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Abstract. The Zeckendorf decomposition of a positive integer n is the unique set of noncon-
secutive Fibonacci numbers that sum to n. Baird-Smith, et al., defined a game on Fibonacci
decompositions of n, called the Zeckendorf Game. This paper introduces a variant of the
Zeckendorf Game, called the Accelerated Zeckendorf Game, where a player may play as many
moves of the same type as possible on their turn. We prove that a sharp lower bound on
the game length of the Accelerated Zeckendorf Game is k − 1, where k is the index of the
largest term in the Zeckendorf decomposition of n. We conjecture that Player 1 has a winning
strategy if n > 9. We conjecture that the distribution of game lengths tends to a Gaussian
as n goes to infinity, and that the average game length grows sublinearly in n.

1. Introduction

1.1. Previous Work. The Fibonacci numbers are one of the most famous sequences of
integers, and have many fascinating properties. Defining them as F1 = 1, F2 = 2, and
Fi = Fi−1 + Fi−2 for i ≥ 3, Zeckendorf [29] proved that every natural number can be written
uniquely as a sum of nonsubsequent Fibonacci numbers, called the Zeckendorf decomposition.
There is extensive literature on properties and generalizations of Zeckendorf decompositions
[4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 22, 26, 27, 28].

Baird-Smith, et al., [2, 3] created a two-player game on the Fibonacci numbers, called the
Zeckendorf Game. Since then, several variations have been explored [1, 6, 10, 11, 24, 25]. We
describe the rules of the game from [3].

Definition 1.1 (The two-player Zeckendorf Game). Let F1 = 1, F2 = 2, and Fi+1 = Fi+Fi−1

for i ≥ 2. At the beginning of the game, there is an unordered list of n copies of F1. Let k be
the index of the largest Fibonacci number in the Zeckendorf decomposition of n. A game state
is represented by the tuple of integers (ak, ak−1, ak−2, . . . , a1), where aj is the current number
of copies of Fj. Hence, at the beginning of the game, the game state is (0, . . . , 0, 0, n). On each
turn, a player can make one of the following moves.

(1) If the list contains two consecutive Fibonacci numbers, Fi−1, Fi, then a player can
change these to Fi+1. We denote this move by Ci.

(2) If the list has two copies of a Fibonacci number Fi,
(a) if i = 1, a player can change F1, F1 to F2. We denote this move by C1.
(b) if i = 2, a player can change F2, F2 to F1, F3. We denote this move by S2.
(c) if i ≥ 3, a player can change Fi, Fi to Fi−2, Fi+1. We denote this move by Si.

The players alternate moving. The game ends when no more moves can be made. The last
player to move wins.
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Grant DMS2218374. We thank our colleagues from the program for many helpful conversations, and the
referee for valuable feedback on an earlier version of the paper.
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The moves of the game are derived from the Fibonacci recurrence, either combining terms to
make the next in the sequence via a Ci move or splitting terms with multiple copies via an Si

move. We call the Cis combining moves and the Sis splitting moves. The two-player Zeckendorf
Game has been generalized to positive linear recurrences [2, 6]. We define and analyze the
Accelerated Zeckendorf Game using the same Fibonacci recurrence as the Zeckendorf Game,
with slightly modified rules.

1.2. Accelerated Zeckendorf Game. Instead of each player making one combining or split-
ting move on their turn, each player may perform the same move as many times as they wish
as long as it is a valid move. For example, if there were 7 terms on index 5, a player could
perform up to three splitting moves on index 5 on their turn. We describe the game formally
as follows.

Definition 1.2 (The two-player Accelerated Zeckendorf Game). Let F1 = 1, F2 = 2, and
Fi+1 = Fi + Fi−1. At the beginning of the game, there is an unordered list of n copies of
F1. Let k be the index of the largest Fibonacci number in the Zeckendorf decomposition of
n. A game state is represented by the tuple of integers (ak, ak−1, ak−2, . . . , a1), where aj is
the current number of copies of Fj. Hence, at the beginning of the game, the game state is
(0, . . . , 0, 0, n). On each turn, a player can make one of the following moves.

