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Abstract. For b ≤ −2, let S2,b : Z → Z≥0 be the function taking an integer to the sum of
the squares of the digits of its base b expansion. An integer a is a b-happy number if there
exists k ∈ Z+ such that Sk

2,b(a) = 1. It has been shown that for b ≤ −5 and odd, there exist
arbitrarily long finite arithmetic sequences with constant difference 2 of b-happy numbers
and that for b ∈ {−4,−6,−8,−10}, there exist arbitrarily long finite sequences of consecutive
b-happy numbers. In this work, we complete this result, proving that, as conjectured, for all
even b ≤ −4, there exist arbitrarily long finite sequences of consecutive b-happy numbers.

1. Introduction

In 1994, Richard Guy [5] asked for the maximal length of sequences of consecutive happy
numbers, if such a maximum exists. In 2000, El-Sedy and Siksek [1] proved that there exist
arbitrarily long finite sequences of happy numbers. In 2007, Grundman and Teeple [4] extended
this result to b-happy numbers for all bases b ≥ 2, with the observation that for odd bases, only
2-consecutive sequences (arithmetic sequences with constant difference 2) are possible. In 2008,
Pan [6] proved the existence of arbitrarily long finite seequences of e-power b-happy number
for all bases b ≥ 2 and exponents e ≥ 2 for which any consecutive e-power b-happy numbers
exist. And in 2009, Zhou and Cai [7] generalized Pan’s work to the remaining cases, proving
the existence of d-consecutive sequences of arbitrary length, where d is the best possible.
Negative base happy numbers with exponent 2 were first considered in 2018 by Grundman
and Harris [2], who proved the following theorem and conjectured that the third part should
generalize to all bases b ≤ −4.

Theorem 1.1 (Grundman & Harris). Let b ≤ −2.
(1) There exist infinitely long sequences of 3-consecutive −2-happy numbers. In particular,

a ∈ Z is −2-happy if and only if a ≡ 1 (mod 3).
(2) There exist infinitely long sequences of 2-consecutive −3-happy numbers. In particular,

a ∈ Z is −3-happy if and only if a ≡ 1 (mod 2).
(3) For b ∈ {−4,−6,−8,−10}, there exist arbitrarily long finite sequences of consecutive

b-happy numbers.
(4) For b odd, there exist arbitrarily long finite sequences of 2-consecutive b-happy numbers.

In this work, we show that the conjecture is correct, proving the following new theorem.

Theorem 1.2. For b ≤ −4 and even, there exist arbitrarily long finite sequences of consecutive
b-happy numbers.

In the following section, we present definitions and initial lemmas. In Section 3, we prove
two key results and then the main theorem, stated above.
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2. Definitions and Preliminary Results

We begin with the definition of b-happy numbers and the corresponding functions for bases
b ≤ −2, as given in [3] and then adapted in [2]. Note that, unlike the case when b is positive,
the domains of the functions include all integers.

Let b ≤ −2. Define the function S2,b : Z → Z≥0 by S2,b(0) = 0 and for a =
∑n

i=0 aib
i with

an ̸= 0 and 0 ≤ ai ≤ |b| − 1, for each 0 ≤ i ≤ n,

S2,b(a) =
n∑

i=0

a2i .

An integer a is a b-happy number if, for some k ∈ Z+, Sk
2,b(a) = 1.

The following definitions are from [4]. Fix b ≤ −2. Let
U2,b =

{
u ∈ Z+

∣∣ for some m ∈ Z+, Sm
2,b(u) = u

}
.

We say that a finite set T is (2, b)-good if, for each u ∈ U2,b, there exist n, k ∈ Z+ such that

for each t ∈ T , Sk
2,b(t+ n) = u. Finally, let I : Z+ → Z+ be defined by I(t) = t+ 1.

We will use the following lemma, which is proved in more generality in [2, Lemma 8].

Lemma 2.1. Fix b ≤ −2. Let T ⊆ Z+ be finite. Let F : Z+ → Z+ be the composition of a
finite sequence of the functions S2,b and I. If F (T ) is (2, b)-good, then T is (2, b)-good.

Lemma 2.2, combined with Lemma 2.1, enables significant simplification of the proofs in
the following section.

