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Abstract. This paper extends two Catalan identities, originally formulated for the Fibonacci
and Lucas numbers, to polynomial sequences of the second order, which have a Binet formula
similar to that of the Fibonacci and Lucas numbers. These polynomial sequences are classified
as of Fibonacci type and Lucas type. As a result of this generalization, Catalan identities
are obtained for a range of polynomial sequences, such as Pell, Pell-Lucas, Fermat, Fermat-
Lucas, both types of Chebyshev polynomials, Jacobsthal, Jacobsthal-Lucas, and both types
of Morgan-Voyce polynomials.

Furthermore, we use generating functions and the Wilf-Zeilberger algorithm to derive a
general expression for Catalan identities and other combinatorial identities.

1. Introduction

The Binet formula is a fundamental tool in the study of linear recursive sequences, and
the Binet formulas for Fibonacci and Lucas numbers are well known. In this context, a
second-order polynomial sequence is said to be of Fibonacci type (Lucas type) if its Binet
formula has a similar structure to that of Fibonacci (Lucas) numbers. Such sequences are
called generalized Fibonacci polynomials (GFPs). Remember that the Fibonacci and Lucas
polynomials are defined by the following recurrence relations:

F0(x) = 0, F1(x) = 1, Fn(x) = xFn−1(x) + Fn−2(x) for n ≥ 2,

L0(x) = 2, L1(x) = x, Ln(x) = xLn−1(x) + Ln−2(x) for n ≥ 2.

Evaluating these polynomials at x = 1 gives the well-known Fibonacci and Lucas numbers,
respectively. Other familiar examples of GFPs include Pell, Pell-Lucas, Fermat, Fermat-
Lucas, both types of Chebyshev polynomials, Jacobsthal, Jacobsthal-Lucas, and both types
of Morgan-Voyce polynomials (see Table 1).

The classic Catalan identities, given in [8], are expressed as

Fn =
1

2n−1

⌊n−1
2 ⌋∑

i=0

(
n

2i+ 1

)
5i and Ln =

1

2n−1

⌊n
2 ⌋∑

i=0

(
n

2i

)
5i. (1.1)

In this paper, we generalize the Catalan identities to include GFPs. We provide three different
proofs by using combinatorial identities, generating functions, and the combinatorial algorithm
of Zeilberger. In particular, we use the algorithms implemented in the software Mathematica
by the Research Institute for Symbolic Computation (RISC).

Here, we highlight the application of computer algebra in studying such problems.
Additionally, we study the sequences defined by the combinatorial sum

∑
i≥0

(
n

ℓi+s

)
ti. Note

that for ℓ = 2, t = 5, and s = 0, 1, we recover the sums in the Catalan identities. We prove
that the sequence defined by this combinatorial sum satisfies a recurrence relation of order ℓ,
and we provide their generating functions.
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Polynomial Initial value Initial value Recursive Formula
G0(x) = p0(x) G1(x) = p1(x) Gn(x) = d(x)Gn−1(x) + g(x)Gn−2(x)

Fibonacci 0 1 Fn(x) = xFn−1(x) + Fn−2(x)
Lucas 2 x Ln(x) = xLn−1(x) + Ln−2(x)
Pell 0 1 Pn(x) = 2xPn−1(x) + Pn−2(x)
Pell-Lucas 2 2x Qn(x) = 2xQn−1(x) +Qn−2(x)
Pell-Lucas-prime 1 x Q′

n(x) = 2xQ′
n−1(x) +Q′

n−2(x)
Fermat 0 1 Φn(x) = 3xΦn−1(x)− 2Φn−2(x)
Fermat-Lucas 2 3x ϑn(x) = 3xϑn−1(x)− 2ϑn−2(x)
Chebyshev second kind 0 1 Un(x) = 2xUn−1(x)− Un−2(x)
Chebyshev first kind 1 x Tn(x) = 2xTn−1(x)− Tn−2(x)
Jacobsthal 0 1 Jn(x) = Jn−1(x) + 2xJn−2(x)
Jacobsthal-Lucas 2 1 jn(x) = jn−1(x) + 2xjn−2(x)
Morgan-Voyce 0 1 Bn(x) = (x+ 2)Bn−1(x)−Bn−2(x)
Morgan-Voyce 2 x+ 2 Cn(x) = (x+ 2)Cn−1(x)− Cn−2(x)
Vieta 0 1 Vn(x) = xVn−1(x)− Vn−2(x)
Vieta-Lucas 2 x vn(x) = xvn−1(x)− vn−2(x)

Table 1. Recurrence relation of some GFPs.

