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ABSTRACT. Using a classical theorem of Serret and a well-known property of Dedekind sums,
we show that a Dedekind sum vanishes if and only if the quotient of its arguments possesses
a palindromic continued fraction expansion of a particular form.

1. INTRODUCTION

The Dedekind sum s(p, ¢) for integral p > 0, ¢ > 0 may be defined as

oo (D),

pmod g
where we have set
r—|z] -3, ifxéZ
— 1.2
(@) {0, itz € 2 (12)

with x| denoting the greatest integer less than or equal to 2. A number of results related
to special values of Dedekind sums are known, see for instance Apostol’s textbook [1, pg. 73].
Interestingly, many explicit evaluations of Dedekind sums arise in connection with recurrence
sequences [3, 4, 6, 8]. As a particular example, the following theorem appears as an exercise
in Apostol [1, pg. 72].

Theorem 1. Let F;, be the nth Fibonacci number. Then
S(an, F2n+1) =0. (13)

The above identity was generalized by two independent sets of authors in the same issue of
the Fibonacci Quarterly [6, 8]. To state their result, we must first define the Lucas sequence
(Un(a,b))n>0, which satisfies the recurrence

Uo(a,b) =0, Ui(a,b) =1, Upti(a,b) =aUy(a,b) —bUy,_1(a,b) (n>1), (1.4)
where ab # 0 and a? — 4b > 0. In particular, when a = 1 and b = -1, U, (1,-1) = F,, are the
Fibonacci numbers. The generalization of Theorem 1 is then given by
Theorem 2 (Zhao and Wang, Robbins). Let U,, := Uy(a,-1). Then

S(Ugn, U2n+1) =0. (1.5)

The purpose of this note is to provide a characterization of those pairs of positive coprime
integers (p, q) such that s(p,q) = 0. This characterization, given in terms of the continued
fraction expansion of p/q, allows us to easily deduce Theorems 1 and 2 as special cases.
Specifically, our main result is the following theorem, whose terminology shall be made clear
in the next section.

NOVEMBER 2023 357



THE FIBONACCI QUARTERLY

Theorem 3. Let p,q be positive coprime integers. Then

s(p,q) =0 (1.6)

if and only if p/q possesses a continued fraction expansion whose fractional part is palindromic
of even length.

2. DEFINITIONS

For our purposes, a continued fraction (ag, a1, ...,a,) is a fraction of the form
1
(ag,at, ..., an) =a0+ ———— (2.1)
a+———
L 1
.. + _
Qn

where the sequence of partial quotients (ay)j_, are all positive integers except for ag, which
may be 0. The continued fraction expansion of a positive rational number p/q is unique up to
parity. That is, if

f]j = (ao,al,...,an>, (2.2)

then p/q also possesses the expansion

p {<a07a17"'7an—1+1>7 1fan:17 (23)

(ag,ai,...,an —1,1), ifa, > 1.

Consequently, a positive rational number possesses two continued fraction expansions: one
with an even number of partial quotients and the other with an odd number.

A string of N partial quotients is said to be palindromic of length N if it is identical whether
read left-to-right or right-to-left, that is

(ak, Qps1y- - G N—1) = (A4 N1, CGhyN—2,- .., QL) (2.4)

If the string (ag,ai,...,a,) is palindromic, then the continued fraction expansion

(ag,ai,...,a,) is said to be palindromic. Lastly, we say that the fractional part of a con-
tinued fraction expansion (ag, a1, ..., a,) is the string of partial quotients (a1, as, ..., ay).

3. PROOF OF THEOREM 3

Our proof of Theorem 3 follows almost immediately from the next two theorems.
Theorem 4. The Dedekind sum s(p,q) = 0 if and only if p*> +1 =0 (mod q).

Theorem 5 (Serret). Let z,y be coprime integers such that 1 <y < x. Then, x/y possesses a
palindromic continued fraction expansion of even (respectively odd) length if and only if y> + 1
(respectively y* — 1) is divisible by x.

Theorem 4 is a well-known property of Dedekind sums and can be found in [1, pg. 65].
Theorem 5 is an old result of Serret [7], and can be found in Perron’s treatise on continued
fractions [5, p. 33], written in German. A recent proof of Serret’s theorem in English is given
in [2].
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Proof of Theorem 3. Let us first note that, without loss of generality, we may assume that
1 < p < q. Indeed, if p > ¢, then we may instead consider the pair (p',q), where p’ is taken
to be the least positive residue of p mod ¢. This follows because if p = p’ (mod ¢), then
s(p,q) = s(p/,q), which can be established directly from definition (1.1). Moreover, if p’/q
possesses a continued fraction expansion whose fractional part is palindromic of even length,
then so does p/q because p/q = k + p'/q for some integer k > 0.