Lemma 2.2. Fix b ≤ −7. For each finite subset A ⊆ Z+, there exists k ∈ Z+ such that for
each a ∈ A, Sk

2,b(a) < 2b2.

Proof. By [2, Theorem 1], if a > (|b| − 1)(b2 + b + 1), then S2,b(a) < a. So, there exists a

k1 ∈ Z+ such that for each a ∈ A, Sk1
2,b(a) ≤ (|b|−1)(b2+b+1). It follows that, for each a ∈ A,

Sk1+1
2,b (a) ≤ 3(|b| − 1)2 = 3b2 + 6b + 3, and so Sk1+2

2,b (a) ≤ S2,b(3b
2 + (|b| − 1)b + (|b| − 1)) =

9 + 2(|b| − 1)2 = 2b2 + 4b+ 11 < 2b2. The lemma follows. □

3. Main Results

In this section, we prove that for b ≤ −4, any finite set of positive integers is (2, b)-good.
This then allows us to prove Theorem 1.2, the main theorem of this paper. Key to each of
these proofs is the following lemma.

Lemma 3.1. Fix b ≤ −12 and even. For each 0 < v < 2b2, there exists some 0 ≤ w < v and
0 ≤ c ≤ |b| − 2 such that

S2,b((|b| − 1)b+ v−w− 1)−S2,b((|b| − 1)b2+ |b| − 1−w)+ 5+2c ≡ 0 (mod (|b|+1)). (3.1)

Proof. Fix b ≤ −12 and 0 < v < 2b2. Note that because b is even, 2 is invertible modulo |b|+1,
and so for any 0 ≤ w < v, there exists a unique c = c(v, w) satisfying (3.1) with 0 ≤ c ≤ |b|.
Therefore, it suffices to show that for at least one such w, c(v, w) ≤ |b|−2. For a contradiction,
suppose to the contrary that for each 0 ≤ w < v, c(v, w) = |b| − 1 or |b|.

Set v = v2b
2 + v1b + v0 with 0 ≤ vi < |b| for each i. By assumption, v2 ≤ 2 and if

v2 = 2, then v1 > 0. Noting that |b| ≡ −1 (mod (|b|+ 1)), it is straightforward to verify that
c(1, 0) = |b|/2 < |b| − 1 and c(2, 1) = 2 < |b| − 1. So, we may assume that v ≥ 3.

If v0 ≥ 2, then for 0 ≤ w ≤ 1,

S2,b((|b| − 1)b+ v − w − 1) = S2,b(v2b
2 + (v1 + |b| − 1)b) + (v0 − w − 1)2.
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So for w = 0, using (3.1),

0 ≡ S2,b(v2b
2 + (v1 + |b| − 1)b) + (v0 − 1)2 − 2(|b| − 1)2 + 5 + 2c(v, 0) (mod (|b|+ 1)) (3.2)

and for w = 1, using (3.1),

0 ≡ S2,b(v2b
2+(v1+ |b|−1)b)+ (v0−2)2− (|b|−1)2− (|b|−2)2+5+2c(v, 1) (mod (|b|+1)).

Subtracting and simplifying yields v0 ≡ c(v, 1)−c(v, 0)−1 (mod (|b|+1)). Because 2 ≤ v0 < |b|
and each of c(v, 0) and c(v, 1) is by assumption equivalent to −1 or −2 modulo |b| + 1, this
implies that v0 = |b| − 1, c(v, 0) = |b|, and c(v, 1) = |b| − 1. So by (3.2),

S2,b(v2b
2 + (v1 + |b| − 1)b) ≡ −(|b| − 2)2 + 2(|b| − 1)2 − 5− 2|b| ≡ −4 (mod (|b|+ 1)).

Now, because v0 = |b| − 1, we may let w = 2 in (3.1), resulting in

0 ≡ S2,b(v2b
2 + (v1 + |b| − 1)b) + (|b| − 4)2 − (|b| − 1)2 − (|b| − 3)2 + 5 + 2c(v, 2)

≡ 2c(v, 2) + 6 (mod (|b|+ 1)),

and so, c(v, 2) = |b| − 2 < |b| − 1, a contradiction.
Thus, v ≥ 3 and v0 = 0 or 1. Hence, v ≥ b. Because v < 2b2, v2 = 1 or 2, and if v2 = 2,

then v1 > 0.
If v0 = 1, then for 1 ≤ w ≤ 3,

S2,b((|b| − 1)b+ v − w − 1) = S2,b(v2b
2 + (|b| − 1 + v1)b+ v0 − w − 1)

= S2,b((v2 − 1)b2 + v1b+ |b| − w)

= S2,b((v2 − 1)b2 + v1b) + (|b| − w)2.

