
BINOMIAL SUMS INVOLVING SECOND-ORDER LINEARLY

RECURRENT SEQUENCES

JOHN M. CAMPBELL AND EMRAH KILIÇ

Abstract. Consider the sequences (Un : n ∈ N0) and (Vn : n ∈ N) satisfying the second-
order linear recurrences Un = pUn−1+Un−2 and Vn = pVn−1+Vn−2 with the initial conditions
U0 = 0, U1 = 1, V0 = 2, and V1 = p. We explore the problem of evaluating binomial sums
involving products consisting of entries in the U - and V -sequences. We apply a hypergeometric
approach, inspired by Dilcher’s work on hypergeometric identities for Fibonacci numbers, to
obtain many new identities for sums involving U and V and products of binomial coefficients,
including a non-hypergeometric analogue of Dixon’s binomial identity.

1. Introduction

The recursion

Fn = Fn−1 + Fn−2 (1.1)

satisfied by the Fibonacci sequence (Fn : n ∈ N0) is among the most famous and the most basic
recurrences in all of mathematics. Second-order linear recurrences generalizing (1.1) form a
main object of study in number-theoretic areas of research concerning the Fibonacci sequence.
In this regard, past research concerning such recurrences, as in [3, 6, 7, 8, 9, 10, 11, 13, 14],
motivates further explorations based on new properties of integer sequences generalizing the
Fibonacci sequence and the Lucas sequence (Ln : n ∈ N0). In this article, we introduce
identities and techniques for summing products of entries of second-order linearly recurrent
sequences and binomial coefficients.

We define (Un : n ∈ N0) and (Vn : n ∈ N0) according to the second-order linear recurrences
given as follows for a parameter p, and we enforce the initial conditions such that U0 = 0,
U1 = 1, V0 = 2, and V1 = p:

Un = pUn−1 + Un−2 and Vn = pVn−1 + Vn−2. (1.2)

If p = 1, then Un = Fn and Vn = Ln. The Binet formulas for U and V are

Un =
αn − βn

α− β
and Vn = αn + βn, (1.3)

where

α =
p+

√
△

2
and β =

p−
√
△

2
, (1.4)

with △ = p2 +4. This article is mainly concerned with terminating sums containing products
of binomial coefficients with U - or V -entries. For the case whereby there is only one binomial
factor, then such sums typically may be evaluated using (1.3), as we illustrate below. In
contrast, the situation becomes much more difficult if there are multiple binomial factors, as
we later consider.
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Throughout this paper, N0 stands for N ∪ {0}. Experimentally, we have discovered that

n∑
k=0

(
n

k

)
Uk+2r−1Uk+2r+1 =

1

∆

n∑
k=0

(
n

k

)
Vk+2r−1Vk+2r+1 (1.5)

= ∆⌊n−1
2 ⌋
{

Vn+4r, if n is even;
Un+4r, if n is odd;

(1.6)

for n ∈ N0, where ∆ is defined previously. We claim that the above indicated identities may be
proved in a direct way using the Binet-type formulas in (1.3), in contrast to our new formulas
involving multiple binomial factors. This is illustrated below.

For the even case, the desired evaluation for the left side sum is

2n∑
k=0

(
2n

k

)
Uk+2r−1Uk+2r+1 =

(
p2 + 4

)n−1
V2n+4r.

So, it remains to prove that

2n∑
k=0

(
2n
k

) (
αk+2r−1 − βk+2r−1

) (
αk+2r+1 − βk+2r+1

)
(α− β)(α− β)

= (1.7)

(
p2 + 4

)n−1 (
α2n+4r + β2n+4r

)
. (1.8)

By the binomial theorem, we may evaluate the finite sum given above as

−
(
α2 + β2

)
α2rβ2r

(
(αβ + 1)2

)n
+ β

((
α2 + 1

)2)n
α4r+1 + α

((
β2 + 1

)2)n
β4r+1

αβ(α− β)2
,

so that it remains a matter of routine to verify that the above expression may be reduced to
(1.8). A similar approach may be applied to the remaining cases for the equalities in (1.5)–
(1.6). In contrast, we introduce explicit evaluations for summations for which the binomial
theorem cannot be applied directly, as in the terminating sum

2n∑
k=0

(
2n

k

)2

(−1)k U2n−kVk (1.9)

considered in the following section. Finite sums such as
∑2n

k=0

(
2n
k

)2
xk and

∑2n
k=0

(
2n
k

)3
xk do

not admit closed forms for a free variable x, so Binet-type formulas cannot be applied directly
to sums as in (1.9), which motivates the hypergeometric approaches we employ in Section 2
below. In Section 3, we conclude by introducing summation identities with single binomial
factors in the vein of (1.5)–(1.6).