Finally, we extend Stewart’s integral representation of the Fibonacci numbers [18] to
polynomials by leveraging the Catalan identities. This extension further enriches the
understanding and applications of these polynomial sequences.

By evaluating these polynomial sequences at x = 1, we can derive Catalan identities for
numerical sequences (see Table 2, for examples). For instance, substituting the appropriate
values into the Catalan identities provided here yields the classical Catalan identities for
Fibonacci and Lucas numbers.

Sequence Sequence OEIS Catalan identity

Fibonacci, Fn(1) 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . A000045 (1/2n−1)
∑⌊n−1

2 ⌋
i=0

(
n

2i+1

)
5i

Lucas, Ln(1) 2, 1, 3, 4, 7, 11, 18, 29, . . . A000032 (1/2n−1)
∑⌊n

2 ⌋
i=0

(
n
2i

)
5i

Pell, Pn(1) 0, 1, 2, 5, 12, 29, 70, 169 . . . A000129
∑⌊n−1

2 ⌋
i=0

(
n

2i+1

)
2i

Pell-Lucas-prime, Q′
n(1) 1, 1, 3, 7, 17, 41, 99, 239 . . . A001333

∑⌊n
2 ⌋

i=0

(
n
2i

)
2i

Fermat,Φn(1) 0, 1, 3, 7, 15, 31, 63, 127 . . . A000225 (1/2n−1)
∑⌊n−1

2 ⌋
i=0

(
n

2i+1

)
3n−2i−1

Fermat-Lucas, ϑn(1) 2, 3, 5, 9, 17, 33, 65, 129 . . . A000051 (1/2n−1)
∑⌊n

2 ⌋
i=0

(
n
2i

)
3n−2i

Table 2. Catalan identities for some numerical sequences.

Most of the topics covered in this paper are well-suited for undergraduate students. The
generalization of the Catalan identities to include generalized Fibonacci polynomials and
the proofs using combinatorial identities can be accessible and engaging for undergraduate
students.

These topics provide an opportunity for students to explore various techniques and
approaches in combinatorics, algebra, and computer algebra systems. Additionally, the
application of these concepts to polynomial sequences and the extension of integral
representations offer a deeper understanding of the subject matter.
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Overall, the paper presents a range of topics that can be incorporated into undergraduate
course work or research projects, allowing students to delve into the world of combinatorial
identities and polynomial sequences.

2. Background: The Generalized Fibonacci Polynomials

We now summarize some concepts from [4, 5, 6]. Consider two fixed nonzero polynomials
d(x) and g(x) in Q[x]. For n ≥ 2, we define a second-order polynomial recurrence relation of
Fibonacci-type as

F0(x) = 0, F1(x) = 1, and Fn(x) = d(x)Fn−1(x) + g(x)Fn−2(x) for n ≥ 2. (2.1)

Similarly, a second-order polynomial recurrence relation of Lucas-type satisfies the relation

L0(x) = p0, L1(x) = p1(x), and Ln(x) = d(x)Ln−1(x) + g(x)Ln−2(x) for n ≥ 2, (2.2)

where |p0| = 1 or 2 and p1(x), d(x) = αp1(x), and g(x) are fixed nonzero polynomials in Q[x]
with α an integer of the form 2/p0.

If n ≥ 0 and d2(x)+4g(x) ̸= 0, then the Binet formulas for the recurrence relations in (2.1)
and (2.2) are given by

Fn(x) =
an(x)− bn(x)

a(x)− b(x)
and Ln(x) =

an(x) + bn(x)

α
, (2.3)

respectively. Here, we have

a(x) =
d(x) +

√
d2(x) + 4g(x)

2
and b(x) =

d(x)−
√
d2(x) + 4g(x)

2
. (2.4)

Therefore,

a(x) + b(x) = d(x), a(x)b(x) = −g(x), and a(x)− b(x) =
√

d2(x) + 4g(x). (2.5)

(For details on the construction of the two Binet formulas, see [4].) Table 1 presents some
examples of polynomial sequences of these types.

