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ABSTRACT. We explore the Jacobsthal version of an infinite sum involving gibonacci polyno-
mial squares and its implications.

1. INTRODUCTION

Ezxtended gibonacci polynomials z,(x) are defined by the recurrence z,12(x) = a(z)zp+1(x)+
b(x)z,(x), where z is an arbitrary integer variable; a(x), b(x), zo(z), and z;(z) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = x and b(z) = 1. When zo(x) = 0 and z1(x) = 1, z,(z) = fu(x), the
nth Fibonacci polynomial; and when zp(x) = 2 and z(z) = z, z,(x) =1 (x) the nth Lucas
polynomial. Clearly, f,(1) = F,, the nth Fibonacci number; and [,,(1) = L,, the nth Lucas
number [1, 3].

On the other hand, let a(x) = 1 and b(z) = x. When 2o(z) = 0 and z1(x) = 1, z,(x) =
Jn(x), the nth Jacobsthal polynomial; and when zo(z) = 2 and z1(z) = 1, z,(x) = jn(x), the
nth Jacobsthal-Lucas polynomial. Correspondingly, J, = J,(2) and j, = j,(2) are the nth
Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, J,(1) = F,; and j,(1) = L,
2, 3].

Gibonacci and Jacobsthal polynomials are linked by the relationships J,(z) =
20D/ f,(1//z) and jn(z) = 2210 (1/) [3, 4.

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(z). In addition, we let g, = f,
or lp, ¢n = Jyp or ju, A = Va2 +4,2a =x+ A, D = +4x+1, and 2w = 1 + D. Then

o1V = 52 =

2. GIBONACCI POLYNOMIAL SUM

Before presenting an interesting gibonacci sum, again in the interest of brevity and
expediency, we now let [5, 6]

1, ifgann; ¥ 1, ifgn:fn; % 1, if cn = Jn;
wo= 9 . vt = . and D* = 9 .
A<, otherwise; -1, otherwise; D=, otherwise.

Using these tools as building blocks, we established the following result in [5], the cornerstone
of our discourse.

Theorem 2.1. Let k, p, r, and t be positive integers, where t < 2p. Then

S (

-1 tk ., *
2 S fr{ipk 72 tktr _ o1, (2.1)
n=1 Jpntt—pk ~ (=1 fpk Gtk

The goal of our discourse is to explore the Jacobsthal counterpart of this sum.
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3. JACOBSTHAL POLYNOMIAL SUM

To realize our objective, we will employ the gibonacci-Jacobsthal relationships in Section 1.
To this end, in the interest of brevity and clarity, we let A denote the fractional expression on
the left side of the given gibonacci equation and B that on its right side, and LHS and RHS
the left-hand side and right-hand side of the corresponding Jacobsthal equation, as in [5, 6].

With this short background, we now begin our endeavor.

-1 tk .
Proof. Case 1. Suppose g, = fn. We have A = — (=D fr fop 72 - Now, replace z with
S ontt—py ~ (D)™ o

1/y/x, and multiply the numerator and denominator with x(ZPrt)h=2+1/2 \We get
. (—1)thg(2pntt—p)k= 1[x(r 1) /2f] [ (2pk—1)/2 ¢, k]
pPk—1+7/2 {x[(Qpn—l—t—p)k’—l /2f(2pn+t7p)k} _ _1)tk$(2pn+t p)k— 1+T/2[$(pk—1)/2fpk]2
(_1)th(an+t72p)kfr/2Jrjzpk ‘
J(22pn+t_p)k 1)tk pntt—2p)k Jgk’
s = 5 CUS
n—=1 Y (2pn+t—p)k pk
where g, = g,(1/y/x) and ¢, = ¢, ().
We now turn to B = 2240 _ o Replacing x with 1/4/x, and multiplying the numerator
and denominator with a:(tkiﬁ"_l)/ 2 yields
. s D2hy
e[ =D2f, ] T g2
RHS Jtktr w”

xr/Zth o /2’
where g, = g,(1/v/x) and ¢, = ¢, ().

By equating the two sides, we get the Jacobsthal version of equation (2.1):
tk (2pn+t 2p)kJ J2 &

th—l—r
§ : - — (3.1)
2pn+t ok ( 1 )th(2pn+t 2p)k‘]§k Jik

where ¢, = ¢, ().
Next, we pursue the Jacobsthal-Lucas version of Theorem 2.1.