1.1. Fibonacci numbers and hypergeometric series. Dilcher’s work on hypergeometric
functions and Fibonacci number identities [5], with related work as in [1, 15], motivates our ap-
plication of classic hypergeometric identities toward the problem of proving new, experimentally
discovered identities as in (1.9).

The famous Γ-function is such that Γ(x) =
∫∞
0 ux−1e−u du for ℜ(x) > 0 [12, Section 2].

This leads us to define the Pochhammer symbol so that (a)n = Γ(a+n)
Γ(a) , and we adopt the

notational shorthands [
α, β, . . . , γ

A,B, . . . , C

]
n

=
(α)n (β)n · · · (γ)n
(A)n (B)n · · · (C)n
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and

Γ

[
α, β, . . . , γ

A,B, . . . , C

]
=

Γ (α) Γ (β) · · ·Γ (γ)

Γ (A) Γ (B) · · ·Γ (C)
.

Generalized hypergeometric series [2] are denoted by

pFq

[
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣∣∣ x
]
=

∞∑
n=0

[
a1, a2, . . . , ap

b1, b2, . . . , bq

]
n

xn

n!
. (1.10)

The work of Dilcher [5] on the Fibonacci sequence and hypergeometric series mainly concerned
the expression of Fibonacci numbers with (1.10), as in the identities

Fn =
n

2n−1 2F1

[
1−n
2 , 2−n

2
3
2

∣∣∣∣∣ 5
]

and

F2n+1 = (−1)n(2n+ 1) 2F1

[
−n, n+ 1

3
2

∣∣∣∣∣ 54
]

given in [5]. Instead of expressing Fibonacci sequence entries with pFq-series, we explore the
use of pFq-identities to evaluate summations as in (1.9) with summands given by products of
hypergeometric expressions and entries of the U - and V -sequences satisfying the second-order
recurrences in (1.2).

To prove our new evaluation for (1.9), we make use of Kummer’s hypergeometric theorem,
which is

2F1

[
a, b

1 + a− b

∣∣∣∣∣ −1

]
= Γ

[
1 + a

2 , 1 + a− b

1 + a, 1 + a
2 − b

]
, (1.11)

if ℜ(b) < 1
2 and a − b ̸= −1,−2, . . . [2, Section 2.3]. A terminating version of Dixon’s

hypergeometric summation identity [2, Section 3.1] is

3F2

[
−n, x, y

1− x− n, 1− y − n

∣∣∣∣∣ 1
]
=

(1 + ℓ)ℓ(x+ y + ℓ)ℓ
(x+ ℓ)ℓ(y + ℓ)ℓ

χ(n = 2ℓ).

As below, trinomial coefficients are (
n

a, b, c

)
=

n!

a!b!c!
.

The following well known binomial sum identity is a special case of the above identity.

2n∑
k=0

(
2n

k

)3

(−1)k = (−1)n
(

3n

n, n, n

)
. (1.12)

This is to be applied in our article, in which an analogue of (1.12) involving generalizations of
Fibonacci/Lucas numbers is introduced and proved.

2. New Binomial Sums

In view of the Binet formulas in (1.3) and the finite sum in (1.9), we are to make use of the
equivalence

2n∑
k=0

(
2n

k

)2

(−1)kxk = 2F1

[
−2n,−2n

1

∣∣∣∣∣ −x

]
(2.1)

for n ∈ N0.
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Theorem 2.1. The identity

2n∑
k=0

(
2n

k

)2

(−1)k U2n−kVk = (−1)n
(
2n

n

)
U2n

holds for n ∈ N0.

