Recursively, this yields
Ay, — B, = An1—-Bnh_1=--=A4; —
_ A2 for, fa, B (1 B 1)
(2, + (-)Fa2f2)” \B, By
_ Bl (1 _ 1)
nE B
= 0.
Consequently, A,, = B,,, establishing the validity of equation (14).
The given result now follows from equation (14), as desired. O

It follows from equation (13) that

_Paenyny 1 5] i Fyon+2) 1
2 T80 72 Lr2 T 1860
oon 1 (L2n+2 5)2 80 no:ol [L2(2n+2) + 5]2 4, 860
Z Fo(2n42) _ 1 . Z Fy(an42) B 1
- ? 2 - L T .
= (L3 ) — 20 231,040 £ [L2,, ) + 45 10, 836, 820
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A Gibonacci Delight: Equation (10), coupled with equation (13), yields

> Fy,, = Fhong) = Fhong)
—_— = +
7;’ (L% - 5)2 Z (L%n-l—l 5)2 Z (L%n+2 5)2
_ i.
12’
= B, 1
— = = =.1[5,6
;(L%_5)2 5 [5.6]

An Alternate Version. With identity (1), we can find a slightly different form of equation
(13) with Fibonacci polynomials alone:

> A? for fa@nt2)k 1
= . 15
2 A ffppaye T COREI+H4F A2 fG +A(-1)F 1

This yields

[e.e]

i Fyint2) 1 Fyon+2) 1

= (5F3,0 — 1) 80’ — [5F22(2n Loy + 9P 4,860

Finally, we extract the Pell implications of the sums in Theorems 1 through 4.

3. PELL CONSEQUENCES

Using the relationship b, (x) = g,(2x), equations (4), (7), (10), and (13) yield the following
sums:

AB?pokpaaniiyk 1 i AEPPakPa(ant2)k _ 1 n 1
=1 [q(22n+1)k +4E?pi]? G n:1 2n+2)k + 4E%pg, ]2 G Qi
>~ AEpakpaonink 1 N 1 i AEparpa(anta) 1
= Ty — AP, G a3 = (T gy + AP EPPE] a3

respectively.
In particular, we then get
Pyonyy 1 i Pyonioy 149
L (QByy 20 36’ 2 (Qin + 82 7,803’
Poonsy 25 i Paont2y 1
2 (@3, — 8 588’ 2 (QFyr — 27 196°

again respectively.
Additionally, we can find the Pell versions of equations (6), (9), (12), and (15). In the
interest of brevity, we omit them and encourage gibonacci enthusiasts to pursue them.

4. CHEBYSHEV AND VIETA IMPLICATIONS

Finally, we add that Chebyshev polynomials T;, and U,, Vieta polynomials V,, and v,,
and gibonacci polynomials g,, are linked by the relationships V;,(z) = i" ! f,(=iz), vp(x) =
il (=iz), Vp(z) = Up—1(x/2), and v, (x) = 2T,(x/2) [2, 3, 4], where i = /1. They can be
employed to find the Chebyshev and Vieta consequences of equations (4), (7), (10), and (13),
and their alternate versions. Again, in the interest of brevity, we omit them and encourage
gibonacci enthusiasts to explore them.
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