3. Catalan Identity for Generalized Fibonacci Polynomials

In this section, we aim to prove one of the main objectives of this paper, that both Catalan
identities hold for GFPs of Fibonacci and Lucas type. Theorem 3.3 provides the required
generalization. By evaluating Fn(x) and Ln(x) at, for instance, x = 1, we can naturally apply
this identity to establish the Catalan identity for Fibonacci numbers, Lucas numbers, Pell
numbers, Mersenne numbers, Fermat, and other sequences. However, by evaluating them at
other values, we can derive some identities from the Online Encyclopedia of Integer Sequences
OEIS [15] (see for example, Table 2).

For brevity in the rest of the paper, we present polynomials without the variable “x”.

Lemma 3.1 ([6]). Let Fn and Ln be GFPs of Fibonacci type and Lucas type, respectively.
Then, for n ≥ 1,

(1) Fn =

⌊n−1
2

⌋∑
i=0

(
n− i− 1

i

)
dn−2i−1gi.

(2) Ln =
1

α

⌊n
2
⌋∑

i=0

n

n− i

(
n− i

i

)
dn−2igi.
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Lemma 3.2. Let m, n, and k be positive integers. Then, we have the following identities.

(1) If 0 ≤ m < n, then(
n−m− 1

m

)
= 22m−n+1

⌊(n−1)/2⌋∑
j=m

(
j

m

)(
n

2j + 1

)
.

(2) If 0 ≤ k < ⌊(n− 1)/2⌋, then(
n

2k + 1

)
=

⌊(n−1)/2⌋∑
i=k

(−1)i−k2n−2i−1

(
n− i− 1

i

)(
i

k

)
.

(3) If 0 ≤ k < ⌊n/2⌋, then(
n

2k

)
= n

⌊n/2⌋∑
i=k

(−1)i−k

(n− i)
2n−2i−1

(
n− i

i

)(
i

k

)
.

Proof. We begin by noting that Part 1 of this lemma has already been proved by Webb and
Parberry [19]. We can give a computational proof by means of the Wilf-Zeilberger algorithm
[12]. Let F (n, i) be the expression

F (n, i) :=
22m−n+1

(
j
m

)(
n

2j+1

)(
n−m−1

m

) .

By the Wilf-Zeilberger algorithm, we have that F (n, i) satisfies the relation

F (n+ 1, i)− F (n, i) = G(n, i+ 1)−G(n, i),

with the certificate

R(n, i) =
(1 + 2j)(−j +m)

(−2j + n)(−m+ n)
.

That is, R(n, i) = F (n, i)/G(n, i) is a rational function in both variables. Notice that if
f(n) :=

∑
i≥0 F (n, i), then f(n + 1) − f(n) = 0; that is, the sum is constant, in particular

f(n) = 1. This last equality is equivalent to the desired identity.
Now, we provide the proofs for Parts 2 and 3.
Proof of Part 2. Using equation (2.4), with x = 1 and the first and second lines of Table 1,

we have that α1 := a(1) = (1+
√
5)/2 and β1 := b(1) = (1−

√
5)/2. Using the Catalan identity

given in (1.1) and Lemma 3.1 Part 1 with x = 1, we obtain the identity

1

2n−1

⌊n−1
2

⌋∑
k=0

(
n

2k + 1

)
(α1 − β1)

2k =

⌊n−1
2

⌋∑
i=0

(
n− i− 1

i

)
1

4i
[(α1 − β1)

2 − 1]i.

We can now simplify the expression to become

⌊n−1
2

⌋∑
i=0

(
n− i− 1

i

)
1

4i
[(α1 − β1)

2 − 1]i =

⌊n−1
2

⌋∑
i=0

(
n− i− 1

i

) i∑
k=0

(
i

k

)
(−1)k

4i
(α1 − β1)

2k

=

⌊n−1
2

⌋∑
k=0

⌊n−1
2

⌋∑
i=k

(−1)i−k

4i

(
n− i− 1

i

)(
i

k

)
(α1 − β1)

2k.

The proof follows by comparing coefficients of (α1 − β1).
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Proof of Part 3. Using the Catalan identity given in (1.1) and Lemma 3.1 Part 2 with x = 1,
we obtain the identity

1

2n−1

⌊n
2
⌋∑

k=0

(
n

2k

)
(α1 − β1)

2k =

⌊n
2
⌋∑

i=0

n

4i(n− i)

(
n− i

i

)
((α1 − β1)

2 − 1)i.

The remaining part of the proof follows identically to the proof of Part 2. □

The reader interested in knowing more applications of the computer algebra to prove
combinatorial sums can read the references [1, 7, 11, 12, 13, 16].