(1) If the list contains at least m copies of both Fi−1 and Fi for some m > 0, then a player
can change m copies of Fi−1 and m copies of Fi to m copies of Fi+1. We denote this
move by m · Ci.

(2) If the list contains at least 2m copies of Fi for some m > 0, then
(a) if i = 1, a player can change 2m copies of F1 to m copies of F2. We denote this

move by m · C1.
(b) if i = 2, a player can change 2m copies of F2 to m copies of F1 and m copies of

F3. We denote this move by m · S2.
(c) if i ≥ 3, a player can change 2m copies of Fi to m copies of Fi−2 and m copies

of Fi+1. We denote this move by m · Si.

The players alternate moving. The game ends when no moves can be made. The player to
make the last move wins.

1.3. Results and Conjectures. Each game of the Accelerated Zeckendorf Game can be
associated to a game of the Zeckendorf Game in which each m · Ci and n · Sj is replaced by
m instances of a Ci move and n instances of an Sj move, respectively. Thus, the Accelerated
Zeckendorf Game terminates after a finite number of moves at the Zeckendorf decomposition
follows immediately because the Zeckendorf Game does [3]. Moreover, the same reasoning
shows that the maximum number of moves in the Accelerated Zeckendorf Game on n is
exactly equal to the maximum number of moves in the Zeckendorf Game on n. In particular,
the upper bound on game length derived in [11] also holds for the Accelerated Zeckendorf
Game. We summarize these facts in the following theorem.

Theorem 1.3. Every game terminates after a finite number of moves at the Zeckendorf de-
composition of n. An upper bound for the number of moves in the Accelerated Zeckendorf

Game on n is
√
5+3
2 n − IZ(n) − 1+

√
5

2 Z(n), where Z(n) denotes the number of terms in the
Zeckendorf decomposition of n, and IZ(n) denotes the sum of the indices of the terms in the
Zeckendorf decomposition of n.

Our first result concerning the Accelerated Zeckendorf Game is the number of moves in the
shortest game on n.
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Theorem 1.4. If k is the index of the greatest Fibonacci number in the Zeckendorf decom-
position of n, then k − 1 is a sharp lower bound on the number of moves in the Accelerated
Zeckendorf Game on n.

Thus, the shortest Accelerated Zeckendorf Game on n is much shorter than the shortest
Zeckendorf Game on n, which takes n− Z(n) moves [3].

Next, we investigate winning strategies. As with the Zeckendorf Game, one of the two
players in the Accelerated Zeckendorf Game must have a winning strategy, i.e., one player must
have a strategy by which they can force their victory. This is because the game terminates in
a finite number of moves and one of the two players must make the last move.

Proposition 1.5. If Player 1 has a winning strategy, Player 1 has only one correct first move.
In other words, there exists only one first move that will maintain Player 1’s winning strategy.

Conjecture 1.6. If n > 9, Player 1 has a winning strategy.

Note that Conjecture 1.6 is in stark contrast with the classical situation, because Player
2 always has a winning strategy in the Zeckendorf Game on n when n > 2 [3]. In Section
2.2, we present a method of proving Conjecture 1.6 by reducing it to the following conjecture.
A losing state refers to a game state in which the current player does not have a winning
strategy, whereas a winning state refers to a game state in which the current player has a
winning strategy.

Conjecture 1.7. If Player 2 has a winning strategy, then all game states of the form
(0, . . . , 0, k, 0, n− 3k) are losing states.

Theorem 1.8. Conjecture 1.7 implies Conjecture 1.6.

Lemma 1.9. Conjecture 1.7 is true for k ∈ {1, 2, 3, 4, 5}.

We are also interested in studying the distribution of game lengths when the Accelerated
Zeckendorf Game is simulated with uniform random moves (see Appendix A).

Conjecture 1.10. As n goes to infinity, the number of moves in a random Accelerated
Zeckendorf Game on n, when all legal moves are equally likely, converges to a Gaussian.

