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Abstract. We explore the Jacobsthal version of an infinite sum involving gibonacci polyno-
mial squares.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 4].

On the other hand, let a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) =
Jn(x), the nth Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the
nth Jacobsthal-Lucas polynomial. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth
Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn; and jn(1) = Ln

[2, 4].
Gibonacci and Jacobsthal polynomials are linked by the relationships

Jn(x) = x(n−1)/2fn(1/
√
x) and jn(x) = xn/2ln(1/

√
x) [3, 4, 5].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or

ln, cn = Jn or jn, ∆ =
√
x2 + 4, 2α = x+∆, D =

√
4x+ 1, and 2w = 1 +D.

2. Gibonacci Polynomial Sum

Before presenting an interesting gibonacci sum, again in the interest of brevity and
expediency, we let

µ =

{
1, if gn = fn,

∆2, otherwise;
ν∗ =

{
1, if gn = fn,

−1, otherwise;
and D∗ =

{
1, if cn = Jn,

D2, otherwise.

Using these tools, we established the following result in [6].

Theorem 2.1. Let k, r, and t be positive integers, where t ≤ 6. Then

∞∑
n=1

(−1)tkµν∗frf6k
g2(6n+t−3)k − (−1)tkµν∗f2

3k

=
gtk+r

gtk
− αr. (2.1)

Our objective is to explore the Jacobsthal counterpart of this sum.
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3. Jacobsthal Polynomial Sum

To achieve our goal, we will employ the gibonacci-Jacobsthal relationships in Section 1. To
this end, in the interest of brevity and clarity, we let A denote the fractional expression on the
left side of the given gibonacci equation and B that on its right side, and the left-hand side
(LHS) and right-hand side (RHS) of the corresponding Jacobsthal equation, as in [5].

Notice that α(1/
√
x) =

1 +D

2
√
x

=
w√
x
.

With this brief background, we begin our exploration.

Proof. Case 1. Suppose gn = fn. We have A =
(−1)tkfrf6k

f2
(6n+t−3)k − (−1)tkf2

3k

. Replacing x with

1/
√
x, and then multiplying the numerator and denominator with x(6n+t)k−2+r/2, we get

A =
(−1)tkx(6n+t−3)k−1

[
x(r−1)/2fr

] [
x(6k−1)/2f6k

]
x3k−1+r/2

{
x[(6n+t−3)k−1]/2f(6n+t−3)k

}2 − (−1)tkx(6n+t−3)k−1+r/2[x(3k−1)/2f3k]2

=
(−1)tkx(6n+t−3)k−1JrJ6k

x3k−1+r/2J2
(6n+t−3)k − (−1)tkx(6n+t−3)k−1+r/2J2

3k

;

LHS =

∞∑
n=1

(−1)tkx(6n+t−6)k−r/2JrJ6k
J2
(6n+t−3)k − (−1)tkx(6n+t−6)kJ2

3k

,

where gn = gn(1/
√
x) and cn = cn(x).

Next, we turn to B =
ftk+r

ftk
− αr. Replace x with 1/

√
x, and then multiply the numerator

and denominator with x(tk+r−1)/2. This yields

B =
x(tk+r−1)/2ftk+r

xr/2[x(tk−1)/2ftk]
− wr

xr/2
;

RHS =
Jtk+r

xr/2Jtk
− wr

xr/2
,

where gn = gn(1/
√
x) and cn = cn(x).

Equating the two sides yields the Jacobsthal version of equation (2.1):

∞∑
n=1

(−1)tkx(6n+t−6)kJrJ6k
J2
(6n+t−3)k − (−1)tkx(6n+t−6)kJ2

3k

=
Jtk+r

Jtk
− wr, (3.1)

where cn = cn(x).
Next, we explore the Jacobsthal-Lucas version of Theorem 2.1.

Case 2. Let gn = ln. Then A =
(−1)tk+1∆2frf6k

l2(6n+t−3)k + (−1)tk∆2f2
3k

. Replacing x with 1/
√
x, and then

multiplying the numerator and denominator with x(6n+t−3)k, we get

A =
(−1)tk+1D2

x frf6k

l2(6n+t−3)k + (−1)tk D2

x f2
3k
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=
(−1)tk+1D2x(6n+t−6)k−r/2

[
x(r−1)/2fr

] [
x(6k−1)/2f6k

][
x[(6n+t−3)k]/2l(6n+t−3)k

]2
+ (−1)tkD2x(6n+t−6)k[x(3k−1)/2f3k]2

;

LHS =
∞∑
n=1

(−1)tk+1D2x(6n+t−6)k−r/2JrJ6k
j2(6n+t−3)k + (−1)tkD2x(6n+t−6)kJ2

3k

,

where gn = gn(1/
√
x) and cn = cn(x).

We now have B =
ltk+r

ltk
− αr. Replace x with 1/

√
x, and then multiply the numerator and

denominator with x(tk+r)/2. This yields

B =
x(tk+r)/2ltk+r

xr/2[xtk/2ltk]
− wr

xr/2
;

RHS =
jtk+r

xr/2jtk
− wr

xr/2
,

where gn = gn(1/
√
x) and cn = cn(x).

