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ABSTRACT. We explore generalizations of two infinite sums involving a special class of
gibonacci polynomial squares, and their implications.

1. INTRODUCTION

Extended gibonacci polynomials z,(x) are defined by the recurrence z,12(z) = a(z)zp4+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), zo(x), and z1(z) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = x and b(z) = 1. When zo(x) = 0 and zi(x) = 1, z,(z) = fu(x), the
nth Fibonacci polynomial; and when zy(x) = 2 and z1(z) = z, z,(x) = l,(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas. Clearly, f,,(1) = Fj,, the nth
Fibonacci number; and 1,,(1) = Ly, the nth Lucas number [1, 2].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(z). In addition, we let g, = f, or

ln, by = pp OF qn, A = Va2 +4,2a=x+ A, and 28 =z — A.
It follows by the Binet-like formulas that lim —0and lim 2747 — o,

m—00 gm—l—r m—0o0 gm

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following prop-
erties [2, 3, 4, 5]:

(_1)n+k+1fk2;a if gn = fn7
(-1)"RA2 2 otherwise;
O e
~1)"*kA2 £, for., otherwise;

GnikGn—k — G2 = { (1.1)

In+k+r9n—k — n+kGn—k+r = {( (12)

where k and r are positive integers. These properties can be confirmed using the Binet-like
formulas. Identity (1.2) is a gibonacci polynomial extension of d’Ocagne identity [2].

2. TELESCOPING GIBONACCI SUMS
Using recursion, we will now explore two telescoping gibonacci sums.

Lemma 2.1. Let k, r, and A be positive integers. Then

0o [, A A
g(2n—1)k+r g(2n+1)k+r Gy A 91
Z ) S =T 3 (2.1)
n=1 L 9@2n-1k 92n+1)k Ik
Proof. Using recursion [2, 4], we will first confirm that
A A A
| 9on—Dk+r  Int1)ker B gl’g\ﬂ 9@2m+1)k+r 9.9
Z A PP IS WY : (22)
n=1 L Jen—1)k 9(2n+1)k 9k 9 2m+1)k
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Letting A,,, denote the left side of this equation and B,, its right side, we get

A A
9oem—1k+r  I@m+1)k+r

Bm - Bm—l - B - b
9 2m-1)k 92m+1)k

= An—An-1.

Recursively, this implies
Am_Bm = Am—l_Bm—lz"':Al_Bl
0,
confirming the validity of equation (2.2).

Because lim 9747 — o”, equation (2.2) yields the desired result.

m—r0o0 gm
The following result is a byproduct of this lemma.

Lemma 2.2. Let k, r, and A be positive integers. Then

A A
o~ | Jen-nk Itk 9 A
Z A Y Y = (=B8)""
=1 L9en—1)k+r  J2n+1)k+r Iie+r
Proof. It follows by the proof of Lemma 1 that
A A
i [ Jien-vk  9in+1)k ] 9 1
) A S W)
n=1 g(2n71)k+r g(2n+1)k+r Ii+r o
g/\ A
)\k _(_ﬁ)r7
Ik+r

as expected.

3. GIBONACCI SUMS

The above lemmas with A = 1, coupled with identities (1.1) and (1.2), play a pivotal role

in our discourse. In the interest of brevity, we let

{17 1fgn:fn7 {_17 lfgn:f’Vh
wo= and v =

A% otherwise; 1, otherwise.

Theorem 3.1. Let k and r be positive integers. Then

(_1)kﬂyf'rf2k _ Gkr r
2 e f2 —a.
=1 92nk +(=1) W/fk 9k
Proof. Suppose g, = fn. With identities (1.1) and (1.2), Lemma 2.1 then yields

(=D)*f, for _Jenrorfen-vker — fenkrnker fen-1k
fa — (=1)kf2 fentyrfen—1)k ’
2 (=DF S for _ i [f an—Dktr  J@n+Dhtr
= fon — (CDEfE = fen-1k fent)k
fk-H’ r
= —a.
Tk

(3.2)
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Now, let g, = [,. Using the two identities cited above and Lemma 2.1, we get