The same conjecture has been made for the Zeckendorf Game (see Conjecture 1.4 in [3]).
However, the next conjecture is different for the Accelerated Zeckendorf Game.

Conjecture 1.11. The average game length grows at a sublinear rate with n.

This is in contrast to the Zeckendorf Game, where the average game length appears to grow
at a linear rate with n (see Conjecture 1.6 in [3]).

2. Proofs

2.1. Strict Lower Bound on Game Length.

Lemma 2.1. If k is the index of the greatest Fibonacci number in the Zeckendorf decomposition
of n, then k− 1 is a lower bound on the number of moves in the Accelerated Zeckendorf Game
on n.

Proof. Let Fk be the greatest Fibonacci number in the Zeckendorf decomposition of n. As
such, we must have an Fk term when the game ends.

An m ·Ci or m · Si move can create Fi+1 terms, but cannot create terms of a higher index.
Thus, we may extend backwards: to get an Fk term, we must have made an m · Ck−1 or
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m ·Sk−1 move; to get an Fk−1 term, we must have made an m ·Ck−2 or m ·Sk−2 move; and so
on. As such, we must make an m ·Ci or m ·Si move for all i < k to get an Fk term. Therefore,
the number of moves in the Accelerated Zeckendorf Game must be at least k − 1. □

In the following lemma, F0 = 1 and F−1 = 0

Lemma 2.2. Let p ≥ 2 and i ≥ 1. Performing the move Fi−1 ·Cp when there are Fi−1 terms
in the index p− 1 and Fi terms in the index p will result in no terms in the index p− 1, Fi−2

terms in the index p, and Fi−1 terms in the index p+ 1.

Proof. Note Fi − Fi−1 = Fi−2. Performing the move Fi−1 · Cp will remove Fi−1 terms from
both index p−1 and p, while adding Fi−1 terms to index p+1. Thus, after applying the move
Fi−1 ·Cp, we are left with the state of 0 terms at index p− 1, Fi−2 terms at index p, and Fi−1

terms at index p+ 1. □

Using these lemmas, we can prove that the lower bound is sharp when n is a Fibonacci
number.

Lemma 2.3. If n = Fk, then k − 1 is a sharp lower bound on the number of moves in the
Accelerated Zeckendorf Game on n.

Proof. It is easy to check the cases k = 1, 2. Assume that k ≥ 3. Starting with Fk ones,
we can perform the move Fk−2 · C1. This removes 2 · Fk−2 ones, and as such leaves us with
Fk − 2 · Fk−2 ones. Because Fi = Fi−1 + Fi−2 for all i, we show that Fk − 2 · Fk−2 = Fk−3.

Fk − 2 · Fk−2 = Fk−1 + Fk−2 − Fk−2 − Fk−2 = Fk−3. (2.1)

From this position, where we have Fk−3 ones and Fk−2 twos, we could repeatedly perform
the moves outlined in Lemma 2.2 until we run out of terms to combine, which results in the
moves Fk−3 ·C2, Fk−4 ·C3, . . . , F1 ·Ck−2, F0 ·Ck−1. This series of k − 2 moves gives us 1 term
in index k, which is the Zeckendorf decomposition of Fk. Thus, doing these moves after the
initial Fk−2 · C1 move results in a game of length k − 1. From Lemma 2.1, we know that the
game cannot be shorter, so this lower bound is sharp. □

We have now shown that the lower bound k − 1 is sharp when n is a Fibonacci number.
From here, we can prove Theorem 1.4.