-1 tk-{—lAQ ;
Case 2. With g, = l,,, we have A = - (=1) f {;pk2 .
l(2pn+t —p)k + (_1) A fpk

and multiply the numerator and denominator with z(2P" =P we have

. Again, replace x with 1//x,

(_1)tk+1 Z;Q [(2pn+t 2p)k+1—r/2] [x('r 1) /2f] [ (2pk—1) /2f2 k]
{:L,[(2pn+t—p)k]/2l(2pn+t7p)k}2 (_1)tk%2x(2pn+t 2p)k+1[ (pk—1) /prk]Q
(_1)tk+1D2x(2pn+t72p)k7T/2JTJ2pk ‘
— 1)tk D2z @pnt=2p)k J2°

A:

2
Topntt—pye T
LHS — i (—1)th+1 D2 Conti=2p)k=r/2 ] J, |
= Gopn ity T (F1)FD2 G200k I3
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where g, = gn(l/ﬁ) and ¢, = Cn(x)

C th
This time, we have B = tr

; a”. Now, replace x with 1/y/x, and multiply the numerator
tk
and denominator with z(**+7)/2 This yields

B x(tl»c—&-r)/Qltl€+ B
ot /2[xtk /2]
RHS = Jtk-+r

w?"

x'r/Z;

w’f‘

:ET/thk xr/2’
where g, = g,(1/v/x) and ¢, = ¢, (2)

Equating the two sides yields the corresponding Jacobsthal-Lucas version

i (_1)tk+1D2w(2pn+t72p)kt] J2 "
n=1 j(22pn+t—p)k + (_1

r

: , 3.2
Jtk (3:2)
where ¢, = ¢, ()

_ .jtk’+’l”
)tkDQx(Qpn+tf2p)kJ2 - o

Using equations (3.1) and (
following theorem features

O

), we get the Jacobsthal version of Theorem 2.1, as the

Theorem 3.1. Let k, p, r, and t be positive integers, where t < 2p. Then
oo

Z (*1)tkD*V*x(Qpn+t_2p)kJrJ2 K
2
7= Cepnrt—pr (1

_ ctk+T _ wr
)tkD*V*x(Qpn—f—t—Qp)kJQ ’

3.3

” (3.3)

By employing the gibonacci-Jacobsthal relationships in a compact way, we showcase an
alternate proof of this theorem

3.1. A Sophisticated Method. To begin with, we let

d = 1+V*_{1/27 if g, = fu;
= 1 =

0, otherwise.
It follows, from the gibonacci-Jacobsthal links, that

OV =

_ Jnl(2), cn(2)
2(n—1)/2 ln(l/\/%) R gn(l/f)
With these new tools at our disposal, we are ready for the alternate proof

n/2 d’
Proof. Replacing x with 1/4/z in the rational expression on the left side of equation (2.1) and
using the above substitutions, we get

4 (_1)tkluy*Jr/x(r71)/2 . J2pk/x(2pk71)/

(2pn+t—p)k _d 2
c(2pn+tfp)k/x 2 ] -

(=1)tk pw {7‘]”'“ ]2
Y™ R /2

_ _ _ 2pk+r—2

( 1)tk,UV*JrJ2pk . w(?pn—&-t p)k—2d
2

Cpnti-pk (=

1)tkMV*J5k . pl@pn+t—p)k—2d—(pk—1)

_ (-Utkﬂl/*JrJka . p(2pn+t—2p)k— yigrol

_ T )
c%2pn+t p) —(—1)tku1/*J2 . p(2pntt=2p)k+15
i tkD*V*x(an+t 2p)k— T/QJ JQ i
LHS =
* 5
n=1 C(2pn+t —p)k — (=1)tk D*p*g@pn+t=2p)k
where ¢, = ¢, ()
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The right side of equation (2.1) yields
B = Ytktr _ r

gtk
tk+r —d
Cikr/T 2

w

r

Ctk/l’%_d

Ctk+r w
RHS = - —
xr/thk xr/2’

where g, = g,(1/v/x) and ¢, = ¢, ().

r

o wT/2;

Combining the two sides yields the same Jacobsthal version, as expected:

0 (—)thDr etk g g

>z

n=1 C(an-i-t—p)k: B (

where ¢, = ¢, ().

— 1)tkD* p¥ o (2pn+t—2p)k ‘]]gkz

We now explore a host of gibonacci and Jacobsthal implications of Theorem 3.1.