Therefore, using (3.1) with each of w = 1, 2, and 3,

0 ≡ S2,b((v2 − 1)b2 + v1b) + (|b| − 1)2 − (|b| − 1)2 − (|b| − 2)2 + 5 + 2c(v, 1) (mod (|b|+ 1)),

0 ≡ S2,b((v2 − 1)b2 + v1b) + (|b| − 2)2 − (|b| − 1)2 − (|b| − 3)2 + 5 + 2c(v, 2) (mod (|b|+ 1)),

and

0 ≡ S2,b((v2 − 1)b2 + v1b) + (|b| − 3)2 − (|b| − 1)2 − (|b| − 4)2 + 5 + 2c(v, 3) (mod (|b|+ 1)).

Subtracting and simplifying yields c(v, 2)− c(v, 1) ≡ 1 (mod (|b|+1)) and c(v, 3)− c(v, 2) ≡ 1
(mod (|b|+1)). But this implies that at least one of c(v, 1), c(v, 2), and c(v, 3) is not congruent
to −1 or −2, a contradiction.

Therefore, v0 = 0. Letting w = 0 in (3.1), we have

0 ≡ S2,b((|b| − 1)b+ v − 1)− S2,b((|b| − 1)b2 + |b| − 1) + 5 + 2c(v, 0)

≡ S2,b((v2 − 1)b2 + v1b+ (|b| − 1))− S2,b((|b| − 1)b2 + |b| − 1) + 5 + 2c(v, 0)

≡ ((v2 − 1)2 + v21 + (−2)2)− ((−2)2 + (−2)2) + 5 + 2c(v, 0) (mod (|b|+ 1)),

and so,
(v2 − 1)2 + v21 + 1 + 2c(v, 0) ≡ 0 (mod (|b|+ 1)). (3.3)

Recalling that by assumption v2 = 1 or 2 and c(v, 0) = |b| − 1 or |b|, (3.3) implies that
v1 ̸= |b| − 1.

Now letting w = |b| < v, (3.1) becomes

0 ≡ S2,b((|b| − 1)b+ v − |b| − 1)− S2,b((|b| − 1)b2 + |b| − 1− |b|) + 5 + 2c(v, |b|)
≡ S2,b((v2 − 1)b2 + (v1 + 1)b+ (|b| − 1))− S2,b((|b| − 1)b2 + b+ (|b| − 1)) + 5 + 2c(v, |b|)
≡ ((v2 − 1)2 + (v1 + 1)2 + (−2)2)− ((−2)2 + 1 + (−2)2) + 5 + 2c(v, |b|) (mod (|b|+ 1)),
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and so, (v2 − 1)2 + (v1 +1)2 +2c(v, |b|) ≡ 0 (mod (|b|+1)). Subtracting (3.3) and simplifying
yields v1 + c(v, |b|) − c(v, 0) ≡ 0 (mod (|b| + 1)). Hence, v1 = 0 or 1. Again using (3.3) and
recalling that v < 2b2, we find that v = b2 + b.

Finally, verifying that c(b2 + b, 2|b|) = |b| − 2 < |b| − 1 completes the proof. □

We now use the fact that 0 ≤ c(v, w) < |b| − 1 to prove that every finite set of positive
integers is (2, b)-good.

Theorem 3.2. If b ≤ −4 is even, then every finite set of positive integers is (2, b)-good.

Proof. By [2, Theorem 12], the theorem holds for even −10 ≤ b ≤ −4. So we fix even b ≤ −12.
Fix a finite set of positive integers T . If T is empty, then vacuously it is (2, b)-good. If

T = {t}, then given u ∈ U2,b, by definition, there exist x ∈ Z+ such that S2,b(x) = u.
Fix some r ∈ Z+ such that t ≤ b2rx. Then, letting n = b2rx − t and k = 1, because
Sk
2,b(t+ n) = S2,b(b

2rx)) = u, T is (2, b)-good by definition.