Proof of Theorem 1.4. Let n = Fk1 + Fk2 + · · · + Fkm where each Fj is a Fibonacci number
in the Zeckendorf decomposition of n, and Fk1 > Fk2 > · · · > Fkm . Taking each term in
the Zeckendorf decomposition, we know from Lemma 2.3 that it will take k1 − 1 moves to
terminate the game with Fk1 ones, k2 − 1 moves to terminate the game with Fk2 ones, and so
on. If we do this individually for each term in the Zeckendorf decomposition of n, we get the
sequence of moves

((Fki−j−1 · Cj)
ki−1
j=1 )mi=1. (2.2)

This gives us (k1 + k2 + · · ·+ km)−m moves. However, we may group all combining moves of
the same index together as follows:((

m∑
i=1

Fki−j−1

)
· Cj

)k1−1

j=1

, (2.3)

where we interpret Fl = 0 when l < 0 and F0 = 1. This results in a game of k1 − 1 moves. □

An example of the shortest game for n = 46 can be found in Appendix B.1.
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2.2. Results and Conjectures on Winning Strategies. Recall that a losing state refers to
a game state in which the current player does not have a winning strategy, whereas a winning
state refers to a game state in which the current player has a winning strategy. Here are some
rules for reasoning with winning and losing states.

(1) The final game state is a losing state.
(2) All moves that come from a losing state lead to winning states, as if a player does not

have a winning strategy, their opponent must have a winning strategy.
(3) All moves that lead to a losing state come from winning states, as if a player can place

their opponent into a state where their opponent has no winning strategies, then the
player has a winning strategy, namely making that move.

(4) A winning state must have at least one move that leads to a losing state.

Proof of Proposition 1.5. Assume Player 1 has a winning strategy. This means that they must
have at least one correct first move. These correct moves will bring Player 2 to a losing state.

Assume for a contradiction that there are at least two correct first moves for Player 1.
Because all of the moves that Player 1 can make initially are of the form m · C1, suppose
without loss of generality that two of these correct moves are m1 · C1 and m2 · C1, where
m1 > m2. However, if Player 1 initially made the move m2 · C1, Player 2 can make the move
(m1 − m2) · C1. This would bring Player 1 to a losing state, because m2 · C1 followed by
(m1 −m2) ·C1 brings about the same state as m1 ·C1. Thus, the initial move m2 ·C1 was not
a correct move, a contradiction. □

To determine which player has a winning strategy for specific values of n, we created a
program (see Appendix A). We tested all games up to n = 140, and found that for all n > 9,
Player 1 had a winning strategy. This supports Conjecture 1.6.

Following the rules for winning and losing states, we can represent them, and the moves
between them, using a graph. We will construct these graphs in the following manner.

(1) Each node represents a game state.
(2) Valid moves are represented by arrows pointing from one node to another.
(3) Winning states are colored green.
(4) Losing states are colored yellow.

See Appendix B.2 for an example graph when n = 8.

Lemma 2.4. Let k be an odd positive integer, and let n ≥ 2k. Assume all game states of the
form (0, . . . , 0, i, 0, n−3i) with i < k are losing states. Then, n ≥ 3k and (0, . . . , 0, k, 0, n−3k)
is the only losing state reachable from (0, . . . , 0, k, n− 2k) by a single accelerated move.

Proof. See Figure 1 for a graph of the proof. By assumption, (0, . . . , 0, n) is a losing state.
Thus, (0, . . . , k, n−2k) is a winning state because it is reachable from (0, . . . , 0, n) by the move
k ·C1. Therefore, there must be at least one move from this game state that leads to a losing
state. The only valid moves that can be made from this game state are of the form m1 · C1,
m2 · S2, or m3 · C2, that all lead to game states of the form (0, . . . , 0, a, b, n− 3a− 2b), where
a ≤ k and (3a+2b) ≤ n. When a < k and b > 0, the move b ·C1 leads to this game state from
(0, . . . , a, 0, n−3a). Because this is a losing state by our assumption, (0, . . . , 0, a, b, n−3a−2b)
is a winning state when a < k and b > 0. Because k is odd, the only move that leads to a
game state where a = k or b = 0 is k · C2, that leads to (0, . . . , 0, k, 0, n − 3k). (We cannot
make the move k

2 · S2 because k is odd.) Thus, n ≥ 3k and (0, . . . , 0, k, 0, n − 3k) is the only
losing state reachable from (0, . . . , 0, k, n− 2k) by a single accelerated move.