Proof. The x = 1 case of (2.1), is equivalent, by the Kummer identity in (1.11), to

2n∑
k=0

(
2n

k

)2

(−1)k = (−1)n
(
2n

n

)
. (2.2)

According to the Binet formulas in (1.3), it remains to evaluate, in closed form

2n∑
k=0

(
2n
k

)2
(−1)k

(
α2n−k − β2n−k

) (
αk + βk

)
α− β

(2.3)

for α and β as in (1.4). According to the equivalence in (2.1) with the special case of Kummer’s
theorem shown in (2.2), we may rewrite (2.3) as

1

α− β

(
4nΓ

(
n+ 1

2

) ((
−α2

)n −
(
−β2

)n)
√
πΓ(n+ 1)

−

β2n
2F1

[
−2n,−2n

1

∣∣∣∣∣ −α
β

]
+ α2n

2F1

[
−2n,−2n

1

∣∣∣∣∣ −β
α

])
.

(2.4)

By symmetry, we have that

2F1

[
−2n,−2n

1

∣∣∣∣∣ x
]
= x2n2F1

[
−2n,−2n

1

∣∣∣∣∣ 1x
]

(2.5)

for x ̸= 0, i.e., by rewriting the 2F1-sums in (2.5) as finite sums, applying a reindexing
argument, and making use of the symmetry of binomial coefficients. This gives us that (2.4)
reduces to the right side of

2n∑
k=0

(
2n

k

)2

(−1)kU2n−kVk =
4nΓ

(
n+ 1

2

) ((
−α2

)n −
(
−β2

)n)
√
π(α− β)Γ(n+ 1)

.

From the initial Binet formula in (1.3) with the Legendre duplication formula, this is equivalent
to the desired result. □

A similar approach, relative to the above proof, may be used to obtain a Fibonacci-type
sum analogue of Dixon’s binomial sum. The interest in Dixon’s binomial sum motivates the
following analogue involving generalizations of (Fn : n ∈ N0) and (Ln : n ∈ N0) and our proof
of the following result.

Theorem 2.2. The identity

2n∑
k=0

(
2n

k

)3

(−1)k U2n−kVk = (−1)n
(

3n

n, n, n

)
U2n

holds for n ∈ N0.
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Proof. According to the Binet formulas in (1.3), it remains to evaluate

2n∑
k=0

(
2n
k

)3
(−1)k

(
α2n−k − β2n−k

) (
αk + βk

)
α− β

. (2.6)

Using the Dixon identity in (1.12), we find that (2.6) may be rewritten as

1

α− β

(
Γ(3n+ 1)

((
−α2

)n −
(
−β2

)n)
Γ3(n+ 1)

−

β2n
3F2

[
−2n,−2n,−2n

1, 1

∣∣∣∣∣ αβ
]
+ α2n

3F2

[
−2n,−2n,−2n

1, 1

∣∣∣∣∣ βα
])

.

A symmetric argument, as in our proof of Theorem 2.1, may be used to complete the proof. □

2.1. Further Results. We may mimic the above proofs to obtain many similar results, as
in the propositions listed below. In the upcoming Conclusion section, we briefly consider the
problem as to how results in the following propositions may be generalized in a systematic
way.

Proposition 2.3. The identity
n∑

k=0

(
n

k

)2

Un−kVk =

(
2n

n

)
Un

holds for n ∈ N0.

Letting Cn =
(2nn )
n+1 denote the nth Catalan number, our method, as applied in the proofs

for Theorems 2.1 and 2.2, may be applied to obtain new sums involving products of Catalan
numbers and expressions of the form UkVn−k.

Proposition 2.4. The identity
n∑

k=0

C2n−2kC2kUkVn−k = 22n−1 n+ 2

2n+ 1
Cn+1Un

holds for n ∈ N0.

Proposition 2.5. The identity
n∑

k=0

Cn−k+mCk+mUkVn−k = 2

(
2m− 1

m

)
(n+m+ 2) (n+ 1)

(n+ 2m+ 1) (n+ 2m+ 2)
Cn+m+1Un

holds for n,m ∈ N0.

Proposition 2.6. The identity
n∑

k=0

(
2n

k

)(
2n

n+ k

)
UkVn−k =

(
4n

n

)
Un

holds for n ∈ N0.

Proposition 2.7. The identity

2n∑
k=0

(
2n

k

)(
4n

2k

)
(−1)kUkV2n−k = (−1)n

(
6n

2n

)(
2n

n

)(
3n

n

)−1

U2n

holds for n ∈ N0.
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Proposition 2.8. The identity

2n∑
k=0

(
2n

k

)(
4n

k

)(
4n

2n+ k

)
(−1)kUkV2n−k = (−1)n

(
2n

n

)(
5n

2n

)
U2n

holds for n ∈ N0.

