# MORE SUMS INVOLVING GIBONACCI POLYNOMIAL SQUARES REVISITED

#### THOMAS KOSHY

ABSTRACT. We explore generalizations of two infinite sums involving a special class of gibonacci polynomial squares, and their implications.

### 1. Introduction

Extended gibonacci polynomials  $z_n(x)$  are defined by the recurrence  $z_{n+2}(x) = a(x)z_{n+1}(x) +$  $b(x)z_n(x)$ , where x is an arbitrary integer variable; a(x), b(x),  $z_0(x)$ , and  $z_1(x)$  are arbitrary integer polynomials; and  $n \geq 0$ .

Suppose a(x) = x and b(x) = 1. When  $z_0(x) = 0$  and  $z_1(x) = 1$ ,  $z_n(x) = f_n(x)$ , the nth Fibonacci polynomial; and when  $z_0(x) = 2$  and  $z_1(x) = x$ ,  $z_n(x) = l_n(x)$ , the nth Lucas polynomial. They can also be defined by the Binet-like formulas. Clearly,  $f_n(1) = F_n$ , the nth Fibonacci number; and  $l_n(1) = L_n$ , the *n*th Lucas number [1, 2].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is no ambiguity; so  $z_n$  will mean  $z_n(x)$ . In addition, we let  $g_n = f_n$  or

 $l_n$ ,  $b_n = p_n$  or  $q_n$ ,  $\Delta = \sqrt{x^2 + 4}$ ,  $2\alpha = x + \Delta$ , and  $2\beta = x - \Delta$ . It follows by the Binet-like formulas that  $\lim_{m \to \infty} \frac{1}{g_{m+r}} = 0$  and  $\lim_{m \to \infty} \frac{g_{m+r}}{g_m} = \alpha^r$ .

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following properties [2, 3, 4, 5]:

$$g_{n+k}g_{n-k} - g_n^2 = \begin{cases} (-1)^{n+k+1} f_k^2, & \text{if } g_n = f_n, \\ (-1)^{n+k} \Delta^2 f_k^2, & \text{otherwise;} \end{cases}$$
 (1.1)

$$g_{n+k+r}g_{n-k} - g_{n+k}g_{n-k+r} = \begin{cases} (-1)^{n+k+1} f_r f_{2k}, & \text{if } g_n = f_n, \\ (-1)^{n+k} \Delta^2 f_r f_{2k}, & \text{otherwise;} \end{cases}$$
(1.2)

where k and r are positive integers. These properties can be confirmed using the Binet-like formulas. Identity (1.2) is a gibonacci polynomial extension of  $d'Ocagne\ identity\ [2]$ .

#### 2. Telescoping Gibonacci Sums

Using recursion, we will now explore two telescoping gibonacci sums.

**Lemma 2.1.** Let k, r, and  $\lambda$  be positive integers. Then

$$\sum_{n=1}^{\infty} \left[ \frac{g_{(2n-1)k+r}^{\lambda}}{g_{(2n-1)k}^{\lambda}} - \frac{g_{(2n+1)k+r}^{\lambda}}{g_{(2n+1)k}^{\lambda}} \right] = \frac{g_{k+r}^{\lambda}}{g_{k}^{\lambda}} - \alpha^{r\lambda}. \tag{2.1}$$
Proof. Using recursion [2, 4], we will first confirm that

$$\sum_{n=1}^{m} \left[ \frac{g_{(2n-1)k+r}^{\lambda}}{g_{(2n-1)k}^{\lambda}} - \frac{g_{(2n+1)k+r}^{\lambda}}{g_{(2n+1)k}^{\lambda}} \right] = \frac{g_{k+r}^{\lambda}}{g_{k}^{\lambda}} - \frac{g_{(2m+1)k+r}^{\lambda}}{g_{(2m+1)k}^{\lambda}}.$$
 (2.2)

FEBRUARY 2024 29

## THE FIBONACCI QUARTERLY

Letting  $A_m$  denote the left side of this equation and  $B_m$  its right side, we get

$$B_m - B_{m-1} = \frac{g_{(2m-1)k+r}^{\lambda}}{g_{(2m-1)k}^{\lambda}} - \frac{g_{(2m+1)k+r}^{\lambda}}{g_{(2m+1)k}^{\lambda}}$$
$$= A_m - A_{m-1}.$$

Recursively, this implies

$$A_m - B_m = A_{m-1} - B_{m-1} = \dots = A_1 - B_1$$
  
= 0,

confirming the validity of equation (2.2).