□
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Figure 1. Graph for the proof of Lemma 2.4. All game states aside from
(0, . . . , 0, k, 0, n−3k) that the winning state (0, . . . , 0, k, n−2k) connects to are
winning states by the initial assumption, so (0, . . . , 0, k, 0, n− 3k) is forced losing.

Proof of Theorem 1.8. Assume Conjecture 1.7 and assume for contradiction that Conjecture
1.6 is false. As such, there exists an n > 9 such that Player 2 has a winning strategy. Because
n > 9, there exists an odd integer k such that 2k ≤ n < 3k. By Conjecture 1.7, all game states
of the form (0, . . . , 0, i, 0, n− 3i) with i < k are losing states. As such, n ≥ 3k by Lemma 2.4,
a contradiction. □

This proof also correctly predicts Player 1’s winning strategy for n = 2, n = 6, n = 7, and
n = 8, because there exists odd k such that 2k ≤ n < 3k for these n. Furthermore, it does not
predict Player 1’s winning strategy for n = 1, n = 3, n = 4, n = 5, and n = 9, and for these
values of n Player 2 has a winning strategy.

Proof of Lemma 1.9. From the starting assumption that Player 1 does not have a winning
strategy,

(1) (0, . . . , 0, 1, 0, n− 3) is a losing state by Lemma 2.4,
(2) (0, . . . , 0, 2, 0, n− 6) is a losing state by contradiction, see Figure 2,
(3) (0, . . . , 0, 3, 0, n− 9) is a losing state by Lemma 2.4,
(4) (0, . . . , 0, 4, 0, n− 12) is a losing state by contradiction, see Figure 3, and
(5) (0, . . . , 0, 5, 0, n− 15) is a losing state by Lemma 2.4.

□

We have not yet been able to construct a proof showing that (0, . . . , 0, 6, 0, n−18) is a losing
state. If there were a proof that (0, . . . , 0, k, 0, n − 3k) is a losing state for even k, then we
could prove Conjecture 1.7 through strong induction using that proof and Lemma 2.4.

2.3. Conjectures on Average Game Length. In this section, we address the game length
of the Accelerated Zeckendorf Game. We support two conjectures on game length using Java
code (see Appendix A). In support of Conjecture 1.10, we provide a program that runs
simulations of the game with random moves for some fixed n and calculates the frequency of
each game length. The data points in Figure 4 depict the results of the program after 9, 999
simulations for n = 50.
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Figure 2. Proof by contradiction that (0, . . . , 0, 2, 0, n − 6) is a losing state
when Player 1 does not have a winning strategy. If it is assumed to be winning,
(0, . . . , 0, 1, 0, 1, n − 7) would be a winning state from which no moves lead to
losing states, a contradiction.

Figure 3. Proof by contradiction that (0, . . . , 0, 4, 0, n − 12) is a losing state
when Player 1 does not have a winning strategy. If it is assumed to be winning,
(0, . . . , 0, 3, 1, n − 11) would be a winning state from which no moves lead to
losing states, a contradiction.

We have laid the best fitting Gaussian over the data, showing how tight the fit is for this
experiment. Figure 5 shows data from 9, 999 simulations for n = 100, as well as that data
set’s best fitting Gaussian.

In support of Conjecture 1.11, we created a program that runs a specified number of simu-
lations of the Accelerated Zeckendorf Game with random moves and takes the average game
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Figure 4. Graph of the frequency of the number of moves in 9, 999 simulations
of the Accelerated Zeckendorf Game with random move, where each legal move
has a uniform probability for n = 50 with the best fitting Gaussian (mean ≈
25.4, standard deviation ≈ 4.2).
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Figure 5. Graph of the frequency of the number of moves in 9, 999 simulations
of the Accelerated Zeckendorf Game with random moves, where each legal move
has a uniform probability for n = 100 with the best fitting Gaussian (mean ≈
39.6, standard deviation ≈ 5.8).
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length over these simulations for each n in a specified range. We ran the program with 9, 999
simulations and gave the starting and ending parameters of 1 and 99 for n. The results of the
simulation are plotted in Figure 6.
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Figure 6. Graph of the average number of moves in the Accelerated
Zeckendorf Game with random uniform moves with 9,999 simulations with
n varying from 1 to 99.