The result presented in Theorem 3.3 offers an extension of the well-known Catalan identities
(1.1). Catalan identities have been the subject of numerous generalizations, often relying
on the utilization of the Binet formula. Although an existing proof available in [10] can be
manipulated to align with our proposition and incorporate the Binet formula, we aim to provide
three alternative proofs for our proposition in this paper. Additionally, a combinatorial proof
for this proposition can be obtained by adapting the proof given by Rouse in [14, Theorem
2.10], which can also be found in [2].

Theorem 3.3 (Catalan identities for GFPs). For n ≥ 0, we have the following identities.

(1) Fn =
1

2n−1

⌊n−1
2 ⌋∑

i=0

(
n

2i+ 1

)
dn−2i−1

(
4g + d2

)i
.

(2) Ln =
1

α2n−1

⌊n
2 ⌋∑

i=0

(
n

2i

)
dn−2i

(
4g + d2

)i
.

First proof. We first prove Part 1. Using equation (2.5), we can express g in terms of a, b, and
d. Then, Lemma 3.1 Part 1 implies that

Fn =

⌊n−1
2

⌋∑
i=0

(
n− i− 1

i

)
1

4i
[(a− b)2 − d2]idn−2i−1.

Using the binomial theorem and simplifying, we obtain

Fn =

⌊n−1
2

⌋∑
i=0

(
n− i− 1

i

)
1

4i

i∑
k=0

(−1)k
(
i

k

)
(a− b)2kdn−2k−1.

It can be verified that the right side is equal to

⌊n−1
2

⌋∑
k=0

⌊n−1
2

⌋∑
i=k

(−1)i−k

4i

(
n− i− 1

i

)(
i

k

) (a− b)2kdn−2k−1. (3.1)

The expression within the brackets is Lemma 3.2 Part 2, and (a− b)2 corresponds to d2 + 4g.
Substituting these expressions into (3.1) and simplifying, we obtain the desired result.

The proof of Part 2 is similar, except we use Lemma 3.1 Part 2 and Lemma 3.2 Part 3. □

Second proof. We now present our second alternative proof using generating functions. First,
we focus on proving the identity

2n−1Fn =
n−1∑
i=0

(
n− 1

i

)
dn−2⌊i/2⌋−1(4g + d2)⌊i/2⌋.
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Note that the sequence hn = 2n−1Fn satisfies the recurrence relation hn = 2dhn−1 + 4ghn−2

for n ≥ 2, with initial values h0 = 0 and h1 = 1. Using standard techniques, we can derive the
following expression for the generating function of the sequence hn.

H(z) :=
∑
n≥0

hnz
n =

z

1− 2dz − 4gz2
.

On the other hand, we have

∑
n≥0

n∑
i=0

(
n− 1

i

)
dn−2⌊i/2⌋−1(4g + d2)⌊i/2⌋zn =

∑
i≥0

(4g + d2)⌊i/2⌋
∑
n≥i

dn−2⌊i/2⌋−1

(
n− 1

i

)
zn

=
∑
i≥0

(4g + d2)⌊i/2⌋di−1−2⌊i/2⌋zi
∑
n≥0

(
n− 1 + i

n− 1

)
(dz)n

=
∑
i≥0

(4g/d2 + 1)⌊i/2⌋di−1zi
dz

(1− dz)i+1
.

By considering the even and odd terms in the last sum, we obtain that∑
i≥0

(4g/d2 + 1)i
d2iz2i+1

(1− dz)2i+1
+
∑
i≥0

(4g/d2 + 1)i
d2i+1z2i+2

(1− dz)2i+2

is equal to

z(1− dz)2

(1− dz)(1− 2dz − 4gz2)
+

dz2

1− 2dz − 4gz2
=

z

1− 2dz − 4gz2
= H(z).

By comparing the nth coefficient, we obtain the desired result. □

Third proof. We now present our third alternative proof using Zeilberger’s creative telescoping
method [12]. We denote the right side of the equality, given in the statement of the proposition,
by F (n, i). That is,

F (n, i) :=

(
n

2i+ 1

)
dn−1−2i(4g + d2)i.

By Zeilberger’s algorithm, we have that F (n, i) satisfies the relation

F (n+ 2, i)− 2dF (n+ 1, i)− 4gF (n, i) = G(n, i+ 1)−G(n, i), (3.2)

with the certificate

R(n, i) =
2d2i(1 + 2i)

(−2i+ n)(1− 2i+ n)
.