(=D)AL, fo _ lentnrlen-ker = lenk)kerlen-1k
13, + (—1)FA2f2 lont)kl2n—1)k ’
i ( )k+1A2frf2k io: |: (2n—DLk+r l(2n+1)k+r:|
13+ (—DFA2SR = len-k Lion+1)k
— l T
= lk
By combining this result with equation (3.2), we get the desired result. O
With r = 1, this theorem implies [3, 5]
=1 1 5 =1 1 5
Z 5 = —— 4 i’ Z S R — - — £ ;
n:1F2n+1 2 2 n:1L2n_5 2 10
= 1 1 V5 <1 1 5
S - 3% Yptn - e %
= F; —1 2 6 ot Ly, +5 18 30
=1 1 5 > 1 1 5
S _ ,,+£, S _ 77£,
ot Fg, +4 8 16 = L, — 20 32 80
> 1 1 V5 > 1 1 V5
S - % Ymim - et
— Fg, -9 18 42 — L, +45 98 = 210
The next theorem invokes Lemma 2.2 with A = 1.
Theorem 3.2. Let k and r be positive integers. Then
- (—1)F pv fr for Ok ,
2 “yrtk 2 —(=8)". (3.3)
n=1 g?nk—i-r + ( ) /U/fk; Gk+r
Proof. Let g, = f,. With identities (1.1) and (1.2), Lemma 2.2 yields
(_1)k+1frf2k _ f(2n+1)k+7'f(2n—1)k - f(2n+1)kf(2n—1)k+’r
Fonir — (C1)THR R Jentvkrrfen—1)ktr ’
o0 (1L, for _ i [ fen—1k _ fent)k
n—1 f22nk:+r - (_1)T+kf]? n—1 f(2n—1)k+r f(2n+1)k+r
Jr ;
" S A"
On the other hand, suppose g, = [,,. Using the two above identities and Lemma 2.2, we get
(—D*A2f, fon _ lenikrlen-k — lentklen- ke
l%nk+r ( 1)T+kA2f]3 l(2n+1)kz+rl(2n—1)k+r ’
G (—1)*A2f, for _ i [ lon-k  lentik
1Sy (SL)TRAZ SR = llen-1ksr  lent1)kr
Ik ,
k+r
Combining the two cases, we get equation (3.3), as desired. [l

In particular, we have the following results.
With r = 1, we get [3, 5]:
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o0 ) B V3
- 1 1 V5
3,5 12 30
= 1 3 V5
—~ L2, +20 112 80
G 1 1 V5
= 13,.,-5 4 10’
- 1 1 B
STnts AW
- 1 5 Vb

—~L2,,-20 176 80
- 1 3 Vb
rarl CAPE BVRITR
- 1 5 b

? 25 T w6 w0
- 1 1 V5
— L5 +20 36 80

3.1. Gibonacci Delights. Using some of the above results, we can compute additional sums

L _ 3 W5
= Fy -1 2 27
- 1 B 1+\/5.
1 37 6
=, 1 7 Vb
- = -2
Pl 18~ 16
when r = 2, the theorem yields [3, 5]:
o
1 )
= —1+£;
— Fopp 1 2
L TV
= Ff, -1 18 67
- 1 B 11+\/5.
LRt 80 " 16
and when r = 3, we get [3]:
L _ 5 VB
n:1F22n+3—1 12 47
ISt SR
— F25 1 30 6
- 1 9 5
— Fg 54 64 16’
3, 5:
o 1 B
=, +1
S
n:2F22n_1
o0 1 -
n:2L3n+1_5
> -
n:2L3n+5
32

> 1 > 1
> +
PR+l = FZ g+1
7 V5

10 3’

o0 o0

1 1
+

8 V5

9 3’
= Ly =0 Linis =5
TV,

44 15’

o o

1 1
_l’_

;Lin+5 ;Lin+2+5
8 5

8 V5

63 15

VOLUME 62, NUMBER 1



MORE SUMS INVOLVING GIBONACCI POLYNOMIAL SQUARES REVISITED

4. ACKNOWLEDGMENT

The author is grateful to the reviewer for a careful reading of the article, and for the
encouraging words and constructive suggestions.

REFERENCES

[1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407-420.

[2] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, New Jersey, 2019.

[3] T. Koshy, Sums involving two classes of gibonacci polynomials, The Fibonacci Quarterly, 61.4 (2023),
312-320.

[4] T. Koshy, Additional sums involving gibonacci polynomials, The Fibonacci Quarterly, 61.1 (2023), 12-20.

[5] T. Koshy, More sums involving gibonacci polynomial squares, The Fibonacci Quarterly, 61.4 (2023), 346—
356.

MSC2020: Primary 11B37, 11B39, 11C08.

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701
Email address: tkoshy@emeriti.framingham.edu

FEBRUARY 2024 33