Proposition 2.9. The identity

2n∑
k=0

(
2n

k

)(
4n

k

)−1( 4n

2n+ k

)−1

(−1)kUkV2n−k =
4n+ 1

3n+ 1

(
4n

2n

)−1

U2n

holds for n ∈ N0.

Proposition 2.10. The identity
n∑

k=0

(
n

k

)(
2n

n+ k

)(
n+ k

k

)
UkVn−k =

(
2n

n

)2

Un

holds for n ∈ N0.

Our method also allows us to obtain Fibonacci-type sum analogues of the main results from
[4]. To begin, Theorem 1 from [4] is such that

∑n
k=0

(
2n
2k

)
CkCn−k = CnCn+1, and we can

mimic the proofs of Theorems 2.1 and 2.2, with the proof of Theorem 1 from [4], to prove the
following proposition.

Proposition 2.11. The identity
n∑

k=0

(
2n

2k

)
CkCn−kUn−kVk = CnCn+1Un

holds for n ∈ N0.

Part (a) of Theorem 2 from [4] gives us that

ℓ∑
k=0

(−1)k
(
2ℓ

2k

)
CkCℓ−k = (−1)(

ℓ
2)CℓCℓ/2,

if ℓ is even and that the above sum vanishes otherwise. The hypergeometric proof of this from
[4] can be used, via an analogue of our proofs of Theorems 2.1 and 2.2, to prove the following
proposition.

Proposition 2.12. The identity

2n∑
k=0

(−1)k
(
4n

2k

)
CkC2n−kU2n−kVk = (−1)nCnC2nU2n

holds for n ∈ N0.

A similar approach may be used to obtain the following proposition, using the proof of
Theorem 3 from [4].

Proposition 2.13. The identity

2n∑
k=0

(−1)k
(
2n

k

)(
4n

2k

)
CkC2n−kU2n−kVk = (−1)n

(
3n+ 1

n

)
CnC2nU2n

holds for n ∈ N0.
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3. Conclusion

The results given in Section 2 lead us to consider the conditions under which a finite sum
identity of the form

n∑
k=0

F (n, k) = G(n) (3.1)

would imply
n∑

k=0

F (n, k)Un−kVk = G(n)Un, (3.2)

and similarly for sums like
∑2n

k=0 F (n, k). For example, if we set F (n, k) =
(
n
k

)2
andG(n) =

(
2n
n

)
,

then we find that the desired implication holds, in view of Proposition 2.3. However, the im-
plication suggested by (3.1) and (3.2) does not, in general, hold. For example, if we set
F (n, k) = k, then (3.1) would not imply (3.2). Similarly, if we set F (n, k) =

(
n
k

)
k, then (3.1)

would again not imply (3.2). To be able to apply the method given by our proofs of Theorems
2.1 and 2.2, we need to mimic the symmetry-based argument involved in these proofs. We
leave it to a separate project to formalize and further explore this notion.

As described above, it is generally much harder to evaluate Fibonacci-type sums involving
products of binomial coefficients, as opposed to single binomial factors. However, the single
binomial factor case may be worthy of further attention, as suggested by the following results.

For the following results, we let X ∈ {U, V }, with X̄ = {U, V } \X, and we recall that
∆ = p2 + 4.

Proposition 3.1. For n ∈ N0,

4n+1∑
k=0

(
4n+ 1

k

)
(−1)(

k
2) UkV4n+1−k

=
4n+1∑
k=0

(
4n+ 1

k

)
(−1)(

k
2) VkU4n+1−k = (−1)n 22n+1U4n+1.

Now, we present the second group sums identities.

Proposition 3.2. For n > 0 and any integers m, r,
n∑

k=−n

(
2n

n+ k

)
Xk+mXk+r = ∆n−1Vm+r

{
1, if X = U ;
∆, if X = V.

and
n∑

k=−n

(
2n

n+ k

)
Xk+mX̄k+r = ∆nUm+r.

Proposition 3.3. For n > 0 and any integers m, r,
n∑

k=−n

(
2n

n+ k

)
Xk+mXk+rk = np∆n−1Um+r

{
1, if X = U ;
∆, if X = V ;

and
n∑

k=−n

(
2n

n+ k

)
Xk+mX̄k+rk = np∆n−1Vm+r.
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