That is, R(n, i) = F (n, i)/G(n, i) is a rational function in both variables. If pn denotes the
right side in the first Catalan equality, given in the statement of the proposition, then we have
that summing both sides of (3.2) with respect to i yields pn+2 − 2dpn+1 − 4gpn = 0. Because
the sequences hn = 2n−1Fn and pn satisfy the same recurrence relation and have the same
initial conditions, we conclude that these sequences coincide for all positive integers n. This
completes the proof. □
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4. A General Combinatorial Sum

If we take the odd and even terms in the binomial sum
∑

i≥0

(
n
i

)
5⌊i/2⌋, we obtain the sums

of the Catalan identities given in (1.1), see Figure 1. This observation serves as the inspiration
for our investigation in this section, where we explore this pattern in the context of a general
combinatorial sum. To establish the validity of various combinatorial sums, we employ the
Wilf-Zeilberger algorithm.

∑

i≥0

(

n

2i+ 1

)

5
i
= 2

n−1
Fn

∑

i≥0

(

n

2i

)

5
i
= 2

n−1
Ln

∑

i≥0

(

n

i

)

5
⌊i/2⌋

= 2
n
Fn+1

Even terms Odd terms

Figure 1. Catalan identities.

For a fixed positive integer ℓ and a parameter t, we define combinatorial sequences for all
n ≥ 0 as

Tℓ(n; t) :=
∑
i≥0

(
n

i

)
t⌊i/ℓ⌋ (4.1)

and

Tℓ,s(n; t) :=
∑
i≥0

(
n

ℓi+ s

)
ti. (4.2)

From the definitions, it is clear that Tℓ(n; t) =
∑ℓ−1

s=0 Tℓ,s(n; t). Note that T2,0(n; 5) = 2n−1Ln,
T2,1(n; 5) = 2n−1Fn, and T2(n; 5) = 2nFn+1.

The main result in this section is the generating function of the sequence Tℓ := (Tℓ(n; t))n.
For that, we need some previous results.

Lemma 4.1. For all 1 ≤ ℓ ≤ n, ⌊(1− s)/ℓ⌋ ≤ j ≤ ⌊(n− s)/ℓ⌋, and s ≥ 0, we have∑
i≥0

(
ℓ

i

)
(−1)i

(
n− i

ℓj + s

)
=

(
n− ℓ

ℓ(j − 1) + s

)
.

Proof. We use the Wilf-Zeilberger algorithm [12]. Let F (n, i) be the expression

F (n, i) :=

(
ℓ
i

)
(−1)ℓ

(
n−i
ℓj+s

)(
n−ℓ

ℓ(j−1)+s

) .

By the Wilf-Zeilberger algorithm, we have that F (n, i) satisfies the relation

F (n+ 1, i)− F (n, i) = G(n, i+ 1)−G(n, i),

with the certificate

R(n, i) =
i(1− i+ n)

(1− ℓ+ n)(−1 + i+ ℓj − n+ s)
.

106 VOLUME 62, NUMBER 2



CATALAN IDENTITIES FOR GENERALIZED FIBONACCI POLYNOMIALS

It is worth noting that if we define f(n) :=
∑

i≥0 F (n, i), then we observe that f(n+ 1)−
f(n) = 0, indicating that the sum is constant. In particular, we have f(n) = 1. This equality
is equivalent to the desired identity. □

The combinatorial sum given in Lemma 4.1 is equivalent to(
n

ℓj + s

)
=
∑
i≥1

(
ℓ

i

)
(−1)i−1

(
n− i

ℓj + s

)
+

(
n− ℓ

ℓ(j − 1) + s

)
. (4.3)

Multiplying (4.3) by tj and summing over all j ≥ 0, we obtain, for all 1 ≤ ℓ ≤ n and
0 ≤ s ≤ ℓ− 1, the identity∑

i≥0

(
n

ℓi+ s

)
ti =

∑
i≥1

(
ℓ

i

)
(−1)i−1

∑
j≥0

(
n− i

ℓj + s

)
tj + t

∑
j≥0

(
n− ℓ

ℓj + s

)
tj . (4.4)

By using the notation introduced in (4.2), identity (4.3) can be written as

Tℓ,s(n; t) =

ℓ∑
i=1

(
ℓ

i

)
(−1)i−1Tℓ,s(n− i; t) + tTℓ,s(n− ℓ; t). (4.5)

It says that the sequence Tℓ = (Tℓ(n; t))n satisfies a recurrence relation of order ℓ. From this
recurrence relation and using the notation introduced in (4.1), we have the following theorem.