To begin our proof, let us assume that s(p,q) = 0 for positive, coprime integers p, q with
1 < p < q. By Theorem 4, we know that p?> + 1 = 0 (mod ¢). As a result, Serret’s theorem
guarantees that the fraction ¢/p possesses a palindromic continued fraction expansion of even
length. That is,

= (a0, -+ Qny Ay -« ., Q). (3.1)

iSEES

By the construction of continued fractions, we find that the reciprocal is given by

2:<O7a07"'7anaa’n7--~7a/0>- (32)

Therefore, p/q does indeed possess a continued fraction expansion whose fractional part is
palindromic of even length. To prove the opposite direction, let us assume that p/q possesses a
continued fraction expansion whose fractional part is palindromic of even length. Once again,
using our assumption that 1 < p < ¢, we may write

%):<O7a07---7a‘naana---7a0>a (33)
and therefore,

%z(ao,...,aman,...,ao> (3.4)
is completely palindromic of even length. Thus, by Theorem 5, we know that
p? 4+ 1 =0 (mod ¢), which in turn implies that s(p,q) = 0 by Theorem 4. This completes
our proof of Theorem 3. O

4. CLOSING REMARKS

Because the Lucas sequences Uy, := Uy, (a,-1) are defined by the recurrence

Upy1=0aU, +Up_1, (4.1)
the ratio of consecutive terms satisfies the identity
1
Un_ _ : (4.2)
UTL+1 a+ Unfl
Un
Noting that Up/U; = 0 leads to the continued fraction expansion
Un f—’na
— =(0,a,...,q). (4.3)
Un+1

Thus, when n is even, the expansion has a palindromic fractional part of even length, which
shows that Theorem 2 is indeed a special case of Theorem 3. A case that does not fall under
Theorem 2, but is covered under Theorem 3, is the Fibonacci quotient Fb,11/Fon43. It can
be shown to possess, for n > 1, the continued fraction expansion

2n
F f_H
2t —0,2,1,...,1,2). (4.4)

F2n+3
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Moreover, the reciprocal can be written as

2n—1 2n
F: P ——
28— 21,...,1,2) =(2,1,...,1,1,1). (4.5)

Fonia
Therefore, Foy,t1/Fonts and Fay 43/ Fo, 1 possess continued fraction expansions with palin-
dromic fractional parts of even length. Indeed, it can be shown that {Fy,41, Font3} are the
only such pairs of positive integers {p, ¢} such that p/q and q/p both possess such expansions.
By Theorem 3, the pairs {Fa,+1, Font3} are then the only such positive integers {p, ¢} such
that s(p,q) = 0 and s(q,p) = 0. Because s(p,q) = s(q,p) implies s(p,q) = 0 [4, Thm. 2], one
can give a new proof of a result of Meyer [4, Thm. 4], which states that s(p, q) = s(q, p) if and
only if p = Fb,11 and q = Fo, 3.

5. ACKNOWLEDGEMENTS

The author thanks the anonymous referee, whose suggestions improved the presentation of
this note.

REFERENCES

[1] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990.

[2] M. Derevyagin, A. Minenkova, and N. Sun, A theorem of Joseph-Alfred Serret and its relation to perfect
quantum state transfer, Expositiones Mathematicae, 39.3 (2021), 480-499.

[3] K. Dilcher and J. L. Meyer, Dedekind sums and some generalized Fibonacci and Lucas sequences, The
Fibonacci Quarterly, 48.3 (2010), 260-264.

[4] J. L. Meyer, Symmetric arguments in the Dedekind sum, The Fibonacci Quarterly, 43.2 (2005), 122-123.

[5] O. Perron, Die Lehre von den Kettenbriichen, Teubner, 1923.

[6] N. Robbins, On Dedekind sums and linear recurrences of order two, The Fibonacci Quarterly, 42.3 (2004),
274-276.

[7] J. A. Serret, Sur un théorme relatif auz nombres entiers, Journal de Mathematiques, 1.3 (1848), 12-14.

[8] F.-Z. Zhao and T. Wang, Some results on generalized Fibonacci and Lucas numbers and Dedekind sums,
The Fibonacci Quarterly, 42.3 (2004), 250-255.

MSC2020: 11F20, 11A55, 11B39

Email address: sanfordchance@gmail.com

360 VOLUME 61, NUMBER 4