One interesting observation from Figure 6 is how there seems to be a significant “jump” in
the average game length when n is a Fibonacci number.

From Theorem 1.3, we know that the upper bound on the game grows linearly. Also, The-
orem 1.4 shows that the shortest game for n grows linearly with k, where k is the index of the
largest Fibonacci number less than or equal to n. Because the Fibonacci numbers grow expo-

nentially, as can be seen by Binet’s Formula (Fn = 1√
5
((1+

√
5

2 )n − (1−
√
5

2 )n)), the indices grow

logarithmically with respect to Fibonacci numbers. Thus, the shortest Accelerated Zeckendorf
Game grows logarithmically with respect to n. Because the longest game grows linearly and
the shortest game grows logarithmically, the average game length must grow between a loga-
rithmic and linear rate. The data seen in Figure 6 strongly suggests that the growth rate is
sublinear.

3. Future Work

We have provided substantial evidence in support of Conjecture 1.6, verifying it computa-
tionally for all n > 9 up to n = 140. Yet, it still remains to prove Conjecture 1.6 and we
would like to prove it. A more difficult problem is to find explicit winning strategies for Player
1. Figure 7 shows an explicit winning strategy for Player 1 when n = 8. Is there a general
pattern to these winning strategies?
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Figure 7. A full coloring of the graph of the Accelerated Zeckendorf Game
when n = 8. Player 1’s winning strategies are marked by the colored arrows,
where Player 1’s moves are colored pink and Player 2’s moves are colored blue.

Assuming Conjecture 1.6, we know by Proposition 1.5 that for each n > 9, there is a unique
move Player 1 can make to preserve their winning state. It is m ·C1 for some positive integer
m = m(n) depending on n > 9. Thus, we get a sequence of positive integers m(10), m(11),
m(12), . . .. We believe it is interesting to study this sequence. Can it be determined explicitly?
Does it behave randomly? What is its growth rate?

One can see in Figure 6 that the average length of the Accelerated Zeckendorf Game grows
at a sublinear rate. However, we would like to investigate the precise type of sublinear growth,
such as logarithmic versus nδ for δ < 1. Another avenue for future work is to explore the
relationship between the conjectured “gaussianity” of random Zeckendorf Games and “gaus-
sianity” of Random Accelerated Zeckendorf Games. Can it be shown that one implies the
other?

We only looked at the Accelerated two-player Zeckendorf Game for the standard Fibonacci
sequence. However, this accelerated variation can be adapted to many other versions of the
Zeckendorf Game, such as the Generalized Zeckendorf Game [2], the Fibonacci Quilt Game
[24], and the Multi-player Zeckendorf Game [10].

Appendix A. Code

The programs used to check which player has a winning strategy, simulate random Accel-
erated Zeckendorf Games, and to find the average game length are available at the repository
linked below.

https://github.com/ThomasRascon/Accelerated-Zeckendorf-Game.git

Appendix B. Example Games and Graphs

B.1. Shortest Game for n = 46. 46 = 34+8+3+1 → ((13+3+1) ·C1, (8+2+1) ·C2, (5+
1) · C3, (3 + 1) · C4, 2 · C5, 1 · C6, 1 · C7) → (17 · C1, 11 · C2, 6 · C3, 4 · C4, 2 · C5, 1 · C6, 1 · C7)

B.2. Example Game and Graph for n=8. Figure 7 shows a full coloring of the graph of
all of the game states for the Accelerated Zeckendorf Game when n = 8. One such winning
game for Player 1 is (3 · C1, 1 · C1, 2 · S2, 1 · C1, 1 · S3, 1 · C2, 1 · C4).
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