3.2. Gibonacci and Jacobsthal Implications. With J,(1) = F, and j,(1) =

Theorem 3.1 yields
1) B Fopg

>

n=1 (2pn+t p)k (

)tk Fp2k

e ( )tk+15F F2pk
2 2
n=1 L(2pn+t—p)k +(= )tk5Fpk
St (_1)tk2(2pn+t_2p)k<]r=]2pk
n=1 J(22pn+t—p)k n (_1)tk2(2pn+t_2p)k‘]5k
o0 (_1)tk+19 . 2(2pn+t_2p)k<]r<]2pk

>3

2pn-+t—2p)k 72
(2p D) ka

Let p=3,r =1, and t <6. With k& = 1, equations (3.4) and
- 1 IR RV 1
< F3, 5+4 167 167 L3, ,—20
f: L L
= FE, 4 16 16" 4L, ;+20
o o0
1 1 5 1
o - iR Ln
— Fg, +4 8 16 — L§, —20
P S GG T« S
e F 4 48 167 L2, +20
= B 11+\/5. - 1
— Fyo+4 80 16’ = L, 0 — 20
L _ 9 V5 1
= FR 4 64 16’ L%, 5+20

With k = 2, we get

MAY 2024

_ Ctk4r W',
Ctk
0
Ly,
Ftk+T r
—a'; 3.4
Fo (3.4)
Ltk’-i—r r
—a'; 3.5
Tt (3.5)
th+r
— o 3.6
T (3.6)
Jthir _or (3.7)
Jtk
(3.5) yield
_ 1 V5
16 80’
1 5
_ L v
48 ' 80
_ 1.
T 32 80
3 5
_ 3 V5
112 ' 80
_ 5 V5
176 80
1 5
_ L.V
36 ' 80
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= 1 1 V5 = 1 1 V5
7 = oA nog) e =~ ;
= F2(6n_2) — 64 96 288 — L2(6n_2) + 320 864 1,440
i 1 7 5 - 1 1 5
o a4 = 2fd 9as 3 T ;
= F2(6n—1) — 64 864 288’ L2(6n T+ 320 672 1,440
i 1 1 V5 1 1 V5
— F2(6n) — 64 128 288 L2(6n) + 320 648 1,440
i 1 4T 5 &) 1 - 7 V5
-2 a4 T H00’ 2 - = PR
= F2(6n+1) — 64 6,048 288 — L2(6n+1) + 320 4,512 1,440
i 1 4 5 1 55 V5
2 _ a4 T o9’ 72 | aon )
F3 5(6n+2) 64 5,280 288 = L2(6n+2) + 320 35,424 1,440
= 1 161 V5 = 1 1 V5
Y G 2 “aaa T 1 a40°
= F2(6n+3) — 64 20,736 288 — L2(6n+3) + 320 644 1,440
Next, we showcase the Jacobsthal counterparts of these gibonacci sums.
With k£ = 1, equations (3.6) and (3.7) yield
o 96n—>5 B io: 96n—>5 B 1
g o 9-20m75 21 A, — 8120005 63
0 96n—4 B 1 & 26n—4 B
n=1 J62”_1 — 920 - 21’ n=1 jgn—l +81- 20n—4 B 315’
& 96n—3 1 e 96n—3
=1 J62n + 9- 26n—3 © 63 n=1 jgn — 81 26n—3 N E7
o obn—2 B e 26n—2 B 1
gy — 902021057 Agg L +81-200m2 1,071
o 96n—1 B 1 e obn—1 B 1 '
n=1 Jgn+2 +9- 26n—1 N 2310 n=1 jtngrZ —81-20n1 a 17 953’
o 96m B 1 oo 96n B
D Jones— 90200 4L G s 812" 4,005
Using k = 2, we get
i 92(6n—5) 1 0 92(6n—>5) 1
T gy — 441 26075 1,365" 3, o 3,969 26n75 20,475
i 92(6n—4) i 92(6n—4) 1
P Jaonoyy ~ L2 68257 I g,y + 3,969 200 69,615
i 92(6n—3) 1 i 92(6n—3) 1
2 3 = ) 2 3 = ;
ot JQ(Gn) — 441 - 26n=3 28,665 = J56m) T 3,969 - 26n—3 266,175
i 92(6n—2) 1 92(6n—2) 1
ot J3 5(6n+1) — 441 - 26n—2 116,025 = Ia(ensn) T 3,969 - 26n—2 1,052,415
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o0 92(6n—1) 1 o0 92(6n—1) 1
Z:: 2 ni) — 44120071 465,465’ nz::l B omyz) T 3,969 2001 4,197,375
ad 22(6n) 1 > 22(6n) 1

; Ty — 441200~ 1,863,225° nz onys) T 3969200~ 16,777,215°
3.3. Gibonacci Delights. Using the above gibonacci sums, we can extract dividends.
oo oo 1
St St - e
n=2"2n n=1 \i=—1 " 6n+2i
i# _ Z( ) _ 43 3v5
—13,-20 L, 0 — 20 352 80’
| B i( ) 91 35
n= 2F22n+1 1 n=1 \i=—1 6n+2z+1 —4 ©192 16
S 1 - 19 3V5
S L3, 20 nz:l (2_1 6n+2z+1+20> © 252 80

Finally, we encourage the gibonacci enthusiasts to explore the gibonacci and Jacobsthal
sums with p=5,k=1=rp=5k=2,r=1;andp=5k=2=r.
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