Equating the two sides yields the desired Jacobsthal-Lucas version:

∞∑
n=1

(−1)tk+1D2x(6n+t−6)kJrJ6k
j2(6n+t−3)k + (−1)tkD2x(6n+t−6)kJ2

3k

=
jtk+r

jtk
− wr, (3.2)

where cn = cn(x).
Combining equations (3.1) and (3.2), we get the Jacobsthal version of Theorem 2.1, as the

following theorem features. □

Theorem 3.1. Let k, r, and t be positive integers, where t ≤ 6. Then

∞∑
n=1

(−1)tkD∗ν∗x(6n+t−6)kJrJ6k
c2(6n+t−3)k − (−1)tkD∗ν∗x(6n+t−6)kJ2

3k

=
ctk+r

ctk
− wr. (3.3)

Finally, we feature a compact and sophisticated alternate proof of this theorem. It still
employs the gibonacci-Jacobsthal relationships, but in a slightly different way.
3.1. An Alternate Method. To begin with, we let

d =
1 + ν∗

4
=

{
1/2, if gn = fn,

0, otherwise.

We also have

fn(1/
√
x) =

Jn(x)

x(n−1)/2
; ln(1/

√
x) =

jn(x)

xn/2
; gn(1/

√
x) =

cn(x)

xn/2−d
.

With these new tools at our fingertips, we are ready for the alternate proof.
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Proof. Replacing x with 1/
√
x in the rational expression on the left side of equation (2.1) and

using the above substitutions, we get

A =
(−1)tkµν∗Jr/x

(r−1)/2 · J6k/x(6k−1)/2[
c(6n+t−3)k/x

(6n+t−3)k
2

−d
]2

− (−1)tkµν∗
[

J3k
x(3k−1)/2

]2
=

(−1)tkµν∗JrJ6k · x(6n+t−3)k−2d− 6k+r−2
2

c2(6n+t−3)k − (−1)tkµν∗J2
3k · x[(6n+t−3)k−2d−(3k−1)

=
(−1)tkµν∗JrJ6k · x(6n+t−6)k− ν∗+r−1

2

c2(6n+t−3)k − (−1)tkµν∗J2
3k · x

(6n+t−6)k+ 1−ν∗
2

;

LHS =
∞∑
n=1

(−1)tkD∗ν∗x(6n+t−6)k−r/2JrJ6k
c2(6n+t−3)k − (−1)tkD∗ν∗x(6n+t−6)kJ2

3k

,

where cn = cn(x).
Turning to the right side of equation (2.1), we have

B =
gtk+r

gtk
− αr

=
ctk+r/x

tk+r
2

−d

ctk/x
tk
2
−d

− wr

xr/2
;

RHS =
ctk+r

xr/2ctk
− wr

xr/2
,

where gn = gn(1/
√
x) and cn = cn(x).

Equating the two sides yields the same Jacobsthal version:

∞∑
n=1

(−1)tkD∗ν∗x(6n+t−6)kJrJ6k
c2(6n+t−3)k − (−1)tkD∗ν∗x(6n+t−6)kJ2

3k

=
ctk+r

ctk
− wr,

as expected, where cn = cn(x). □

Finally, we pursue a few gibonacci and Jacobsthal consequences of Theorem 3.1.

3.2. Gibonacci and Jacobsthal Implications. In particular, with Jn(1) = Fn and
jn(1) = Ln, Theorem 3.1 yields

∞∑
n=1

(−1)tkFrF6k

F 2
(6n+t−3)k − (−1)tkF 2

3k

=
Ftk+r

Ftk
− αr; (3.4)

∞∑
n=1

(−1)tk+15FrF6k

L2
(6n+t−3)k + (−1)tk5F 2

3k

=
Ltk+r

Ltk
− αr; (3.5)

∞∑
n=1

(−1)tk2(6n+t−6)kJrJ6k
J2
(6n+t−3)k − (−1)tk2(6n+t−6)kJ2

3k

=
Jtk+r

Jtk
− 2r; (3.6)

∞∑
n=1

(−1)tk+19 · 2(6n+t−6)kJrJ6k
j2(6n+t−3)k + (−1)tk9 · 2(6n+t−6)kJ2

3k

=
jtk+r

jtk
− 2r. (3.7)

With r = 1 = k and t ≤ 4, they yield
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∞∑
n=1

1

F 2
6n−2 + 4

= − 1

16
+

√
5

16
;

∞∑
n=1

1

L2
6n−2 − 20

=
1

16
−

√
5

80
;

∞∑
n=1

1

F 2
6n−1 − 4

=
3

16
−

√
5

16
;

∞∑
n=1

1

L2
6n−1 + 20

= − 1

48
+

√
5

80
;

∞∑
n=1

1

F 2
6n + 4

= −1
8
+

√
5

16
;

∞∑
n=1

1

L2
6n − 20

=
1

32
−

√
5

80
;

∞∑
n=1

1

F 2
6n+1 − 4

=
7

48
−

√
5

16
;

∞∑
n=1

1

L2
6n+1 + 20

= − 3

112
+

√
5

80
;

∞∑
n=1

26n−5

J2
6n−2 + 9 · 26n−5

=
1

21
;

∞∑
n=1

26n−5

j26n−2 − 81 · 26n−5
=

1

63
;

∞∑
n=1

26n−4

J2
6n−1 − 9 · 26n−4

=
1

21
;

∞∑
n=1

26n−4

j26n−1 + 81 · 26n−4
=

1

315
;

∞∑
n=1

26n−3

J2
6n + 9 · 26n−3

=
1

63
;

∞∑
n=1

26n−3

j26n − 81 · 26n−3
=

1

441
;

∞∑
n=1

26n−2

J2
6n+1 − 9 · 26n−2

=
1

105
;

∞∑
n=1

26n−2

j26n+1 + 81 · 26n−2
=

1

1, 071
.
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