Because 
$$\lim_{m\to\infty} \frac{g_{m+r}}{q_m} = \alpha^r$$
, equation (2.2) yields the desired result.

The following result is a byproduct of this lemma.

**Lemma 2.2.** Let k, r, and  $\lambda$  be positive integers. Then

$$\sum_{n=1}^{\infty} \left[ \frac{g_{(2n-1)k}^{\lambda}}{g_{(2n-1)k+r}^{\lambda}} - \frac{g_{(2n+1)k}^{\lambda}}{g_{(2n+1)k+r}^{\lambda}} \right] = \frac{g_k^{\lambda}}{g_{k+r}^{\lambda}} - (-\beta)^{r\lambda}. \tag{2.3}$$
Proof. It follows by the proof of Lemma 1 that

$$\sum_{n=1}^{\infty} \left[ \frac{g_{(2n-1)k}^{\lambda}}{g_{(2n-1)k+r}^{\lambda}} - \frac{g_{(2n+1)k}^{\lambda}}{g_{(2n+1)k+r}^{\lambda}} \right] = \frac{g_k^{\lambda}}{g_{k+r}^{\lambda}} - \frac{1}{\alpha^{r\lambda}}$$
$$= \frac{g_k^{\lambda}}{g_{k+r}^{\lambda}} - (-\beta)^{r\lambda},$$

as expected.

### 3. Gibonacci Sums

The above lemmas with  $\lambda = 1$ , coupled with identities (1.1) and (1.2), play a pivotal role in our discourse. In the interest of brevity, we let

$$\mu = \begin{cases} 1, & \text{if } g_n = f_n, \\ \Delta^2, & \text{otherwise;} \end{cases}$$
 and  $\nu = \begin{cases} -1, & \text{if } g_n = f_n, \\ 1, & \text{otherwise.} \end{cases}$ 

**Theorem 3.1.** Let k and r be positive integers. Then

$$\sum_{n=1}^{\infty} \frac{(-1)^k \mu \nu f_r f_{2k}}{g_{2nk}^2 + (-1)^k \mu \nu f_k^2} = \frac{g_{k+r}}{g_k} - \alpha^r.$$
(3.1)

*Proof.* Suppose  $g_n = f_n$ . With identities (1.1) and (1.2), Lemma 2.1 then yields

$$\frac{(-1)^k f_r f_{2k}}{f_{2nk}^2 - (-1)^k f_k^2} = \frac{f_{(2n+1)k} f_{(2n-1)k+r} - f_{(2nk+1)k+r} f_{(2n-1)k}}{f_{(2n+1)k} f_{(2n-1)k}},$$

$$\sum_{n=1}^{\infty} \frac{(-1)^k f_r f_{2k}}{f_{2nk}^2 - (-1)^k f_k^2} = \sum_{n=1}^{\infty} \left[ \frac{f_{(2n-1)k+r}}{f_{(2n-1)k}} - \frac{f_{(2n+1)k+r}}{f_{(2n-1)k}} \right]$$

$$= \frac{f_{k+r}}{f_k} - \alpha^r. \tag{3.2}$$

# MORE SUMS INVOLVING GIBONACCI POLYNOMIAL SQUARES REVISITED

Now, let  $g_n = l_n$ . Using the two identities cited above and Lemma 2.1, we get

$$\frac{(-1)^{k+1}\Delta^{2}f_{r}f_{2k}}{l_{2nk}^{2} + (-1)^{k}\Delta^{2}f_{k}^{2}} = \frac{l_{(2n+1)k}l_{(2n-1)k+r} - l_{(2nk+1)k+r}l_{(2n-1)k}}{l_{(2n+1)k}l_{(2n-1)k}},$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{k+1}\Delta^{2}f_{r}f_{2k}}{l_{2nk}^{2} + (-1)^{k}\Delta^{2}f_{k}^{2}} = \sum_{n=1}^{\infty} \left[ \frac{l_{(2n-1)k+r}}{l_{(2n-1)k}} - \frac{l_{(2n+1)k+r}}{l_{(2n+1)k}} \right]$$

$$= \frac{l_{k+r}}{l_{k}} - \alpha^{r}.$$

By combining this result with equation (3.2), we get the desired result.