Theorem 4.2. For all n ≥ 0 and ℓ ≥ 1, we have

ℓ∑
i=0

(
ℓ

i

)
(−1)iTℓ(n+ ℓ− i; t)− tTℓ(n; t) = 0.

The characteristic polynomial associated with the recurrence relation of the sequence Tℓ is
given by

cℓ(x) =
ℓ∑

i=0

(
ℓ

i

)
(−1)ixℓ−i − t = (x− 1)ℓ − t.

From similar arguments, we can prove the following identity.

Lemma 4.3. For all n ≥ 0, we have

n∑
i=0

(
ℓ

i

)
(−1)i

n−i∑
j=0

(
n− i

j

)
=

n∑
i=0

(−1)i
(
i+ ℓ− n− 1

i

)
.

Theorem 4.4. The generating function of the sequence Tℓ(n; t) is the rational function

Tℓ,t(x) :=
∑
n≥0

Tℓ(n; t)x
n =

∑ℓ−1
k=0

∑k
i=0(−1)i

(
i+ℓ−k−1

i

)
xk

(1− x)ℓ − txℓ
.

Proof. It is evident that the generating function must be rational because the sequence Tℓ obeys
a linear recurrence relation with constant coefficients. It is known that the denominator of
the rational generating function is determined by the reflected polynomial of the characteristic
polynomial (as described by Stanley in [17]). In this particular case, the polynomial is given
by xℓcℓ(1/x) = xℓ

(
( 1x − 1)ℓ − t

)
= (1− x)ℓ − txℓ. Moreover, the sequence Tℓ is of order ℓ; the

numerator of its generating function is a polynomial pℓ(x) of degree < ℓ. This polynomial can
be calculated as

pℓ(x) =

(
ℓ−1∑
n=0

Tℓ(n; t)x
n

)(
(1− x)ℓ − (−1)ℓxℓ

)
.
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From Lemma 4.3, we conclude that

pℓ(x) =
ℓ−1∑
k=0

k∑
i=0

(−1)i
(
i+ ℓ− k − 1

i

)
xk.

This completes the proof. □

For example, for ℓ = 1, 2, 3, 4 we have the rational generating functions

T1,t(x) =
1

1− (1 + t)x
, T2,t(x) =

1

1− 2x+ (1− t)x2
,

T3,t(x) =
1− x+ x2

1− 3x+ 3x2 − (1 + t)x3
, T4,t(x) =

1− 2x+ 2x2

1− 4x+ 6x2 − 4x3 + (1− t)x4
.

Let p(n,m) =
∑n

i=0(−1)i
(
i+n−m−1

i

)
, that is the sequence p(n,m) corresponds to the coefficients

of the polynomial pn(x). The array (p(n,m))n,m≥0 coincides with the sequence A220074 and
the first few rows are 

1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 −1 1 0 0 0 0
1 −2 2 0 0 0 0
1 −3 4 −2 1 0 0
1 −4 7 −6 3 0 0
1 −5 11 −13 9 −3 1
1 −6 16 −24 22 −12 4


.

This matrix was studied as the alternating Jacobsthal triangle by Lee and Oh in [9].
From a similar argument as in Theorem 4.4, we obtain Theorem 4.5.

Theorem 4.5. The generating function of the sequence Tℓ,s(n; t) is the rational function

Tℓ,s,t(x) :=
∑
n≥0

Tℓ,s(n; t)x
n =

∑ℓ−1
k=0

∑k
i=0(−1)i

(
ℓ
i

)∑k
r=0

(
k−i
rℓ+s

)
ttxk

(1− x)ℓ − txℓ
.

For example, consider the case of ℓ = 3, which corresponds to the combinatorial sum
T3(n; t) =

∑
i≥0

(
n
i

)
t⌊i/3⌋. By applying Theorems 4.4 and 4.5, we can derive the generating

functions

(T3,t(x), T3,0,t(x), T3,1,t(x), T3,2,t(x)) =

(
1− x+ x2

1− 3x+ 3x2 − (1 + t)x3
,

1− 2x+ x2

1− 3x+ 3x2 − x3 − tx3
,

x− x2

1− 3x+ 3x2 − x3 − tx3
,

x2

1− 3x+ 3x2 − x3 − tx3

)
.