Now assume that |T | > 1 and assume, by induction, that any set of fewer than N positive
integers is (2, b)-good. Applying Lemmas 2.1 and 2.2, we may assume that for each t ∈ T ,
t < 2b2. Fix t1 > t2 ∈ T .

Let v = t1 − t2 < 2b2. By Lemma 3.1, there exists some 0 ≤ w ≤ v and 0 ≤ c < |b| − 1 such
that (3.1) holds. Let

m = cb4 + (|b| − 1)b2 + (|b| − 1)− t2 − w ≥ 0.

Then, since |b| = −b,
S2,b (t1 +m) = S2,b

(
cb4 + (|b| − 1)b2 + (|b| − 1) + v − w

)
= S2,b

(
(c+ 1)b4 + (|b| − 1)b3 + (|b| − 1)b+ v − w − 1

)
= (c+ 1)2 + (|b| − 1)2 + S2,b ((|b| − 1)b+ v − w − 1) .

By the choice of c, we have

S2,b (t1 +m) ≡ (c+ 1)2 + (|b| − 1)2 + S2,b((|b| − 1)b2 + |b| − 1− w)− 5− 2c

≡ c2 + S2,b

(
(|b| − 1)b2 + (|b| − 1)− w

)
≡ S2,b

(
cb4 + (|b| − 1)b2 + (|b| − 1)− w

)
≡ S2,b(t2 +m) (mod (|b|+ 1).

Now, if S2,b (t1 +m) = S2,b(t2+m), then |S2,bI
m(T )| < |T | and so, S2,bI

m(T ) is (2, b)-good,
implying, by Lemma 2.1, that T is (2, b)-good, as desired.

If not, then fix t3 > t4 ∈ S2,bI
m(T ) with

{t3, t4} = {S2,b (t1 +m) , S2,b(t2 +m)}.

Fix v′ ∈ Z+ such that t4 − t3 = v′(b − 1). Choose r ∈ Z+ such that b2(r−1) > |b|v′ + t3. Let
m′ = b2r + v′ − t3 > 0. Then

Im
′
(t3) = t3 + b2r + v′ − t3 = b2r + v′

and
Im

′
(t4) = t4 + b2r + v′ − t3 = b2r + v′ + v′(b− 1) = b2r + bv′.

Because b2(r−1) > |b|v′, it follows that Im(t1) and Im(t2) have the same nonzero digits. Thus,

letting F ′ = S2,bI
m′
S2,bI

m, F ′(t1) = F ′(t2). Because |F ′(T )| < |T |, F ′(T ) is (2, b)-good and,
by Lemma 2.1, T is (2, b)-good, completing the proof. □

The main theorem now follows.
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Proof of Theorem 1.2. Fix b < −4 and even. Given N ∈ Z+, let T = {1, 2, 3, . . . , N}. By
Theorem 3.2, T is (2, b)-good. By the definition of (2, b)-good, there exist n, k ∈ Z+ such that
for each t ∈ T , Sk

2,b(t + n) = 1. Thus, T + n = {1 + n, 2 + n, . . . , N + n} is a sequence of N
consecutive b-happy numbers, as desired. □

References

[1] E. El-Sedy and S. Siksek, On happy numbers, Rocky Mountain J. Math., 30 (2000), 565–570.
[2] H. G. Grundman and P. E. Harris, Sequences of consecutive happy numbers in negative bases, The Fibonacci

Quarterly, 56.3 (2018), 221–228.
[3] H. G. Grundman and E. A. Teeple, Generalized happy numbers, The Fibonacci Quarterly, 39.5 (2001),

462–466.
[4] H. G. Grundman and E. A. Teeple, Sequences of consecutive happy numbers, Rocky Mountain J. Math.,

37 (2007), 1905–1916.
[5] R. K. Guy, Unsolved Problems in Number Theory, Second Edition, Springer-Verlag, New York, 1994.
[6] H. Pan, On consecutive happy numbers, J. Number Theory, 128 (2008), 1646–1654.
[7] X. Zhou and T. Cai, On e-power b-happy numbers, Rocky Mountain J. Math., 39 (2009), 2073–2081.

MSC2020: 11A63

Department of Mathematics, Bryn Mawr College, Bryn Mawr, PA 02906
Email address: grundman@brynmawr.edu

MAY 2024 129