With r = 1, this theorem implies [3, 5]

$$\sum_{n=1}^{\infty} \frac{1}{F_{2n}^2 + 1} = -\frac{1}{2} + \frac{\sqrt{5}}{2}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{2n}^2 - 5} = \frac{1}{2} - \frac{\sqrt{5}}{10};$$

$$\sum_{n=1}^{\infty} \frac{1}{F_{4n}^2 - 1} = \frac{1}{2} - \frac{\sqrt{5}}{6}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{4n}^2 + 5} = -\frac{1}{18} + \frac{\sqrt{5}}{30};$$

$$\sum_{n=1}^{\infty} \frac{1}{F_{6n}^2 + 4} = -\frac{1}{8} + \frac{\sqrt{5}}{16}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{6n}^2 - 20} = \frac{1}{32} - \frac{\sqrt{5}}{80};$$

$$\sum_{n=1}^{\infty} \frac{1}{F_{8n}^2 - 9} = \frac{1}{18} - \frac{\sqrt{5}}{42}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{8n}^2 + 45} = -\frac{1}{98} + \frac{\sqrt{5}}{210}.$$

The next theorem invokes Lemma 2.2 with  $\lambda = 1$ .

**Theorem 3.2.** Let k and r be positive integers. Then

$$\sum_{n=1}^{\infty} \frac{(-1)^k \mu \nu f_r f_{2k}}{g_{2nk+r}^2 + (-1)^{r+k} \mu \nu f_k^2} = \frac{g_k}{g_{k+r}} - (-\beta)^r.$$
(3.3)

*Proof.* Let  $g_n = f_n$ . With identities (1.1) and (1.2), Lemma 2.2 yields

$$\frac{(-1)^{k+1} f_r f_{2k}}{f_{2nk+r}^2 - (-1)^{r+k} f_k^2} = \frac{f_{(2n+1)k+r} f_{(2n-1)k} - f_{(2n+1)k} f_{(2n-1)k+r}}{f_{(2n+1)k+r} f_{(2n-1)k+r}},$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{k+1} f_r f_{2k}}{f_{2nk+r}^2 - (-1)^{r+k} f_k^2} = \sum_{n=1}^{\infty} \left[ \frac{f_{(2n-1)k}}{f_{(2n-1)k+r}} - \frac{f_{(2n+1)k}}{f_{(2n+1)k+r}} \right]$$

$$= \frac{f_k}{f_{k+r}} - (-\beta)^r.$$

On the other hand, suppose  $g_n = l_n$ . Using the two above identities and Lemma 2.2, we get

$$\begin{split} \frac{(-1)^k \Delta^2 f_r f_{2k}}{l_{2nk+r}^2 + (-1)^{r+k} \Delta^2 f_k^2} &= \frac{l_{(2n+1)k+r} l_{(2n-1)k} - l_{(2n+1)k} l_{(2n-1)k+r}}{l_{(2n+1)k+r} l_{(2n-1)k+r}}, \\ \sum_{n=1}^{\infty} \frac{(-1)^k \Delta^2 f_r f_{2k}}{l_{2nk+r}^2 + (-1)^{r+k} \Delta^2 f_k^2} &= \sum_{n=1}^{\infty} \left[ \frac{l_{(2n-1)k}}{l_{(2n-1)k+r}} - \frac{l_{(2n+1)k}}{l_{(2n+1)k+r}} \right] \\ &= \frac{l_k}{l_{k+r}} - (-\beta)^r. \end{split}$$

Combining the two cases, we get equation (3.3), as desired.

In particular, we have the following results. With r = 1, we get [3, 5]:

FEBRUARY 2024 31

## THE FIBONACCI QUARTERLY

$$\sum_{n=1}^{\infty} \frac{1}{F_{2n+1}^2 - 1} = \frac{3}{2} - \frac{\sqrt{5}}{2}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{2n+1}^2 + 5} = -\frac{1}{6} + \frac{\sqrt{5}}{10};$$

$$\sum_{n=1}^{\infty} \frac{1}{F_{4n+1}^2 + 1} = -\frac{1}{3} + \frac{\sqrt{5}}{6}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{4n+1}^2 - 5} = \frac{1}{12} - \frac{\sqrt{5}}{30};$$

$$\sum_{n=1}^{\infty} \frac{1}{F_{6n+1}^2 - 4} = \frac{7}{48} - \frac{\sqrt{5}}{16}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{6n+1}^2 + 20} = -\frac{3}{112} + \frac{\sqrt{5}}{80};$$