In Table 3, we give the first few values of the sequences T3,s(n, 2) and T3,s(n, 3) for s = 0, 1, 2.
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t Sequences (T3(n, t), T3,0(n, t), T3,1(n, t), T3,2(n, t)) , n ≥ 0 OEIS

1, 2, 4, 9, 21, 48, 108, 243, 549, 1242, 2808 A137256
2 1, 1, 1, 3, 9, 21, 45, 99, 225, 513, 1161 A052101

0, 1, 2, 3, 6, 15, 36, 81, 180, 405, 918 A052102
0, 0, 1, 3, 6, 12, 27, 63, 144, 324, 729 A052103

1, 2, 4, 9, 21, 48, 108, 243, 549, 1242, 2808
3 1, 1, 1, 4, 13, 31, 70, 169, 421, 1036, 2521 A097122

0, 1, 2, 3, 7, 20, 51, 121, 290, 711, 1747
0, 0, 1, 3, 6, 13, 33, 84, 205, 495, 1206

Table 3. Some values of T3,s(n, 2) and T3,s(n, 3).

5. Integral Representation of Generalized Fibonacci Polynomials

The function A(x, y) := (d + y
√

d2 + 4g)/2 can be seen as a generalization of the golden

ratio (1+
√
5)/2. In particular, when we set y = 1, we have A(x, 1) = (d+

√
d2 + 4g)/2 = a(x)

as defined in (2.4). Therefore, when we choose g = d = 1, we recover the golden ratio.
In this section, we integrate A(x, y)n−1 to obtain a representation for the GFPs. Moreover,

Theorem 3.3 can be used to extend the proof of Corollary 5.1, which was presented in [18] for
Fibonacci numbers, and consequently derive a second proof of Proposition 5.1.

Proposition 5.1. If n ≥ 2, then

Fn =
n

2n

∫ 1

−1

(
d+ y

√
d2 + 4g

)n−1
dy.

Proof from Catalan identity. By the binomial theorem and the Catalan identity, we have

n

2

∫ 1

−1
(d+ y

√
d2 + 4g)n−1dy =

n

2

∫ 1

−1

n−1∑
i=0

(
n− 1

i

)
dn−1−iyi

(√
d2 + 4g

)i
dy

=
n

2n

n−1∑
i=0

(
n− 1

i

)
dn−1−i

(√
d2 + 4g

)i ∫ 1

−1
yidy

=
n

2

⌊n−1
2

⌋∑
i=0

(
n− 1

2i

)
dn−1−2i

(√
d2 + 4g

)2i 2

2i+ 1

=

⌊n−1
2

⌋∑
i=0

(
n

2i+ 1

)
dn−1−2i(d2 + 4g)i = 2n−1Fn. □

Second proof. We can start by noting that if

s(x, y) :=

(
y
(
a− b

)
+ d
)n

a− b
,

then, taking the partial derivative of s(x, y) with respect to y, we have

∂s(x, y)

∂y
= n(y

√
d2 + 4g + d)n−1.
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From the Fundamental Theorem of Calculus, we have that the integral in the statement of the
proposition is equal to (

(1)
(
a− b

)
+ d
)n

a− b
−

(
(−1)

(
a− b

)
+ d
)n

a− b
.

Simplifying this expression using equations (2.5), we obtain equation (2.3). This completes
the proof. □

Corollary 5.1 ([18]). If Fn is the nth Fibonacci number, then

Fn =
n

2n

∫ 1

−1
(1 + y

√
5)n−1dy.

It is worth noting that as a corollary of Proposition 5.1, using [5, Identity 2], it is possible
to obtain an integral expression for Ln.

It should be noted that the second proof presented in Proposition 5.1 can be adapted to
derive a more general result. By changing the limits of integration, we can obtain an integral
representation for a binomial expression involving Fibonacci numbers. (See other integral
expressions in [3].)

Proposition 5.2. If k ≥ 2, then
n∑

i=0

(−1)n+1

(
n

i

)
(k + 1)i(k − 1)n−igiFn−2i = n

∫ k

−k

(
y
√
d2 + 4g + d

)n−1
dy.

Corollary 5.2. If Fn is the nth Fibonacci number and k ≥ 2, then
n∑

i=0

(−1)n+1

(
n

i

)
(k + 1)i(k − 1)n−iFn−2i = n

∫ k

−k

(√
5y + 1

)n−1
dy.
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