when r = 2, the theorem yields [3, 5]:

$$\sum_{n=1}^{\infty} \frac{1}{F_{2n+2}^2 + 1} = -1 + \frac{\sqrt{5}}{2}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{2n+2}^2 - 5} = \frac{1}{4} - \frac{\sqrt{5}}{10};$$

$$\sum_{n=1}^{\infty} \frac{1}{F_{4n+2}^2 - 1} = \frac{7}{18} - \frac{\sqrt{5}}{6}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{4n+2}^2 + 5} = -\frac{1}{14} + \frac{\sqrt{5}}{30};$$

$$\sum_{n=1}^{\infty} \frac{1}{F_{6n+2}^2 + 4} = -\frac{11}{80} + \frac{\sqrt{5}}{16}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{6n+2}^2 - 20} = \frac{5}{176} - \frac{\sqrt{5}}{80};$$

and when r = 3, we get [3]:

$$\sum_{n=1}^{\infty} \frac{1}{F_{2n+3}^2 - 1} = \frac{5}{12} - \frac{\sqrt{5}}{4}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{2n+3}^2 + 5} = -\frac{3}{14} + \frac{\sqrt{5}}{10};$$

$$\sum_{n=1}^{\infty} \frac{1}{F_{4n+3}^2 + 1} = -\frac{11}{30} + \frac{\sqrt{5}}{6}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{4n+3}^2 - 5} = \frac{5}{66} - \frac{\sqrt{5}}{30};$$

$$\sum_{n=1}^{\infty} \frac{1}{F_{6n+3}^2 - 4} = \frac{9}{64} - \frac{\sqrt{5}}{16}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{6n+3}^2 + 20} = -\frac{1}{36} + \frac{\sqrt{5}}{80}.$$

3.1. **Gibonacci Delights.** Using some of the above results, we can compute additional sums [3, 5]:

$$\sum_{n=2}^{\infty} \frac{1}{F_{2n+1}^2 + 1} = \sum_{n=1}^{\infty} \frac{1}{F_{4n+1}^2 + 1} + \sum_{n=1}^{\infty} \frac{1}{F_{4n+3}^2 + 1}$$

$$= -\frac{7}{10} + \frac{\sqrt{5}}{3};$$

$$\sum_{n=2}^{\infty} \frac{1}{F_{2n}^2 - 1} = \sum_{n=1}^{\infty} \frac{1}{F_{4n}^2 - 1} + \sum_{n=1}^{\infty} \frac{1}{F_{4n+2}^2 - 1}$$

$$= \frac{8}{9} - \frac{\sqrt{5}}{3};$$

$$\sum_{n=2}^{\infty} \frac{1}{L_{2n+1}^2 - 5} = \sum_{n=1}^{\infty} \frac{1}{L_{4n+1}^2 - 5} + \sum_{n=1}^{\infty} \frac{1}{L_{4n+3}^2 - 5}$$

$$= \frac{7}{44} - \frac{\sqrt{5}}{15};$$

$$\sum_{n=2}^{\infty} \frac{1}{L_{2n}^2 + 5} = \sum_{n=1}^{\infty} \frac{1}{L_{4n}^2 + 5} + \sum_{n=1}^{\infty} \frac{1}{L_{4n+2}^2 + 5}$$

$$= -\frac{8}{63} + \frac{\sqrt{5}}{15}.$$

# MORE SUMS INVOLVING GIBONACCI POLYNOMIAL SQUARES REVISITED

#### 4. Acknowledgment

The author is grateful to the reviewer for a careful reading of the article, and for the encouraging words and constructive suggestions.

### References

- [1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407–420.
- [2] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, New Jersey, 2019.
- [3] T. Koshy, Sums involving two classes of gibonacci polynomials, The Fibonacci Quarterly, **61.4** (2023), 312–320.
- [4] T. Koshy, Additional sums involving gibonacci polynomials, The Fibonacci Quarterly, 61.1 (2023), 12–20.
- [5] T. Koshy, More sums involving gibonacci polynomial squares, The Fibonacci Quarterly, **61.4** (2023), 346–356

MSC2020: Primary 11B37, 11B39, 11C08.

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701 Email address: tkoshy@emeriti.framingham.edu

FEBRUARY 2024 33